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In this supplement, we first summarize the experimental results of our proposed MDFNet on solving
privacy protected multi-domain collaborative learning (P2MDCL) with multiple clients, and then
report the comparison on two tasks under the original protocol of SHOT, where all source samples
are used for training and the evaluation focuses on target domain. Finally, we provide the formal
proof for the Lemma 1, Lemma 2 and Theorem 1 mentioned in our main manuscript.

1 EXPERIMENTS

In the main manuscript, we focus on P2MDCL with two clients (source and target domains). The
corresponding results illustrate our learning strategy effectively eliminates the domain discrepancy
and assists each client to gain the additional benefits.

Table 1: Comparisons of Object Recognition Accuracy (%)
for P2MDCL on Office-Home benchmark with multi-clients,
where S denotes the labeled source clients while T means
the unlabeled target clients. For each task, we adopt bold
to highlight the best performance and underline to empha-
sis the second highest result. HM is the harmonic mean de-
fined as 4

(1/ACCAr)+(1/ACCCl)+(1/ACCPr)+(1/ACCRw) , where
ACCAr is the accuracy on test set of Ar domain.

Method
Training

Test ACCAr ACCCl ACCPr ACCRw HM

Src-only
S:Ar& Cl
T:Pr& Rw

76.52 84.52 69.29 74.71 75.88
SHOT 73.89 75.45 76.44 78.81 76.11
Ours 77.35 83.96 78.37 80.81 80.04

Src-only
S:Ar& Pr
T:Cl& Rw

77.57 49.53 93.55 77.43 70.56
SHOT 74.05 56.17 88.06 79.84 72.48
Ours 78.18 57.85 93.61 81.01 75.32

Src-only
S:Ar& Rw
T:Pr& Rw

77.08 50.26 73.55 88.09 69.18
SHOT 72.98 54.41 78.08 86.32 70.83
Ours 77.76 55.9 78.49 89.12 73.11

Src-only
S:Cl& Pr

T:Ar& Rw

52.04 84.35 93.14 69.36 71.14
SHOT 61.43 79.84 88.92 73.81 74.63
Ours 61.68 85.43 92.93 75.26 76.97

Src-only
S:Cl& Rw
T:Ar& Pr

55.79 85.1 69.52 88.23 72.21
SHOT 61.72 78.29 74.89 86.09 73.94
Ours 61.13 86.21 76.44 89.03 76.75

Src-only
S:Pr& Rw
T:Ar& Cl

58.26 45.57 92.23 90.07 65.52
SHOT 62.88 50.51 87.66 85.13 67.96
Ours 64.03 51.91 93.6 89.44 70.49

To further evaluate our MDFNet, we
execute the experiments with four
clients on office-home benchmark
including four domains: Artistic im-
ages (Ar), Clip Art (Cl), Product
images (Pr) and Real-World images
(Rw). Four subsets with 15,500 im-
ages share the identical label space
of 65 categories. For the P2MDCL
with multi-clients, arbitrary two do-
mains are considered as the labeled
source clients and the remaining
ones are unlabeled target clients.
And each source domain is divided
into one training set and one test
set which involve the same number
of samples. Under this condition,
our MDFNet attempts to learn the
consensus model with four clients
and one global server. For source-
only method (Src-only), we train
the source model with all annotated
samples and directly apply it to iden-
tify instances on the test set of each
client. In terms of the source-free
based solution SHOT, the source
model trained with all available la-
beled images is adapted into the in-
tegration of two unlabeled domains,
yielding the final model tested on
each client. The comparisons of ob-
ject recognition are reported in Table 1. Different from the SHOT and Src-only, our MDFNet not
only gradually promotes the performance of model on target domains but also achieves a slight im-
provement on the source domains in most cases. It demonstrates our learning strategy effectively
solves P2MDCL with multiple clients.

Moreover, we follow the original protocol of source-free where all source instances are used for
training and the evaluation focuses on target domain to re-implement SHOT on tasks Ar→Rw and
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Pr→Cl of Office-Home datasets and achieve the performance as 80.9% and 54.5% which are very
similar with their reported results. In addition, under the same setting, we evaluate our proposed
method (MDFNet) on these two tasks and achieve the 82.5% and and 56.5%. Compared to the results
in our manuscript, we can achieve two important conclusions. Firstly, the considerable reduction
of source training samples negatively affects the model performance in the mentioned methods.
Second, our MDFNet can achieve better results than other baselines with insufficient source samples.

2 THEORETICAL ANALYSIS

Lemma 1. Suppose the h is a hypothesis of classH, for each unlabeled client, we then achieve:

|εα(h)− εuj
(h)| ≤

L∑
i=1

αi(
1

2
dH∆H(Dli ,Duj

) + λli) +

L+U∑
i=L+1,i6=j

αi(
1

2
dH∆H(Dui

,Duj
) + λui

),

where λli := εli(h
∗) + εuj

(h∗) and h∗ is the hypothesis which achieves the minimum risk on Dli
and Duj

, and λui
similarly means the risk of optimal hypothesis on the mixture of Dui

and Duj
.

Akin to unlabeled clients, we also derive the analogous inequality in clients with ground-truth as:

|εα(h)− εlj (h)| ≤
L∑

i=1,i6=j

αi(
1

2
dH∆H(Dli ,Dlj ) + λli) +

L+U∑
i=L+1

αi(
1

2
dH∆H(Dui ,Dlj ) + λui),

where λli is the risk of optimal hypothesis of Dli and Dlj , and λui := εui(h
∗) + εlj (h

∗).

Proof.

|εα(h)− εuj (h)| = |
L∑
i=1

αiεli(h) +

L+U∑
i=L+1

αiεui(h)−
L+U∑
i=1

αiεuj (h)|

≤
L∑
i=1

αi|εli(h)− εuj (h)|+
L+U∑
i=L+1

αi|εui(h)− εuj (h)|

≤
L∑
i=1

αi[|εli(h)− εli(h, h∗)|+ |εli(h, h∗)− εuj (h, h
∗)|+ |εuj (h, h

∗)− εuj (h)|]

+

L+U∑
i=L

αi[|εui(h)− εui(h, h
∗)|+ |εui(h, h

∗)− εuj (h, h
∗)|+ |εuj (h, h

∗)− εuj (h)|]

≤
L∑
i=1

αi[εli(h
∗) + |εli(h, h∗)− εuj

(h, h∗)|+ εuj
(h∗)]

+

L+U∑
i=L

αi[εui
(h∗) + |εui

(h, h∗)− εuj
(h, h∗)|+ εuj

(h∗)]

≤
L∑
i=1

αi(
1

2
dH∆H(Dli ,Duj

) + λli) +

L+U∑
i=L+1,i6=j

αi(
1

2
dH∆H(Dui

,Duj
) + λui

)

(1)

For the situation of labeled clients, the proof procedure is similar with the above.

Lemma 2. Given a hypothesis spaceH of VC-dimension d, if a random sample of size n is generated
by selecting nβj data points from Dlj or Duj

, and annotating them through flj and fuj
, then with

probability at least 1− δ, ∀h ∈ H, we have:

|ε̂α(h)− εα(h)| ≤

√√√√L+U∑
j=1

α2
j

βj

√
d log(2n)− log δ

2n
.

Proof. For the nβj samples x from the labeled client Dlj , we let Xn
∑j−1

k=1 βk+1, ..., Xn
∑j

k=1 βk
be

the random variables with the value αj

βj
|h(x) − flj (x)|. Similarly, for the nβj samples x from the
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unlabeled client Duj
, we let Xn

∑j−1
k=1 βk+1, ..., Xn

∑j
k=1 βk

be the random variables with the value
αj

βj
|h(x) − fuj (x)|. Note that for the labeled or unlabeled clients, Xn

∑j−1
k=1 βk+1, ..., Xn

∑j
k=1 βk

∈
[0, αj/βj ]. And then, we have

ε̂α(h) =

L∑
j=1

αj ε̂lj (h) +

L+U∑
j=L+1

αj ε̂uj (h)

=

L∑
j=1

αj
βjn

∑
x∈Dlj

|h(x)− flj (x)|+
L+U∑
j=L+1

αj
βjn

∑
x∈Duj

|h(x)− fuj
(x)|

(2)

Due to the linearity of expectations, we can achieve

E[ ˆεα(h)] =
1

n
(

L∑
j=1

βjn
αj
βj
εlj (h) +

L+U∑
j=L+1

βjn
αj
βj
εuj

(h))

=

L∑
j=1

αjεlj (h) +

L+U∑
j=L+1

αjεuj
(h) = εα(h)

(3)

With the Hoeffding’s inequality Hoeffding (1994), the following holds for each h.

Pr[|ε̂α(h)− εα(h)| ≥ ε] ≤ 2 exp(
−2nε2∑L+U
j=1

α2
j

βj

) (4)

Finally, we substitute the probability with δ and achieve the following.

|ε̂α(h)− εα(h)| ≤ ε =

√√√√L+U∑
j=1

α2
j

βj

√
d log(2n)− log δ

2n
(5)

Theorem 1. Suppose that we are given nβi labeled instances from client Dli for i = 1...L, and nβj
unlabeled instances from clientDuj

in a federated learning system. Let ĥ = argminh∈H ε̂α(h), and
h∗li := argminh∈H εli(h) and h∗uj

:= argminh∈H εuj
(h). Then, ∀αi ∈ R+,

∑L+U
i=1 αi = 1, with

probability at least 1− δ over the choice of samples from each client,

εuj (ĥ) ≤εuj (h
∗
uj
) + 2

√√√√L+U∑
j=1

α2
j

βj

√
d log(2n)− log δ

2n

+ 2
( L∑
i=1

αi(
1

2
dH∆H(Dli ,Duj

) + λli) +

L+U∑
i=L+1,i6=j

αi(
1

2
dH∆H(Dui

,Duj
) + λui

)
)
.
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Proof. Combining the conclusions from Lemma 1 and Lemma 2, we have

εuj
(ĥ) ≤ εα(ĥ) +

L∑
i=1

αi(
1

2
dH∆H(Dli ,Duj

) + λli) +

L+U∑
i=L+1,i6=j

αi(
1

2
dH∆H(Dui

,Duj
) + λui

)

≤ ε̂α(ĥ) +

√√√√L+U∑
j=1

α2
j

βj

√
d log(2n)− log δ

2n

+

L∑
i=1

αi(
1

2
dH∆H(Dli ,Duj

) + λli) +

L+U∑
i=L+1,i6=j

αi(
1

2
dH∆H(Dui

,Duj
) + λui

)

≤ ε̂α(h∗uj
) +

√√√√L+U∑
j=1

α2
j

βj

√
d log(2n)− log δ

2n

+

L∑
i=1

αi(
1

2
dH∆H(Dli ,Duj ) + λli) +

L+U∑
i=L+1,i6=j

αi(
1

2
dH∆H(Dui ,Duj ) + λui)

≤ εα(h∗uj
) + 2

√√√√L+U∑
j=1

α2
j

βj

√
d log(2n)− log δ

2n

+

L∑
i=1

αi(
1

2
dH∆H(Dli ,Duj

) + λli) +

L+U∑
i=L+1,i6=j

αi(
1

2
dH∆H(Dui

,Duj
) + λui

)

≤ εuj
(h∗uj

) + +2

√√√√L+U∑
j=1

α2
j

βj

√
d log(2n)− log δ

2n

+ 2
( L∑
i=1

αi(
1

2
dH∆H(Dli ,Duj

) + λli) +

L+U∑
i=L+1,i6=j

αi(
1

2
dH∆H(Dui

,Duj
) + λui

)
)

(6)

Similarly, for the labeled clients, we follow the above proof and can derive the similar conclusion.
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