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In this supplement, we first summarize the experimental results of our proposed MDFNet on solving
privacy protected multi-domain collaborative learning (P?MDCL) with multiple clients, and then
report the comparison on two tasks under the original protocol of SHOT, where all source samples
are used for training and the evaluation focuses on target domain. Finally, we provide the formal
proof for the Lemma 1, Lemma 2 and Theorem 1 mentioned in our main manuscript.

1 EXPERIMENTS

In the main manuscript, we focus on P2MDCL with two clients (source and target domains). The
corresponding results illustrate our learning strategy effectively eliminates the domain discrepancy
and assists each client to gain the additional benefits.

To further evaluate our MDFNet, we  Table 1: Comparisons of Object Recognition Accuracy (%)
execute the experiments with four for P2MDCL on Office-Home benchmark with multi-clients,
clients on office-home benchmark where S denotes the labeled source clients while T means
including four domains: Artistic im-  the unlabeled target clients. For each task, we adopt bold
ages (Ar), Clip Art (CI), Product (o highlight the best performance and underline to empha-

images (Pr) and Real-World images  sjs the second highest result. HM is the harmonic mean de-

(RW) Four Sublsets Wlth 15,500 im- fined as (1/ACCH )+(1/ACCCZ)—:-1(1/ACCP YF(1/ACCHL) where
ages share th? identical labgl Space  ACCy, is the accuracy on test set of Ar domain.
of 65 categories. For the PPMDCL

with multi-clients, arbitrary two do- Tost
mains are considered as the labeled Method Training ACCar ACCq ACCp ACCry HM
source clients and the remaining g o 7652 8452 6920 7471 7588

ones are unlabeled target clients. gy SAT&Clo 500 0,6 9644 7881 76,11
And each source domain is divided ¢ T:Pr& Rw 7735 8396 7837 80.81 80.04
nto one t.ralmng set and one test Src-only . 7757 49.53 93.55 7743 70.56
set which involve the same nu.mber SHOT S:Ar& Pr 7405 5617 $8.06 79.84 7248
of samples. Under this condition, ¢ o~ TCI&RW 20,0 57es 9361 g1.01 7532
our MDFNet attempts to leam the Sre-only AR R 77.08 5026 7355 88.09 69.18
comers ol i for s Sgor' SATERY s s s s
g : . Ours ' 7776 559 7849 89.12 73.11
only method (Src-only), we train o =" 5204 8435 93.14 6936 71.14
the source model with all annotated SHOT S:Cl& Pr 6143 7984 8892 7381 7463
samples and directly apply it to iden- TAr& Rw ’ ’ el
tify instances on the test set of each Ours 61.68 8543 9293 7526 7697
. Src-only 5579 85.1 69.52 88.23 72.21
client. In terms of the source-free

S:Cl& Rw
. SHOT 61.72 78.29 74.89 86.09 73.94
based solution SHOT, the source T:Ar& P e p—
model trained with all available la- Ours il 6L13 8621 7644 89.03 7675
. . . . Src-only 58.26 4557 92.23 90.07 65.52
beled images is adapted into the in-

S:Pr& Rw

. . SHOT 62.88 50.51 87.66 85.13 67.96
tggragon of two unlabeled domains, Ours T:Ar& Cl 64.03 5191 93.6 8944 70.49
yielding the final model tested on
each client. The comparisons of ob-
ject recognition are reported in Table [I] Different from the SHOT and Src-only, our MDFNet not
only gradually promotes the performance of model on target domains but also achieves a slight im-
provement on the source domains in most cases. It demonstrates our learning strategy effectively
solves P2MDCL with multiple clients.

Moreover, we follow the original protocol of source-free where all source instances are used for
training and the evaluation focuses on target domain to re-implement SHOT on tasks Ar—Rw and
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Pr—Cl of Office-Home datasets and achieve the performance as 80.9% and 54.5% which are very
similar with their reported results. In addition, under the same setting, we evaluate our proposed
method (MDFNet) on these two tasks and achieve the 82.5% and and 56.5%. Compared to the results
in our manuscript, we can achieve two important conclusions. Firstly, the considerable reduction
of source training samples negatively affects the model performance in the mentioned methods.
Second, our MDFNet can achieve better results than other baselines with insufficient source samples.

2 THEORETICAL ANALYSIS

Lemma 1. Suppose the h is a hypothesis of class H, for each unlabeled client, we then achieve:

L L+U
1 1
lea(h) = €, ()] < ai(5dnan(P;, Du;) + i) + > i(5dnan(Du;; Duy) + Aui),
i=1 i=L+1,i)

where \;; := ¢, (h*) + €,; (h*) and h* is the hypothesis which achieves the minimum risk on Dy,
and D,;, and \,, similarly means the risk of optimal hypothesis on the mixture of D,, and D,;.
Akin to unlabeled clients, we also derive the analogous inequality in clients with ground-truth as:

L L+U

1 1
lea(h) —e,(B)| < > ai(§d7-LAH(Dli,Dzj) )+ Y ai(gd’HAH(,Duia,Dlj) + Aus )
i=1,ij i=L+1

where )y, is the risk of optimal hypothesis of D;, and Dy, and Ay, := €, (h*) + €, (h*).
Proof.

L L+U L+U
lea(h) = eu, ()] = | D cwer, (h) + Y i€, () = Y asew, (h)
i=1 i=L+1 i=1
L+U
< Za1|5l — €y, (h)| + Z ey, (h) — €u; (h)]
i=L+1
L
<> aullen () — et (1) + et (b, B*) = e, ()| + lew, (1) = e ()]
i=1
L+U
Z ‘Eu eui(h? h*)| =+ |6ui(ha h*) _6’U«j(h7h*)| + |€Uj(h’? h*) _Euj(h)|]

=
<> aile, (B7) + et (b, 1) = ew, (B, 10)] + e, (17)]

i=1

L+U
+ 2 culew, (W) + lew, (h, 1) — ew; (h h7)] + eu, (17)]

=L
L L+U
1

Z dHAH Dll 5 DuJ) + /\l ) Z O‘i(idHAH (Duia Du]) + /\ul)
i=1 i=L+1,i#j

(D
For the situation of labeled clients, the proof procedure is similar with the above.

Lemma 2. Given a hypothesis space H of VC-dimension d, if a random sample of size n is generated
by selecting nf3; data points from D;; or D,,;, and annotating them through f;, and f,, then with
probability at least 1 — §, Vh € H, we have:

L+U

Ea(h) — ea(h)] < \/dlog (2n) log5

5]

Proof. For the nj3; samples z from the labeled client D,,, we let X 'y

1 X i be
T—1 Br+1? T Zk:l Bk
the random variables with the value O‘{ |h(z) — fi,(x)|. Similarly, for the n3; samples 2 from the
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unlabeled client Du , we let X Slg g1 X, s be the random variables with the value
k*l
% |h(z) — fu,; (x)|. Note that for the Tabeled or unlabeled chents X ny-
J

S X s €
[0, j/B;]. And then, we have

L+U

L

Z Z ajéy, (h)
7j=1 j=L+1
L
2

o LU )
ST - A 3 S S )~ o)
J 1€Dl Jj= L+1 .LE'D
Due to the linearity of expectations, we can achieve
L4+U
Zﬁj e, () + Y Bin ﬂ Lew, ()
7j=1 j=L+1 J
L L+U 3)
Z Z ajey; (h) = €a(h)
Jj=1 j=L+1

With the Hoeffding’s inequality [Hoeffding (1994), the following holds for each h.

—2ne?

Priléa(h) — ea(h)] = €] < 2exp( 7) (4)

ZL+U a@j
J=1 B

Finally, we substitute the probability with § and achieve the following.

dlog(2n) —logd
\/ u )

Theorem 1. Suppose that we are given n; labeled instances from client Dy, for¢ = 1...L, and nf;

unlabeled instances from client D,,; in a federated learning system. Let h = arg minpey €4 (h), and

hj, := argminpcy €,(h) and by := argminpey €y, (h). Then, Va; € Ry, ZZL;U a; = 1, with

probability at least 1 — § over the choice of samples from each client,

R log(2 I
eu, (h) <ew, (W) +2 dog”—)og‘s

2n
Loy LU )
+2(> ai(idﬂAH(Dzi,Dw) E ALY ai(idﬂAH(Du“Dw) + Auy))-
i=1 i=L+1,i#)
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Proof. Combining the conclusions from Lemma 1 and Lemma 2, we have

L L+U
- - 1 1
€u, (h) < €a(h) + Zai(id’HA"H(,DlﬂD“j) + )+ ‘ Z ‘ai(idﬁAH(Duwa) + Au;)
i=1 i=L+1,i#j
L+U 2
) aj [dlog(2n) —logé
oy [5
L 1 L+U 1
+ 2 qilgduan(Pu, Do) + )+ D ail5duan(Du; Duy) + M)
i=1 i=L+1,i#£j
L+U 2
. of [dlog(2n) — logd
TN
o) 3G,
L 1 L+U 1
+ 2 qilgduan(Pu, Do) + )+ D ail5duan(Du; Duy) + M)
=1 i=L+41,i#j
< ealh Li:UOé?\/dloan)—logé
- = ﬁj 2n
L 1 L+U 1
+ Zm(idmy(m,m) )+ Z} il5duan(Du; Du,) + Au,)
i=1 i=L+1,i#j
L+U 2
o5 [dlog(2n) — logd
<eu (hE)++2 J\/
() 2; B; 2n

L+U

L
1 1
+2( Y a(Gduan(@i Du)) + M)+ Y. ailgduan(Du, Duy) + )
i=1 i=L+1,i#j

(6)

Similarly, for the labeled clients, we follow the above proof and can derive the similar conclusion.
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