
Towards Efficient and Expressive GNNs for Graph
Classification via Subgraph-aware Weisfeiler-Lehman

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract1

The expressive power of GNNs is upper-bounded by the Weisfeiler-Lehman (WL)2

test. To achieve GNNs with high expressiveness, researchers resort to subgraph-3

based GNNs (WL/GNN on subgraphs), deploying GNNs on subgraphs centered4

around each node to encode subgraphs instead of rooted subtrees like WL. However,5

deploying multiple GNNs on subgraphs suffers from much higher computational6

cost than deploying a single GNN on the whole graph, limiting its application to7

large-size graphs. In this paper, we propose a novel paradigm, namely Subgraph-8

aware WL (SaWL), to obtain graph representation that reaches subgraph-level9

expressiveness with a single GNN. We prove that SaWL has beyond-WL capability10

for graph isomorphism testing, while sharing similar runtime to WL. To generalize11

SaWL to graphs with continuous node features, we propose a neural version named12

Subgraph-aware GNN (SaGNN) to learn graph representation. Both SaWL and13

SaGNN are more expressive than 1-WL while having similar computational cost14

to 1-WL/GNN, without causing exponentially higher complexity like other more15

expressive GNNs. Experimental results on several benchmark datasets demonstrate16

that fast SaWL and SaGNN significantly outperform competitive baseline methods17

on the task of graph classification, while achieving high efficiency.18

1 Introduction19

Graph-structured data widely exist in the real world, and modeling graphs has become an important20

topic in the field of machine learning. Graph learning has widespread applications [1–3], and many21

valuable applications can be formulated as graph classification, e.g., molecular property prediction [4],22

drug toxicity prediction [5]. Graph classification aims to predict the label of the given graph by23

exploiting graph structure and feature information. Learning expressive representations of graphs is24

crucial for classifying graphs of different structural characteristics.25

Recently, Graph Neural Networks (GNNs) have achieved great success in graph classification tasks [6–26

8]. GNNs that follow a message passing scheme first iteratively aggregate neighbor information27

to update node representations, then pool node representations into graph-level representations [9].28

Essentially, GNNs are parameterized generalizations of the 1-dimensional Weisfeiler-Lehman algo-29

rithm (1-WL) [10], which encodes each node by its rooted subtree pattern [11], as shown in Figure 130

(a). Despite the success of traditional message passing GNNs, the expressive power of GNNs is31

theoretically upper-bounded by 1-WL, which is known to have limited power in distinguishing many32

non-isomorphic graphs [12–14].33

To uplift the expressive power of GNNs, researchers adopt a paradigm of WL/GNN on subgraphs34

(Figure 1 (b)), which encodes rooted subgraphs instead of rooted subtrees as node representations [15–35

17]. Methods under the paradigm first extract rooted subgraphs (i.e., subgraph induced by the36

neighbor nodes within h hops of a center node), and then apply GNNs on each extracted subgraph37

respectively. However, as GNNs are applied to subgraphs extracted from each node of the graph, the38

computational cost of these methods is much higher than that of traditional message passing GNNs,39

especially when the subgraphs have similar sizes to the whole graph.40

Submitted to the First Learning on Graphs Conference (LoG 2022). Do not distribute.

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

Figure 1: (a) WL encodes nodes by rooted subtrees, which has limited expressiveness. (b) WL/GNN
on Subgraphs paradigm extracts rooted subgraphs and applies GNNs on each rooted subgraph, which
is computationally expensive. (c) Our Subgraph-aware WL/GNN applies WL/GNN on the full
graph and then encodes rooted subgraphs by aggregating nodes within the subgraph. The proposed
paradigm possesses higher expressive power than 1-WL while keeping the computational cost low.

In this paper, we propose a novel paradigm of Subgraph-aware WL/GNN (SaWL), which reaches41

higher expressiveness than 1-WL with a single GNN (Figure 1 (c)). It first deploys WL/GNN on42

the full graph to obtain node representations, and then aggregates the nodes within each subgraph43

to achieve subgraph awareness. The proposed paradigm greatly reduces the computational cost of44

existing WL-on-subgraph methods, while achieving higher expressive power than 1-WL. Under the45

paradigm, we propose an algorithm as fast implementation of SaWL, which consists of a WL encoder46

and a subgraph operator (S operator). We first apply a standard WL on the full graph to iteratively47

update each node label based on its current label and the labels of its neighbors [18]. After each48

iteration of WL, we use the S operator to encode the rooted subgraph of each node by aggregating49

the current labels of nodes within the subgraph. The whole graph feature mapping at this iteration50

is obtained further by pooling the subgraph feature mapping. Finally, we concatenate graph feature51

mappings at different iterations into a final graph feature mapping for graph classification. We then52

generalize SaWL to a neural version, Subgraph-aware GNN (SaGNN).53

Compared to the paradigm of WL/GNN-on-subgraphs, the proposed Subgraph-aware WL/GNN does54

not need to copy a full n-node graph into n subgraphs (each rooted at a node) and run WL/GNN55

on each subgraph separately (thus the same node can have multiple representations when appearing56

in different subgraphs). Instead, Subgraph-aware WL/GNN only runs WL/GNN on the full graph57

and encodes subgraph information based on the “global” WL/GNN node representations. It encodes58

the subgraph information while avoiding the need to apply WL/GNN on each extracted subgraph59

respectively, which improves the expressiveness and keeps low computational cost at the same time.60

We evaluate the effectiveness of the proposed fast SaWL and SaGNN on graph classification tasks61

via several benchmark datasets, and then conduct the expressive power evaluation to verify the high62

distinguishing power of our methods. We further compare the running time of our methods with63

other high expressive methods. The experimental results show that our methods have both high64

effectiveness and high efficiency.65

2 Preliminary66

2.1 Weisfeiler-Lehman and Feature Mapping67

Weisfeiler-Lehman (1-WL) [10] is one of the most widely used algorithms which can tackle graph68

isomorphism testing for a broad class of graphs [19, 20]. Specifically, 1-WL proceeds in iterations de-69

noted by h, and each iteration includes multisets determination, injective mapping and relabeling [18].70

2

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

Given two graphs G and H , firstly, WL aggregates the labels of neighbor nodes as a multiset Mh
v .71

For h = 0, M0
v = l0v , and for h > 0, Mh

v = {{lh−1
u |u ∈ N (v)}}, where lhv is the label of node v in the72

h-th iteration, N (v) denotes the neighbor nodes of v and {{}} denotes a multiset. Note that multiset73

is a generalized set that allows repeated elements [13]. Then, an injective function is required to74

update the label of node, lhv := HASH
((
lh−1
v ,Mh

v

))
. The procedures repeat until the multisets of75

node labels of two graphs differ, the number of iterations reaches a predetermined value, or the node76

labels do not change in one iteration. The feature mapping of the whole graph can be obtained after77

each iteration. We can use the multiset of node labels in the h-th iteration to represent the whole78

graph [18]. Although 1-WL works well in testing isomorphism on many graphs, the distinguishing79

power of the 1-WL is limited [12, 21].80

2.2 Graph Neural Networks81

Traditional message passing Graph Neural Networks (GNNs) follow an aggregation and update82

scheme, which can be viewed as the neural implementation of the 1-WL [13, 22]. Nodes aggregate83

features of neighbor nodes, combine them with its features and update to new representations:84

hk
v = UPDATE

(
hk−1
v ,AGGREGATE

(
hk−1
u |u ∈ N (v)

))
, (1)

where the UPDATE and AGGREGATE functions are implemented with neural networks. Then, the85

whole graph representation can be computed by a pooling/readout operation like sum [23–25]:86

hk(G) = READOUT
(
hk
v |v ∈ V(G)

)
. (2)

GNNs have been popular architectures for representation learning on graphs. However, it has been87

proved that the expressive power of message passing GNNs is upper bounded by the 1-WL algorithm88

[13, 14], which limits the performance on graph classification tasks.89

3 Subgraph-aware Weisfeiler-Lehman90

We propose a new paradigm of Subgraph-aware Weisfeiler-Lehman (SaWL), which exceeds91

the expressive power of 1-WL while keeping low computational complexity. The paradigm first92

iteratively applies WL/GNN to the original input graph. With the obtained node representations at93

each iteration, the paradigm encodes each rooted subgraph by hashing the node representations within94

its range. Then, the subgraph representations are pooled to obtain the whole graph representation.95

3.1 SaWL for Graph Classification96

SaWL consists of a WL encoder, a subgraph encoding operator (the S operator) and a graph feature97

mapping module. For graph G, the WL encoder executes normal WL steps described in section 2.1,98

which outputs the updated node labels {lhv |v ∈ V(G)}, where lhv is the label of node v in the h-th99

iteration. The core of the proposed SaWL lies in the additional S operator, which encodes subgraph100

information with the results of each WL iteration. We describe the S operator in the following.101

S operator. We employ an injective hash function that acts on labels of nodes within the subgraph102

to encode the subgraph information into a subgraph feature mapping:103

ϕ(h)
(
Gh

v

)
= HASH

(
{{lhv |v ∈ V(Gh

v)}}
)
, (3)

where Gh
v is the h-hop rooted subgraph around node v. The hash function can be designed freely.104

Essentially, the S operator encodes the multiset of node labels within Gh
v (obtained by running h105

iterations of WL on the full graph) into a subgraph representation.106

Graph Feature Mapping Module. With the subgraph feature mapping, an injective readout107

function is adopted to obtain the whole graph feature mapping in the h-th iteration, i.e.,108

ψ(h)(G) = READOUT
(
ϕ(h)(Gh

v)|v ∈ V(G)
)
. (4)

The readout function can be chosen freely. To retain the structural information at all109

iterations, the final graph feature mapping is obtained by concatenation, i.e., ψ(G) =110

CONCAT
(
ψ(0)(G),ψ(1)(G), ...,ψ(H)(G)

)
, where H is the maximum iteration number.111

3

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

Figure 2: Illustration of the fast SaWL. Colored numbers denote node labels. In (b), (c), (e) and (f),
neighbor nodes are aggregated as multiset and compressed to updated labels (the same as 1-WL).
In (d) and (g), the S operator encodes each rooted subgraph into a feature mapping. After the 2nd
iteration, the feature mapping of G2

v1 is no longer equal to that of H2
u1

, so that graph G and H can be
discriminated by SaWL (but not by 1-WL).

Discussion. Compared to plain WL, which directly uses node labels at h-th iteration to obtain the112

graph representation, SaWL additionally uses the multiset of labels of node v’s neighbors within113

h-hop to enhance WL with subgraph information. To understand SaWL’s benefits over plain WL,114

from one point of view, SaWL encodes the node-subgraph-graph hierarchy instead of the node-graph115

hierarchy of WL, which better captures the hierarchical structural characteristics of the graph. From116

another point of view, plain WL encodes a node by its rooted subtree pattern, which can have repeated117

nodes. The repetitions of the same node are regarded as distinct nodes, and the actual number of nodes118

in the subtree pattern might be corrupted. The hash function in the S operator further characterizes119

the information of the actual number of nodes in the subgraph (which also equals the actual number120

of nodes in the subtree pattern, because the subgraph Gh
v does not have repeated nodes).121

3.2 A Fast Implementation of SaWL122

To illustrate the idea of SaWL, we provide a particular implementation here named fast SaWL.123

For the S operator, we design HASH function as a counting mapping that counts the occurrence of124

different node labels in the subgraph. Then, we adopt sum pooling as the READOUT function to125

obtain the whole graph feature mapping.126

Definition 1 (Counting mapping). Let Lh ⊆ L denote the set of node labels that occur at least127

once in the h-th iteration. Lh = (ℓh1 , ℓ
h
2 , ..., ℓ

h
|Lh|) and we assume that Lh is ordered. Assume128

Gh
v ∈ G, where G is the complete graph space. For each iteration h, we define a counting mapping129

ch : G × Lh → N, where ch(Gh
v , ℓ

h
i) is the number of the occurrences of the i-th node label ℓhi in130

subgraph Gh
v at the h-th iteration.131

With counting mapping, the feature mapping of the subgraph Gh
v can be obtained by ϕ(h)(Gh

v) =132 (
ch(G

h
v , ℓ

h
1), ..., ch(G

h
v , ℓ

h
|Lh|)

)
, where the value of the i-th position of the vector represents the133

occurrence number of label ℓhi in the h-th iteration. Essentially, the S operator encodes subgraph by134

mapping the multiset of node labels within the subgraph to a vector, recording the occurrence number135

of each label. Then, the whole graph feature mapping is obtained by applying sum pooling to the136

subgraph feature mappings. Although the sum pooling is not an injective readout function, as we will137

show, it allows fast computation (acceleration) via an implementation trick.138

Illustration. We illustrate the fast SaWL in Figure 2. Given two graphs G and H where colored139

numbers indicate node labels. The WL encoder of fast SaWL updates node labels in (b), (c), (e) and (f).140

4

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

S operator encodes rooted subgraphs, and we take two rooted subgraphs as examples in Figure 2(g).141

The feature mapping of the subgraph G2
v1 in the 2nd iteration is ϕ(2)(G2

v1) = (3, 2), which means the142

label 4 occurs three times and label 5 occurs twice in the subgraph. Then the subgraphs are pooled143

to obtain the graph feature mapping in the 2nd iteration, e.g., for graph G, ψ(2)(G) = ϕ(2)
(
G2

v1

)
+144

ϕ(2)
(
G2

v2

)
+ ...+ ϕ(2)

(
G2

v6

)
= (20, 12). And for graph H , ψ(2)(H) = (16, 12). Finally, the whole145

graph feature mappings are ψ(G) = (4, 2, 12, 8, 20, 12), and ψ(H) = (4, 2, 12, 8, 16, 12). The graph146

G and H cannot be discriminated by 1-WL, but they can be discriminated by our fast SaWL.147

Figure 3: u1 contributes to the fea-
ture mappings of rooted subgraphs of
u1, u2, u3, u4. The contribution number
equals the size of rooted subgraph H(2)

u1 .

Acceleration. In fast SaWL, the calculation of the S148

operator can be executed simultaneously with the WL149

encoder, which reduces the computational time. Since150

the subgraph feature mappings are summed as the whole151

graph feature mapping, the frequency of one node con-152

tributing to the whole graph feature mapping is equal to153

the number of occurrences of this node in all h-hop rooted154

subgraphs. We use graph H (adapted from Figure 2(f))155

as an example. In Figure 3(a), each tuple (a, b) repre-156

sents the feature mapping of the node’s rooted subgraph.157

The whole graph feature mapping can be computed by158

summing all subgraphs’ feature mappings: ψ(2)(H) =159

(2, 2) + ... + (4, 2) + ... + (2, 2) = (16, 12). However,160

we can actually compute the whole graph feature mapping161

from a global perspective. E.g., node u1 contributes to the162

2-hop rooted subgraphs of nodes u1, u2, u3, u4. And the163

number of u1’s contributions to the whole graph feature mapping is exactly the size of node u1’s164

2-hop rooted subgraph, i.e., |V(H(2)
u1)| = 4. Similarly, we mark each node’s contribution number165

beside it in Figure 3(b). The whole graph feature mapping can be alternatively computed by summing166

the contribution numbers for each label dimension, i.e., ψ(2)(H) = (4+4+4+4, 6+6) = (16, 12).167

The sizes of rooted subgraphs can be computed together in the multiset determination of WL run168

on the original graph by propagating node label and ID simultaneously. We present the steps of the169

accelerating version of the fast SaWL for graph classification in Algorithm 1 of the Appendix. We170

additionally detail how to use the version for graph isomorphism testing in Appendix A.7.171

3.3 The Expressive Power of SaWL172

We first analyze the expressive power of SaWL by comparing it with 1-WL. Once the graphs can be173

discriminated by 1-WL, they can be discriminated by SaWL as well.174

Proposition 1. Given two graphs G and H , if they can be distinguished by 1-WL, i.e., ϕ(h)(G) ̸=175

ϕ(h)(H), then they must be distinguished by the SaWL, i.e., ψ(h)(G) ̸= ψ(h)(H).176

See Appendix A.2 for proof. If the graph pair can be discriminated by 1-WL, the counting mappings177

of the whole graphs are different. There must exist subgraphs with different counting mappings in the178

graph pair. Therefore, the final feature mappings of the two graphs obtained by SaWL are different.179

Proposition 2. We define the number of h-shortest neighbors of each node as shv , which is the180

number of nodes with the exact shortest distance h from the center node v. For graphs G and H , if181

{{shv |v ∈ V(G)}} ̸= {{shu|u ∈ V(H)}}, then the two graphs can be distinguished by the h-layer SaWL.182

From a global graph perspective, if the multisets of numbers of the h-shortest neighbor of nodes in183

graph G and H are different, there exist at least two subgraphs in the graphs with different encodings.184

Then from a subgraph perspective, the multiset of subgraph encodings of the two graphs are different185

and they can be discriminated by SaWL. We provide a detailed explanation in the Appendix A.3.186

Theorem 1. The expressive power of SaWL is higher than that of 1-WL in distinguishing graphs.187

As proved in Proposition 1, once the graphs can be discriminated by 1-WL, they must be discriminated188

by SaWL. There are also many graphs that can be discriminated by SaWL, but not by 1-WL, e.g.,189

graphs G and H in Figures 2, we provide more examples in Appendix A.4. To sum up, the expressive190

power of SaWL is strictly higher than that of 1-WL. According to recent research on subgraph191

5

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

GNNs [26], SaWL’s k-hop subgraph selection and encoding scheme can be implemented by 3-order192

Invariant Graph Networks (3-IGNs), whose expressive power is bounded by 3-WL [27]. Thus,193

SaWL’s expressive power is also bounded by 3-WL.194

3.4 Complexity195

We analyze the computational complexity of the fast SaWL and the corresponding accelerating196

version respectively. Given the graph G with node number N , average node degree D and edge197

number M , where M = ND. We assume the average node number of the subgraphs is n. For the198

fast SaWL, the multiset determination, the label compression and relabeling in the WL encoder take199

a total runtime of O(ND) [18]. In the S operator, the feature mapping computing of one subgraph200

with n nodes takes O(n), and that of the N subgraphs takes O(Nn). To sum up, the time complexity201

is O(ND) +O(Nn). For the accelerating version, the S operator can be executed simultaneously202

with the multiset determination of the WL encoder. Specifically, determining the label multisets and203

identity sets for all nodes takes O(ND) operations which can be accomplished simultaneously. The204

runtime of the identity set can be achieved by using a hash table. Therefore, the total time complexity205

of the accelerating version is O(ND), which equals that of 1-WL algorithm [18].206

4 Subgraph-aware Graph Neural Network207

In order to generalize SaWL to scenarios with continuous features, we propose a neural version of208

SaWL, namely Subgraph-aware GNN (SaGNN). Each component in the SaWL is replaced with a209

neural network in SaGNN.210

Model. The neural version SaGNN includes two components: the GNN encoder and the S operator.211

Any standard neural version of the 1-WL algorithm can be utilized as the GNN encoder. Given212

input graphs, GNN encoder updates nodes with its previous state and representations of neighbor213

nodes (Eq. 1). Specifically, we adopt GIN with ϵ = 0 to obtain the node representations in the k-th214

layer, i.e., h(k)
v = MLP(k)

(
h
(k−1)
v +

∑
u∈N (v) h

(k−1)
u

)
, where N (v) denotes the neighbor nodes215

of node v, and h(k)
v ∈ RN×D1 , D1 is the feature dimension. In each layer, node representations are216

updated by the GNN encoder applied to the full graph.217

With the updated node representations, S operator in SaGNN are designed to further encode k-hop218

subgraphs around each node, which provides extra expressive power beyond plain GNN. An injective219

function is utilized for encoding subgraph information by aggregating nodes within the subgraph220

(Eq. 3). In this paper, we adopt MLP with SUM as the hash function, as given the input from the221

countable space, the combination achieves injective [13]. The representation of the subgraph around222

node v is obtained by h(k)
s,v = MLP

(∑
q∈V(Gk

v)
h
(k)
q

)
.223

Then, graph representations in the k-th layer are calculated with a readout (pooling) function (Eq. 4).224

In SaGNN, we adopt sum pooling as the readout function, i.e.,H(k)(G) = SUM
(
h
(k)
s,v |v ∈ V (G)

)
.225

Then the representations of graphG in all layers are concatenated as the final graph representation,i.e.,226

H(G) = CONCAT
(
H(1)(G),H(2)(G), ...,H(k)(G)

)
, andH(G) ∈ RD1∗k.227

Discussion. Since the SaGNN is the neural version of SaWL, and the SaWL have been shown228

to be more expressive than 1-WL, the expressive power of SaGNN is higher than that of 1-WL.229

The computational complexity of SaGNN is also the same as the fast SaWL (section 3.4), which is230

O(ND +Nn). Besides, both the proposed SaGNN and the existing methods of WL-on-subgraph231

paradigm [15–17] intend to uplift GNNs by encoding subgraphs. However, methods of WL-on-232

subgraph paradigm bring high computational cost by extracting rooted subgraphs and applying233

multiple GNNs. Instead, SaGNN encodes rooted subgraphs with the nodes updated in full graphs,234

which keeps the computational cost low. We present a detailed comparison in Appendix A.5.235

5 Experiments236

In this section, we first evaluate the effectiveness of the proposed fast SaWL and SaGNN on graph237

classification tasks. Then we conduct experiments to verify the expressiveness of the methods.238

6

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

Table 1: 10-Fold Cross Validation average test accuracy (%) on TU datasets.

Methods MUTAG PTC_MR Mutagenicity NCI1 NCI109

SP kernel 87.28± 0.55 58.24± 2.44 71.63± 2.19 73.47± 0.21 73.07± 0.11
WL kernel 82.05± 0.36 57.97± 0.49 - 82.19± 0.18 82.46± 0.24
DGK 87.44± 2.72 60.08± 2.55 - 73.55± 0.51 73.26± 0.26

GCN 78.69± 6.56 66.73± 4.65 80.84± 1.35 78.39± 1.79 77.57± 1.79
GIN 81.51± 8.47 54.09± 6.20 77.70± 2.50 80.0± 1.40 70.20± 3.21
Diffpool 80.00± 6.98 57.14± 7.11 80.55± 1.98 78.88± 3.05 76.76± 2.38
SortPool 85.83± 1.66 58.59± 2.47 80.41± 1.02 74.44± 0.47 -

1-2-3-GNN 86.10± 0.0 60.9± 0.0 - 76.2± 0.0 -
3-hop GNN 87.56± 0.72 - - 80.61± 0.34 -
Nested GIN 87.90± 8.20 54.1± 7.70 82.40± 2.00 78.60± 2.30 77.20± 2.90
GraphSNN 91.57± 2.80 66.70± 3.70 - 81.60± 2.80 -

SaWL Kernel 87.31± 7.04 63.40± 7.30 81.05± 1.96 83.80± 1.80 82.48± 2.54
fast SaWL 90.00± 3.89 70.33± 5.32 84.32± 1.48 84.45± 0.66 85.37± 0.81
SaGNN 88.81± 5.21 71.78± 4.43 84.13± 1.31 83.78± 1.03 83.35± 0.56

Besides, We compare the computation time of our methods with 1-WL and methods of WL-on-239

subgraph paradigm to verify the efficiency of our methods.240

5.1 Datasets241

In the tasks of graph classification, we evaluate fast SaWL and SaGNN with seven datasets, including242

TU datasets [28], and Open Graph Benchmark (OGB) dataset [29]. Graphs in these datasets represent243

chemical molecules, nodes represent atoms, and edges represent chemical bonds. TU datasets244

include MUTAG [30], PTC_MR [31], Mutagenicity [32], NCI1 [33] and NCI109 [33]. The task is245

binary classification, and the metric is classification accuracy. Task on OGB dataset ogbg-molhiv246

is molecular prediction. It is a binary classification, and the metric is ROC-AUC. We evaluate the247

expressiveness of our methods on the EXP [34], CSL [35] and SR25 datasets [36], which are three248

synthetic datasets containing 1-WL undistinguishable regular graphs. We provide more description249

and statistics of the datasets in Appendix A.6.250

5.2 Baselines251

In the experiment of the graph classification task on TU, we adopt three graph kernel methods, some252

GNNs methods based on the 1-WL, and some methods with higher expressive power than 1-WL as253

baselines. Graph kernel methods include shortest path kernel [37], WL subtree kernel [18] and deep254

graph kernel [38]. GNNs methods based on the 1-WL include GCN [22], GIN [13], Diffpool [25], and255

Sortpool [39]. For GCN, graph representations are obtained by the learned nodes representations and256

sum pooling. Higher expressive methods include 1-2-3 GNN [14], 3-hop GNN [17] Nested GNN [15]257

and GraphSNN [40]. On OGB dataset, we compare with the traditional message passing GNNs, and258

the higher expressive methods Deep LRP-1-3 [41], Nested GNN [15] and GIN-AK+ [16]. Results of259

baselines are obtained either from raw paper or source code with published experimental settings ("-"260

indicates that results are not available). For GCN and GIN, we search the model layer in {2, 3, 4, 5},261

and hidden dimensions in {32, 64, 128}. For Nested GNN, we choose the best-performing Nested262

GIN as the baseline according to the results in the original paper. And the results on the datasets263

Mutagenicity, NCI and NCI109, we search the subgraph height in {2, 3, 4, 5} with 4 model layers.264

5.3 Experimental Setup265

In graph classification tasks, we adopt multilayer perceptrons (MLPs) with softmax as the classifier266

to predict the class label of the graph. On the TU datasets, we perform 10-fold cross-validation where267

9 folds for training, 1 fold for testing. 10% split of the training set is used for model selection [42].268

We report the average and standard deviation (in percentage) of test accuracy across the 10 folds. We269

train the models with batch size 32. On the OGB dataset, the experiments are conducted 10 times,270

and the average scores of ROC-AUC are reported. We train the models with batch size 256. For all271

datasets, we implement experiments with PyTorch and employ Adam optimizer with the learning272

rate of 0.001 to optimize the model. We search the iteration times of our methods in {2, 3, 4}. In the273

training process, we adopt the early stopping strategy with patience 30, and we report the test results274

7

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

Table 2: Performance Evaluation on OGB dataset.

Methods ogbg-molhiv (AUC)
Validation Test

GCN [22] 82.04± 1.41 76.06± 0.97
GIN [13] 82.32± 0.90 75.58± 1.40
Deep LRP-1-3 [41] 81.31± 0.88 76.87± 1.80
Nested GNN [15] 83.17± 1.99 78.34± 1.86
GIN-AK+ [16] - 79.61± 1.19

fast SaWL 79.13± 0.69 78.29± 0.48
SaGNN 81.06± 1.14 78.86± 0.73

Table 3: Evaluation of Expressiveness.

Model EXP (ACC) CSL (ACC) SR25 (ACC)

GCN [22] 50.0±0.00 10.0± 0.00 6.67
GIN [13] 50.0±0.00 10.0± 0.00 6.67
GCN-RNI [34] 98.0± 1.85 16.0± 0.00 6.67
PPGN [43] 100.0± 0.00 - 6.67
3-GCN [14] 99.7±0.004 95.70± 14.85 6.67
Nested GNN [15] 99.9± 0.26 - 6.67
GIN-AK+ [16] 100.0± 0.00 - 6.67

fast SaWL 99.50± 0.70 80.67± 8.04 6.67
SaGNN 99.67± 0.70 84.67± 10.45 6.67

275

at the epoch of best validation. The experimental setups of the expressive power evaluation are kept276

the same with [34–36]. We use the Nvidia V100 GPUs to run the experiments.277

5.4 Effectiveness Evaluation278

Performance on Graph Classification Task. Results of the graph classification on TU and OGB279

datasets are shown in Tables 1, 2. We take our SaWL with linear SVM as a graph kernel method and280

report the results on TU datasets. Compared with graph kernel methods and traditional GNNs based281

on 1-WL, our SaWL kernel gain strong improvements. Especially, SaWL kernel achieves better282

performance than WL subtree kernel, which proves the effectiveness of the S operator experimentally.283

It verifies that the augmented subgraph information on the basis of the subtree pattern enhances the284

expressive power on the graph classification task. For methods with higher expressive power than285

traditional message passing GNNs, i.e., 1-2-3-GNN, 3-hop GNN, Nested GNN and GraphSNN, our286

fast SaWL and SaGNN still outperform the methods on most TU datasets. Especially, our fast SaWL287

gains such progress with low computational cost. The proposed methods achieve comparable results288

to other highly expressive methods on the larger-scale OGB dataset. The results show that our methods289

achieve higher or comparable performance to methods with high computational cost. We adopt GIN290

as the GNN encoder in SaGNN. The improvements compared to GIN verify the effectiveness of291

the S operator, which provides additional subgraph information in graph classification. The neural292

version SaGNN achieves slightly lower performance than fast SaWL on some small-scale datasets,293

which may be because the neural model is not sufficiently trained with insufficient training data.294

On the larger-scale OGB dataset, the neural version SaGNN achieves better results than fast SaWL295

with sufficient training. In summary, fast SaWL and SaGNN achieve improvement compared with296

competitive baselines on the graph classification task.297

Expressive Power Evaluation. We first evaluate the expressiveness on the EXP, CSL and SR25298

datasets, and then show cases of graph isomorphism testing in Appendix A.7. Results of empirical299

evaluation are shown in Table 3, and some results of baselines are from [34, 44]. Each pair of graphs300

in the three datasets is non-isomorphic and 1-WL indistinguishable, and the results of GCN and GIN301

verify this. We adopt five methods with highly expressive power as baselines [14–16, 34, 43]. On302

EXP, our fast SaWL and SaGNN consistently achieve very high accuracy, which can distinguish303

nearly all graph pairs. The results are comparable with the k-GNNs [14, 43] and Nested GNN304

[15], which are more computationally complex. On CSL, our methods significantly outperform305

1-WL based GNNs and are lower than 3-GCN. The results verify the high expressive power of fast306

SaWL and SaGNN, which have been stated theoretically. Strongly regular graphs in SR25 are 3-WL307

equivalent [45] and cannot be distinguished by the methods in Table 3.308

5.5 Efficiency Evaluation309

We compare the running time of the proposed methods with baselines to verify the high efficiency in310

practice. Our fast SaWL has higher discriminating power than 1-WL, while the accelerating version311

of the fast SaWL has the same time complexity as 1-WL, which have been demonstrated in section 3.4.312

Table 4: Runtime Comparison of fast SaWL with 1-WL (second).

Methods Mutagenicity NCI1 NCI109 ogbg-molhiv

1-WL 4.90±0.23 4.69±0.16 4.73±0.20 112.25 ± 0.68
fast SaWL 4.99±0.22 4.81±0.20 4.96±0.20 115.11± 0.71

8

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

Figure 4: Training Time Comparison of SaGNN
with Method of the WL-on-subgraph paradigm.

We record the running time of fast SaWL and 1-313

WL in obtaining feature mappings of all graphs314

in four datasets respectively. The average run-315

ning time with ten runs are shown in Tabel 4.316

The running time of fast SaWL is similar to317

that of 1-WL. The time difference is less than318

0.5 seconds on the TU dataset and less than319

3 seconds on the ogbg-molhiv, which contains320

41127 graphs. We further conduct the t-test as321

a significance test. The p-value is 0.8413, and322

0.8413 > 0.05, which demonstrates that there323

is no significant difference in the running time324

of fast SaWL and 1-WL on graph feature map-325

ping calculation. For SaGNN, we compare the326

running time with an example method of the327

WL-on-subgraph paradigm, i.e., Nested GNN (NGNN) [15] in Figure 4. On TU datasets, the running328

time of the Nested GNN is more than three times that of SaGNN. On the ogbg-molhiv dataset329

(abbreviated as ogb in Figure 4), we compare the epoch time and the whole training time. The330

running time of the Nested GNN is more than ten times that of SaGNN on both each epoch and the331

whole training process, e.g., the average training time of Nested GNN on an epoch is 134.91± 21.30332

seconds, and that of SaGNN is 9.71 ± 0.49 seconds. The time comparison demonstrates that our333

SaGNN is significantly more efficient than methods of the WL-on-subgraph paradigm.334

6 Related Works335

The expressiveness of graph neural networks is a key research topic in graph machine learning. Many336

approaches with higher expressive power than 1-WL have been proposed, including high-dimension337

WL based [14, 43], feature augmentation based [34, 46], subgraph encoding based [15, 16, 47] and338

equivariant models [26, 27, 48]. We provide a breif review here. (1) It’s natural to build GNNs339

based on a high-dimensional WL algorithm for high expressive power, e.g., PPNG [43] based on340

the high-order graph networks, k-GNNs [14] based on the set k-WL algorithm. However, the341

high dimension WL algorithms require enumeration of the node tuples, which limits the scalability342

and generalization with high computational cost. (2) Some researchers propose to improve the343

expressive power of GNN by adding additional features. They augment GNNs by concatenating pre-344

extracted sub-structural information or random features as additional node features [34, 41, 49]. E.g.,345

Graph Structure Networks (GSN) [49] encodes structural information in the additional preprocessing346

stage by counting the appearance of certain substructures as the structural feature vector. Then the347

structural features are utilized in message passing. GCN-RNI [34] enhances GNNs with random348

node initialization. rGINs [46] concatenates random features with node features and then applies349

GINs on the combined features. However, such additional feature augmentation-based methods limit350

the generalization ability of the methods. (3) Many existing subgraph-based methods first extract351

subgraphs centered on each node of graphs, then apply GNNs on the extracted subgraphs [15, 16].352

E.g., Nested GNN [15] implements base GNN on the extracted subgraphs then obtains the whole353

graph representations by a global pooling. These methods can be summarized as WL-on-subgraph354

paradigm (Figure 1 (b)), and the computational cost are much higher than 1-WL, which limits their355

application to the large scale graphs. We provide more related works in Appendix A.10.356

7 Conclusion357

The traditional message passing graph neural networks (GNNs) are at most as powerful as 1-WL358

algorithm. Since the representative power of the subgraph is higher than that of the subtree, methods of359

the WL-on-subgraph paradigm are proposed to improve GNNs, which brings expensive computational360

cost. As a contrast, we propose the subgraph-aware WL (SaWL) paradigm in this paper, which uplifts361

GNNs and keeps computation complexity low. Under the paradigm, we first implement an algorithm362

named fast SaWL, where the additional S operator encodes subgraph information on the basis of the363

WL on the full graph. We then present the neural version of the SaWL named SaGNN, which replace364

the components in SaWL with neural networks. SaWL and SaGNN are proved to be more expressive365

than 1-WL, and have achieved significant improvements in the experiments.366

9

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

References367

[1] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural368

networks for social recommendation. In The world wide web conference, pages 417–426, 2019.369

1370

[2] T Gaudelet, B Day, AR Jamasb, J Soman, C Regep, G Liu, et al. Utilising graph machine371

learning within drug discovery and development (2020). arXiv preprint arXiv:2012.05716,372

2020. 17373

[3] Alexey Strokach, David Becerra, Carles Corbi-Verge, Albert Perez-Riba, and Philip M Kim.374

Fast and flexible protein design using deep graph neural networks. Cell systems, 11(4):402–411,375

2020. 1376

[4] Zhongkai Hao, Chengqiang Lu, Zhenya Huang, Hao Wang, Zheyuan Hu, Qi Liu, Enhong Chen,377

and Cheekong Lee. Asgn: An active semi-supervised graph neural network for molecular378

property prediction. In Proceedings of the 26th ACM SIGKDD International Conference on379

Knowledge Discovery & Data Mining, pages 731–752, 2020. 1380

[5] Lesong Wei, Xiucai Ye, Yuyang Xue, Tetsuya Sakurai, and Leyi Wei. Atse: a peptide toxicity381

predictor by exploiting structural and evolutionary information based on graph neural network382

and attention mechanism. Briefings in Bioinformatics, 22(5):bbab041, 2021. 1383

[6] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A384

comprehensive survey on graph neural networks. IEEE transactions on neural networks and385

learning systems, 32(1):4–24, 2020. 1386

[7] Sergi Abadal, Akshay Jain, Robert Guirado, Jorge López-Alonso, and Eduard Alarcón. Comput-387

ing graph neural networks: A survey from algorithms to accelerators. ACM Computing Surveys388

(CSUR), 54(9):1–38, 2021.389

[8] Yu Zhou, Haixia Zheng, Xin Huang, Shufeng Hao, Dengao Li, and Jumin Zhao. Graph neural390

networks: Taxonomy, advances, and trends. ACM Transactions on Intelligent Systems and391

Technology (TIST), 13(1):1–54, 2022. 1392

[9] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural393

message passing for quantum chemistry. In International Conference on Machine Learning394

(ICML), pages 1263–1272. PMLR, 2017. 1395

[10] B. Y. Weisfeiler and A. A. Leman. A reduction of a graph to a canonical form and an algebra396

arising during this reduction (in russian). 1968. 1, 2397

[11] Brendan L Douglas. The weisfeiler-lehman method and graph isomorphism testing. arXiv398

preprint arXiv:1101.5211, 2011. 1, 16399

[12] Ryoma Sato. A survey on the expressive power of graph neural networks. arXiv preprint400

arXiv:2003.04078, 2020. 1, 3, 14401

[13] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural402

networks? In Proceedings of the Information Conference of Learning Representation (ICLR),403

2018. 3, 6, 7, 8, 18404

[14] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,405

Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural406

networks. In AAAI conference on artificial intelligence, 2019. 1, 3, 7, 8, 9, 18407

[15] Muhan Zhang and Pan Li. Nested graph neural networks. Advances in Neural Information408

Processing Systems, 34, 2021. 1, 6, 7, 8, 9, 15, 17409

[16] Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any410

gnn with local structure awareness. In Proceedings of the Information Conference of Learning411

Representation (ICLR), 2021. 7, 8, 9, 15, 17412

[17] Giannis Nikolentzos, George Dasoulas, and Michalis Vazirgiannis. k-hop graph neural networks.413

Neural Networks, 130:195–205, 2020. 1, 6, 7, 15, 18414

[18] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M415

Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9),416

2011. 2, 3, 6, 7, 16, 18417

[19] Nils M Kriege, Fredrik D Johansson, and Christopher Morris. A survey on graph kernels.418

Applied Network Science, 5(1):1–42, 2020. 2419

10

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

[20] László Babai and Ludik Kucera. Canonical labelling of graphs in linear average time. In 20th420

Annual Symposium on Foundations of Computer Science (sfcs 1979), pages 39–46. IEEE, 1979.421

2422

[21] Martin Grohe. Descriptive complexity, canonisation, and definable graph structure theory,423

volume 47. Cambridge University Press, 2017. 3424

[22] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional425

networks. In Proceedings of the Information Conference of Learning Representation (ICLR),426

2017. 3, 7, 8, 18427

[23] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In International428

Conference on Machine Learning (ICML), pages 3734–3743. PMLR, 2019. 3, 18429

[24] Yao Ma, Suhang Wang, Charu C Aggarwal, and Jiliang Tang. Graph convolutional networks430

with eigenpooling. In Proceedings of the 25th ACM SIGKDD International Conference on431

Knowledge Discovery & Data Mining, pages 723–731, 2019.432

[25] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.433

Hierarchical graph representation learning with differentiable pooling. In Advances in Neural434

Information Processing Systems (NIPS), pages 4800–4810, 2018. 3, 7, 18435

[26] Fabrizio Frasca, Beatrice Bevilacqua, Michael M Bronstein, and Haggai Maron. Understanding436

and extending subgraph gnns by rethinking their symmetries. arXiv preprint arXiv:2206.11140,437

2022. 6, 9438

[27] Waïss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural439

networks. In ICLR 2021, 2021. 6, 9440

[28] Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion441

Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv442

preprint arXiv:2007.08663, 2020. 7443

[29] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele444

Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.445

arXiv preprint arXiv:2005.00687, 2020. 7446

[30] Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and447

Corwin Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic448

nitro compounds. correlation with molecular orbital energies and hydrophobicity. Journal of449

medicinal chemistry, 34(2):786–797, 1991. 7450

[31] Hannu Toivonen, Ashwin Srinivasan, Ross D King, Stefan Kramer, and Christoph Helma.451

Statistical evaluation of the predictive toxicology challenge 2000–2001. Bioinformatics, 19(10):452

1183–1193, 2003. 7453

[32] Jeroen Kazius, Ross McGuire, and Roberta Bursi. Derivation and validation of toxicophores for454

mutagenicity prediction. Journal of medicinal chemistry, 48(1):312–320, 2005. 7, 17455

[33] Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical456

compound retrieval and classification. Knowledge and Information Systems, 14(3):347–375,457

2008. 7458

[34] Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising459

power of graph neural networks with random node initialization. In Proceedings of the Thirtieth460

International Joint Conference on Artifical Intelligence (IJCAI), 2021. 7, 8, 9, 16461

[35] Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational462

pooling for graph representations. In International Conference on Machine Learning, pages463

4663–4673. PMLR, 2019. 7, 16, 17464

[36] Muhammet Balcilar, Pierre Héroux, Benoit Gauzere, Pascal Vasseur, Sébastien Adam, and465

Paul Honeine. Breaking the limits of message passing graph neural networks. In International466

Conference on Machine Learning, pages 599–608. PMLR, 2021. 7, 8, 16467

[37] Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Fifth IEEE468

International Conference on Data Mining (ICDM), pages 8–pp. IEEE, 2005. 7, 18469

[38] Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM470

SIGKDD international conference on knowledge discovery and data mining, pages 1365–1374,471

2015. 7472

11

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

[39] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning473

architecture for graph classification. In Thirty-second AAAI conference on artificial intelligence,474

2018. 7, 18475

[40] Asiri Wijesinghe and Qing Wang. A new perspective on" how graph neural networks go beyond476

weisfeiler-lehman?". In International Conference on Learning Representations, 2021. 7477

[41] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count478

substructures? Advances in neural information processing systems, 33:10383–10395, 2020. 7,479

8, 9, 18480

[42] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of481

graph neural networks for graph classification. Proceedings of the Information Conference of482

Learning Representation (ICLR), 2019. 7483

[43] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful484

graph networks. In Proceedings of the 33rd International Conference on Neural Information485

Processing Systems, pages 2156–2167, 2019. 8, 9486

[44] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier487

Bresson. Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020. 8488

[45] Vikraman Arvind, Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky. On weisfeiler-leman489

invariance: Subgraph counts and related graph properties. Journal of Computer and System490

Sciences, 113:42–59, 2020. 8491

[46] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural492

networks. In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM),493

pages 333–341. SIAM, 2021. 9494

[47] Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph495

representations. Advances in Neural Information Processing Systems, 34:1713–1726, 2021. 9496

[48] Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai,497

Gopinath Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph498

aggregation networks. In International Conference on Learning Representations, 2021. 9, 18499

[49] Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein. Improving500

graph neural network expressivity via subgraph isomorphism counting. IEEE Transactions on501

Pattern Analysis and Machine Intelligence, 2022. 9, 18502

[50] Oliver Wieder, Stefan Kohlbacher, Mélaine Kuenemann, Arthur Garon, Pierre Ducrot, Thomas503

Seidel, and Thierry Langer. A compact review of molecular property prediction with graph504

neural networks. Drug Discovery Today: Technologies, 37:1–12, 2020. 17505

[51] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph506

kernels. Journal of Machine Learning Research, 11:1201–1242, 2010. 18507

[52] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt.508

Efficient graphlet kernels for large graph comparison. In Artificial Intelligence and Statistics,509

pages 488–495, 2009. 18510

[53] Lanning Wei, Huan Zhao, Quanming Yao, and Zhiqiang He. Pooling architecture search for511

graph classification. In Proceedings of the 30th ACM International Conference on Information512

& Knowledge Management, pages 2091–2100, 2021. 18513

[54] Haoteng Tang, Guixiang Ma, Lifang He, Heng Huang, and Liang Zhan. Commpool: An514

interpretable graph pooling framework for hierarchical graph representation learning. Neural515

Networks, 143:669–677, 2021. 18516

[55] Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How powerful are k-hop517

message passing graph neural networks. Advances in Neural Information Processing Systems,518

2022. 18519

12

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

A Appendix520

A.1 Acceleration of the fast SaWL521

The S operator in the fast SaWL (Section 3.2) can be calculated simultaneously with the WL encoder,522

which leads to the accelerating version. The idea of the acceleration is illustrated in Figure 3, each523

node contributes to the feature mappings of m rooted subgraphs, where m equals the size of rooted524

subgraph centered in the node. The sizes of rooted subgraphs can be computed simultaneously with525

the multiset determination of the WL encoder. We then present the steps of the accelerating version.526

The accelerating version proceeds in iterations. Each iteration consists of five steps (Algorithm 1),527

which are multisets determination, multisets sorting, label compression, relabeling and feature528

mapping obtaining. Specifically, given two graphs G and G′, for node v, the label is denoted as lhv529

and the identity is denoted as idv. In step 1, we aggregate the labels and identity sets of neighbor530

nodes respectively. Node labels of neighbor nodes are aggregated as a multiset Mh
v . For h = 0,531

M0
v = l0v, and for h > 0, Mh

v = {{lh−1
u |u ∈ N (v)}}, where N (v) denotes the neighbor nodes of532

v and {{}} denotes a multiset. Identity sets of neighbor nodes are aggregated and combined with533

the identity of the center node which forms a new set thv . For h = 0, t0v = {idv}, and for h > 0,534

thv = {idv, idw|w ∈ th−1
u , u ∈ N (v)}. In step 2, each label multiset Mh

v is sorted and converted to535

a string Sh
v with the prefix lh−1

v , which prepares for the label compression. In step 3, each string is536

compressed to a new label with a hash function g :
∑

∗ →
∑

and g should be an injective function.537

The mapping alphabet is shared across graphs, which guarantees a common feature space. In step 4,538

we relabel each node in graph G and G′ as lhv := g(Sh
v).539

We assume the minimum label in h-th iteration is lm. Then, from a global-graph perspective, the540

value of the i-th position (i starts from 0) of the final graph feature mapping in layer h is:541

ψ
(h)
i (G) =

∑
lhv=lm+i,v∈V

∣∣thv ∣∣ , (5)

which means the summation of the occurrences of label lm + i in all h-hop subgraphs. The final542

graph feature mappings obtained by the fast SaWL and the accelerating version are equivalent. In the543

accelerating version, the feature mappings of subgraphs do not require to be calculated separately,544

which reduces the computational cost and speeds up the computation.545

Algorithm 1 Accelerating version of fast SaWL for Graph Classification

Input: Node Labels (features) X; Adjacency Matrix A
for h = 1 to H do

1. Label multisets and identity sets determination
• Aggeregate labels of neighbor nodes centered in each node v in graph G as multiset Mh

v .
For h = 0, M0

v = l0v , and for h > 0, Mh
v = {{lh−1

u |u ∈ N (v)}}.
• Aggregate identity sets of neighbor nodes centered in each node v in graph G. Identity of

node v and elements in identity sets of neighbor nodes compose the new identity set. For
h = 0, t0v = {id(v)}, for h > 0, thv = {idv, idw|w ∈ th−1

u , u ∈ N (v)}.
2. Sorting labels in each label multiset
• Sort label elements in the label multiset in ascending order and concatenate them into a

string Sh
v .

• Add lh−1
v as a prefix to Sh

v .
3. Label compression
• Map each string Sh

v to a compressed label using a hash function g :
∑

∗ →
∑

such that
g(Sh

v) := g(Sh
w) if and only if Sh

v = Sh
w.

4. Relabeling
• Set lhv := g(Sh

v) for all nodes in the graph.
5. i-th position of graph feature vector of h layer
• ψ

(h)
i (G) =

∑
lhv=lm+i,v∈V

∣∣thv ∣∣.
end for

Output: Graph Feature Vector ψ(G) =
[
ψ(0)(G), ..., ψ(H)(G)

]

13

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

A.2 Proof of Proposition 1546

Proof. For graphs G and H , if they can be discriminated by 1-WL, there must exits a constant547

h that ϕ(h)(G) ̸= ϕ(h)(H). Since ϕ(h)(G) = (ch(G, ℓ
h
1), ..., ch(G, ℓ

h
|Lh|)), there must exist a548

ℓhi , such that ch(G, ℓhi) ̸= ch(H, ℓ
h
i). Then there must be different subgraphs in the two graphs549

such that ch(Gh
v , ℓ

h
i) ̸= ch(H

h
u , ℓ

h
i), where Gh

v is a h-hop subgraph around node v of G. As a550

result, the sets of subgraph feature mappings of graph G and H are not equal, i.e., {ϕ(Gh
v)|v ∈551

V(G)} ≠ {ϕ(Hh
u)|u ∈ V(H)}. With the condition that READOUT is a injective function, we have552

READOUT({ϕ(Gh
v)|v ∈ V (G)}) ̸= READOUT({ϕ(Hh

u)|u ∈ V(H)}), i.e., ψh(G) ̸= ψh(H).553

In other words, the graph G and H can also be discriminated by the SaWL.554

A.3 Explaination of Proposition 2555

We further explain the Proposition 2 in section 3.3. For graphs G and H , if {{shv |v ∈ V(G)}} ≠556

{{shu|u ∈ V(H)}}, then the two graphs can be distinguished by the h-layer SaWL. shv is the number of557

nodes with the exact shortest distance h from node v. When h = 1, if the numbers of 1-hop neighbor558

nodes are different in G and H , 1-WL can discriminate the two graphs, i.e., ϕ(h)(G) ̸= ϕ(h)(H).559

According to Proposition 1, SaWL can discriminate the graphs as well. Assume the number of 1-hop560

neighbor nodes are the same; when h = 2, the number of nodes with the shortest distance 2 are561

different in G and H . Then the sizes of 2-hop rooted subgraphs in G and H are different, which leads562

to the difference in the multisets of rooted subgraphs in the two graphs. With the injective readout563

function, the final graph feature mappings of the graph G and H are different. Similarly, assume the564

numbers of (h−1)-hop neighbor nodes in two graphs are the same. Then if the numbers of h-shortest565

distance nodes in two graphs are different, it results in the different multisets of rooted subgraphs and566

the different graph feature mappings. Therefore, the graphs G and H can be discriminated by SaWL.567

For a further intuitive understanding, we take the implemented algorithm of SaWL, i.e., fast SaWL,568

as an example. From the perspective of the accelerating version, the size of the rooted subgraph569

equals the contribution of the center nodes to the whole graph feature mapping (shown in Figure 3(b)).570

Therefore, different sizes of rooted subgraphs directly lead to different feature mappings of the graph571

G and H . The graphs can be discriminated by fast SaWL.572

A.4 Graph Examples573

In this subsection, we provide two classes of graphs that cannot be discriminated by WL [12], but574

can be discriminated by the proposed SaWL. Note that the labels of all nodes in Figure 5 are the575

same. SaWL can discriminate the graphs only by utilizing the graph structure, and the additional576

label information of nodes can leave the discrimination easier.577

The first class is k-regular graphs of the same size (Figure 5(b)-(f)). The 6-nodes 2-regular graph578

in Figure 5(b), 8-nodes 3-regular graphs in Figure 5(c), 12-nodes 4-regular graphs in Figure 5(d)579

and two pairs of circulant graphs in Figure 5(e), 5(f) can be discriminated by 2-layer SaWL. The580

green nodes are center nodes, and the grey nodes are 2-hop neighbors of the green nodes. We take581

Figure 5(c) as example. There are two 2-hop shortest neighbors of the green node in the left graph,582

which are marked as grey. While for the green node in the right graph, the number of the 2-hop583

shortest neighbor is three (grey nodes in the right graph). According to proposition 2 in section 3.3,584

the left graph and the right graph can be discriminated by SaWL with two layers.585

For a more intuitive understanding, we present the feature mappings of graphs in Figure 5(c) with586

1-WL and our fast SaWL. We assume the initial label of each node is 0. For 1-WL, the multiset587

determination in the 1st and the 2nd iteration includes 0, 000 → 1; 1, 111 → 2. The feature mappings588

of the graph in the left and right after the 2nd iteration are equal, i.e., ϕ(Gleft) = ϕ(Gright) =589

(8, 8, 8). For our fast SaWL, the feature mapping of the graph in the left is ψ(Gleft) = (8, 32, 52),590

while that of the right graph is ψ(Gright) = (8, 32, 56). The difference comes from the green node591

and its equivalent nodes. In the left graph, label 2 occurs 52 times in all rooted subgraphs, and it592

occurs 56 times in the rooted subgraphs of the right graph.593

The second class includes some non-regular non-isomorphic graphs, e.g., Figure 5(a). The two graphs594

are non-regular graphs, but WL cannot distinguish them. SaWL can discriminate the two graphs with595

three layers. We take pink nodes as center nodes. For the left graph, there are three 3-hop shortest596

14

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

(a) non-regular graphs. (b) 6-nodes 2-regular graphs.

(c) 8-nodes 3-regular graphs. (d) 12-nodes 4-regular graphs.

(e) 11-circulant graph with 2, 3 skip links. (f) 12-circulant graph with 4, 5 skip links.

Figure 5: Graph pairs can discriminated by SaWL, but not WL.

neighbors of the pink node. While for the right graph, there exist two 3-hop shortest neighbors of the597

pink node, which are marked as grey. Therefore, the two graphs can be distinguished by SaWL.598

A.5 Comparison with WL-on-subgraphs methods599

We discuss relations of the proposed methods of subgraph-aware WL (Figure 1(c)) paradigm with600

other methods of WL-on-subgraph paradigm (Figure 1(b)). Methods of WL-on-subgraph paradigm601

usually extract subgraphs around each node of the graph, then apply GNNs on each extracted602

subgraph respectively, such as Nested GNN [15], GNN-AK [16] and k-hop GNN [17]. However,603

the computation complexity of this paradigm is much higher than our proposed subgraph-aware WL604

paradigm. Given a graph G with N nodes, the average degree of nodes is denoted as D, and the605

average nodes number of subgraphs is denoted as n. Extracting k-hop subgraphs from each node606

takes O(k · N · D). Applying GNNs on all extracted subgraphs takes O(N · n · D). Totally, the607

computation cost is O(k ·N ·D+N · n ·D). Compared to high dimensional GNNs based on k-WL,608

methods of WL-on-Subgraph paradigm reduce the computational cost. However, the complexity is609

still much higher than that of 1-WL and our proposed methods.610

Essentially, Both the proposed methods of subgraph-aware WL paradigm and the existing meth-611

ods of WL-on-subgraph paradigm intend to uplift GNNs by encoding subgraphs. However, the612

WL-on-subgraph methods apply GNNs on all extracted subgraphs respectively, which brings high613

computational cost. As a contrast, our subgraph-aware WL methods encode subgraphs while keeping614

the computational cost low (shown in Section 3.4).615

15

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

A.6 Datasets Description616

We provide statistics of the datasets utilized in graph classification tasks in table 5. We adopt617

molecular datasets for evaluation, including TU datasets and OGB dataset. Nodes in these datasets618

denote atoms, and the edges denote chemical bonds. For each dataset, we present the total number of619

graphs, the number of positive ground truth labels, the average numbers of nodes and edges, and the620

types of node labels.621

To empirical evaluate the expressive power, we adopted EXP [34], CSL [35] and SR25 datasets [36].622

EXP contains 600 pair of non-isomorphic graphs, which cannot be distinguished by 1-WL. The task623

is to classify the graphs to 2 classes. CSL dataset [35] contains 150 4-regular graphs which cannot624

be distinguised by 1-WL. Each graph contains 41 nodes with same degree 4 and 164 edges. The task625

is to classify the regular graphs to 10 isomorphism classes. SR25 dataset [36] contains 15 strongly626

regular graphs. Each graph contains 25 nodes and 300 edges. The task is to classify the regular627

graphs to 15 different isomorphism classes. There’s no node feature and edge feature in these three628

datasets. The model needs to utilize purely structural information to distinguish graphs.

Table 5: Statistics of datasets.

Dataset #Graphs #Positive #Avg.
Nodes

#Avg.
Edges

#Nodes
Types

MUTAG 188 125 17.9 19.8 7
PTC_MR 344 152 25.6 29.4 18
Mutagenicity 4337 2401 30.3 30.8 13
NCI1 4110 2057 29.9 32.3 37
NCI109 4127 2079 29.6 32.1 38
ogbg-molhiv 41127 1443 25.5 27.5 119

629

A.7 The Accelerating Version for graph isomorphism testing630

The accelerating version of fast SaWL provided in Appendix A.1 can be utilized for the graph631

isomorphism testing, which has the same time complexity as 1-WL, but higher discriminating power632

than 1-WL. We first present the definition of the graph isomorphism testing, and then we explain the633

steps and the termination condition of the accelerating version in the graph isomorphism testing.634

Graph Isomorphism Testing. Given a graph G, V(G) and E(G) are the sets of nodes and edges635

respectively. Two graphs G and H are isomorphic if there exists a bijection ξ between V(G) and636

V(H). ξ : V(G) → V(H) and it preserves the edge relation, i.e., (u, v) ∈ E(G) if and only if637

(ξ(u), ξ(v)) ∈ E(H) for all u, v ∈ V(G). Although the exact complexity of the graph isomorphism638

problem is still uncertain, there are some efficient graph isomorphism algorithms [11].639

The Accelerating Version of Fast SaWL for Graph Isomorphism Testing. When used for the640

graph isomorphism testing, each iteration of the accelerating version consists of four steps, i.e., steps641

1-4 of Algorithm 1. Given two graphs G and H , the accelerating version terminates after iteration h642

if:643

{(lhv , |thv |)|v ∈ V(G)} ≠ {(lhu, |thu|)|u ∈ V(H)}. (6)
lhv denotes the label of node v in the h-th iteration, and it represents a h-height subtree pattern. thv644

denotes the set of the node identities (IDs). It contains node identities in the subtree pattern without645

repetition due to the uniqueness of the node identity. The termination condition implies that fast646

SaWL can determine that two graphs are non-isomorphic once the updated labels or the number of647

nodes in the subtree patterns are different.648

The terminating condition of the 1-WL can be denoted as {lhv |v ∈ V(G)} ≠ {lhu|u ∈ V(H)} [18].649

The terminating condition of the accelerating version of fast SaWL (Eq. 6) is stricter than that of650

1-WL by adding a new structural constraint. Therefore, once the graphs are determined unequal by651

the 1-WL algorithm, they must also be determined unequal by the proposed implementation. Besides,652

there exist many graphs that WL cannot discriminate, which can be determined as non-isomorphic653

(e.g., graph pairs in Figure 5). To conclude, the discriminating power of the SaWL is higher than that654

of 1-WL in the graph isomorphism testing.655

16

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

Cases. We take the graph pair in Figure 5(c) as an example, the iteration process has been described656

in Appendix A.4. We denote the left graph as G and the right graph as H . After the 2nd iteration, for657

our fast SaWL, the set of graph G is {(2, 6), (2, 7)|v ∈ V(G)}. The set of graph H is {(2, 7)|u ∈658

V(H)}, and {(2, 6), (2, 7)|v ∈ V(G)} ≠ {(2, 7)|u ∈ V(H)}. The terminating condition is satisfied,659

and the two graphs are determined as non-isomorphic. While for 1-WL, {2|v ∈ V(G)} = {2|u ∈660

V(H)}, the two graphs cannot be discriminated. All graph pairs in Figure 5 can be discriminated by661

fast SaWL in this way.662

A.8 Ablation Study663

In this section, we conduct ablation studies on number of iteration. We adopt one dataset for expressive664

power evaluation and one dataset for graph classification, i.e., CSL [35] and Mutagenicity [32]. We665

test the performance of our fast SaWL and SaGNN with different numbers of iteration from 1 to 5.666

We report average accuracy of ten times running in Table 6. I=2 denotes two times iterations. From667

the results, it can be observed that as the number of iterations increases, the performance first improves668

and then drops a little. It is basically similar on both datasets. The expressive power of the models669

increases first and then tends to remain unchanged. The methods achieve the best results when the670

number of iterations is 3 or 4. When the number of iterations is 5, the performance is slightly worse,671

which may be caused by the increase of the dimension of the feature mapping and the increase of the672

model parameters. Relatively, the neural version SaGNN requires more iterations than the fast SaWL673

to get the best results. When the training data is sufficient, SaGNN can achieve better performance,674

which can be observed in Table 2 as well.675

Table 6: Ablation Study on Number of Iteration (ACC).

Datasets Iteration I=1 I=2 I=3 I=4 I=5

CSL fast SaWL 14.67 45.33 82.67 80.67 81.33
SaGNN 12.67 23.33 56.67 84.67 80.00

Mutagenicity fast SaWL 79.81 81.77 83.41 84.16 82.16
SaGNN 79.07 81.94 83.12 84.13 83.08

A.9 Training Time Comparison676

In this section, we provide comparisons of training time with two methods of WL-on-subgraph677

paradigm, i.e., Nested GNN [15] and GNN-AK [16]. The experimental setups are the same with678

Section 5.5. For a fair comparison, we set the model layer and hidden dimension the same. And679

for GNN-AK, we avoid using subgraph sampling modules. It is observed that the training time of680

the two methods of WL-on-subgraph is much higher than our SaGNN. The whole training time of681

GNN-AK is about 5 times that of us, and 8 times that of us for Nested GNN. Our method has a better682

generalization to large-scale graphs compared to the methods of WL-on-subgraph.683

Table 7: Training Time Comparison(second).

Methods Mutagenicity NCI1 NCI109 ogbg-molhiv

Nested GNN 385 352 359 10331
GNN-AK - - - 6100
SaGNN 119 128 126 1206

A.10 More Related Works684

We present more related works, including graph kernel methods and traditional message passing685

GNNs based on the 1-WL algorithm here.686

Graph kernels. Graph classification is an important task with many valuable downstream applica-687

tions, such as chemical molecular property prediction [50] and pharmaceutical drug research [2].688

Graph classification aims to predict the labels of given graphs by utilizing graph structure and feature689

17

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

information. Historically, graph kernels have been the dominant approaches for graph classification.690

Graph kernels first decompose the graph into different substructures, e.g., path, graphlet, and subtree,691

then the kernel matrix of the graphs is calculated by comparing the predefined substructures. Typical692

graph kernel methods include shortest path kernel [37], random walk graph kernel [51], graphlet693

kernel [52], and WL subtree kernel [18]. Kernel matrix is sent to kernel machine to obtain the694

predicted labels of graphs. However, graph kernel methods are limited for heuristic feature extraction.695

GNNs based on 1-WL algorithm. Recently, Graph Neural Networks (GNNs) have been popular696

methods for graph classification, which made a great success [39, 53]. These methods can be viewed697

as the neural implementation of the 1-WL [13, 22], which first updates node representations by698

aggregating neighbor nodes, and then pools the nodes to obtain the graph representation. Many699

pooling strategies have been proposed for graph classification [23, 25, 54]. However, it has been700

proved that the expressive power of traditional GNNs based on 1-WL is at most as large as 1-WL701

[13, 14], which limits the performance of GNN-pooling methods on the graph classification task.702

Substructure encoding based methods. Some methods utilize subgraph/substructure information703

as additional node features [41, 49]. For example, Graph Structure Networks (GSN) proposed in [49]704

encodes structural information in the additional preprocessing stage by counting the appearance705

of certain substructures as the structural feature vector. Then the structural features are utilized in706

message passing. The structure encoding in these method is more like a heuristic feature engineering.707

The selection of the certain substructures requires domain knowledge. This kind of method lacks708

flexibility and cannot guarantee generalization. It also requires high computational cost as choosing709

good substructures remains an open problem due to its combinatorial nature.710

More highly expressive GNNs. ESAN [48] encodes a graph by a bag of subgraphs to achieve711

higher expressive power, which shares some similarities with us. However, ESAN needs some712

predefined policy to obtain subgraphs. The obtained subgraphs are then encoded by an equivariant713

architecture. It relies on the subgraph selection policy to achieve high expressivity, which loses some714

generalization. K-hop GNNs [17, 55] propose to aggregate the node with the information from its715

k-hop neighborhood, rather than only from its direct neighbors, which can identity fundamental graph716

properties such as connectivity and triangle freeness. K-hop GNNs leverage multi-hop information717

to improve the expressive power, while it has some differences from methods of WL-on-subgraph,718

which are discussed in [55].719

18

	1 Introduction
	2 Preliminary
	2.1 Weisfeiler-Lehman and Feature Mapping
	2.2 Graph Neural Networks

	3 Subgraph-aware Weisfeiler-Lehman
	3.1 SaWL for Graph Classification
	3.2 A Fast Implementation of SaWL
	3.3 The Expressive Power of SaWL
	3.4 Complexity

	4 Subgraph-aware Graph Neural Network
	5 Experiments
	5.1 Datasets
	5.2 Baselines
	5.3 Experimental Setup
	5.4 Effectiveness Evaluation
	5.5 Efficiency Evaluation

	6 Related Works
	7 Conclusion
	A Appendix
	A.1 Acceleration of the fast SaWL
	A.2 Proof of Proposition 1
	A.3 Explaination of Proposition 2
	A.4 Graph Examples
	A.5 Comparison with WL-on-subgraphs methods
	A.6 Datasets Description
	A.7 The Accelerating Version for graph isomorphism testing
	A.8 Ablation Study
	A.9 Training Time Comparison
	A.10 More Related Works

