
Appendix

The introduction of convolution and attention to the space of rays in 3D required additional geometric
representations for which there was no space in the main paper to elaborate. We will introduce here
all the necessary notations and definitions. We have accompanied this presentation with examples of
specific groups to elucidate the abstract concepts needed in the definitions.

A Preliminary

A.1 Group Actions and Homogeneous Spaces

Figure 10: The visualization of Plücker coordi-
nates: A ray x can be denoted as (d,m) where x
is any point on the ray x, and d is the direction of
the ray x. m is defined as x× d.

Given the action of the group G on a homoge-
neous space X , and given x0 as the origin of X ,
the stabilizer group H of x0 in G is the group
that leaves x0 intact, i.e., H = {h ∈ G|hx0 =
x0}. The group, G, can be partitioned into the
quotient space (the set of left cosets) G/H and
X is isomorphic to G/H since all group ele-
ments in the same coset transform x0 to the same
element in X , that is, for any element g′ ∈ gH
we have g′x0 = gx0.
Example 1. SE(3) acting on the ray space
R: Take SE(3) as the acting group and the
ray space R as its homogeneous space. We
use Plücker coordinates to parameterize the ray
space R: any x ∈ R can be denoted as (d,m),
where d ∈ S2 is the direction of the ray, and
m = x × d where x is any point on the
ray, as shown in figure 10. A group element

g = (R, t) ∈ SE(3) acts on the the ray space as:
gx = g(d,m) = (Rd, Rm+ t× (Rd)). (5)

We can choose the fixed origin of the homogeneous space to be η = ([0, 0, 1]T , [0, 0, 0]T ),
the line identical with the z-axis of the coordinate system. Then, the stabilizer group
H (the rotation around and translation along the ray) can be parameterized as H ={
(RZ(γ), t[0, 0, 1]

T )|γ ∈ [0, 2π), t ∈ R
}

, i.e., H ≃ SO(2) × R. We can simplify H as H =
{(γ, t)|γ ∈ [0, 2π), t ∈ R}. R is the quotient space SE(3)/(SO(2)× R) up to isomorphism.
Example 2. SE(3) acting on the 3D Euclidean space R3: R3 is isomorphic to SE(3)/SO(3).
Consider another case when SE(3) acts on the homogeneous space R3; for any g = (R, t) ∈ SE(3)
and x ∈ R3, gx = Rx + t. If the fixed origin is [0, 0, 0]T , the stabilizer subgroup is H = SO(3)
since any rotation g = (R,0) leaves [0, 0, 0]T unchanged.
Example 3. SO(3) acting on the sphere S2: S2 is isomorphic to SO(3)/SO(2). The last example is
SO(3) acting on the homogeneous space sphere S2. Given the fixed origin point as [0, 0, 1]T , the
stabilizer group is SO(2).

A.2 Principal Bundle

As stated in [29, 18], the partition of the group G into cosets allows us to treat the group G as the
principal bundle where the total space is G, the base space is the homogeneous space G/H1, the
canonical fiber is the stabilizer group H , the projection map p : G → G/H reads p(g) = gH =
gx0 = x. The section s : G/H → G of p should satisfy that p ◦ s = idG/H , where idG/H is the
identity map on G/H . Note that non-trivial principal bundles do not have a continuous global section,
but we can define a continuous section locally on the open set U ⊆ G/H . The action of G causes a
twist of the fiber, i.e., gs(x) might not be equal to s(gx) though they are in the same coset. We use
the twist function h : G×G/H → H to denote the twist: gs(x) = s(gx)h(g, x). Same as [18], we
simplify h(g, eH) to be h(g), where e is the identity element in G and eH = x0.

1We use G/H to denote the homogeneous space since the homogeneous space X can be identified with
G/H up to an isomorphism, i.e., X ≃ G/H .

15



Figure 11: We can view SE(3) as an SO(2) × R-principal bundle, where the projection map
p : SE(3) → R is p(R, t) = (R[0, 0, 1]T , t × (R[0, 0, 1]T ), and the inverse of p is p−1(x) =
{(R, t)|(R, t)η = x}. We use the coordinate frames (red axis denotes Z-axis, green axis denotes
X-axis, and purple axis denotes Y -axis) to denote the element in SE(3) because we can use the
position of the coordinate origin to denote the translation t and use X-axis, Y -axis, and Z-axis to
represent the first, second and third columns in rotation R. When we say next “the coordinate frame
on the line/ray” we will mean that its origin is on the line/ray. By this convention, the coordinate
frames representing the element in H = SO(2) × R are the frames whose Z-axis aligns with
[0, 0, 1]T and whose origin is [0, 0, t]T for any t ∈ R, i.e., frames on the yellow line in the left of
the figure. For one ray x = (d,m) (illustrated as the chosen blue ray), the coordinate frames on
the ray x whose Z-axis aligns with the ray dx are in p−1(x). As shown in the figure, there exists a
bijection (gray double arrow line ) between p−1(x) and H = SO(2)× R. p−1(x) is isomorphic to
H = SO(2)× R.

Example 4. Projection, section map and twist function for R3 and SE(3): According to Ex. 2, we
can consider a bundle with total space as SE(3), base space as R3, and the fiber as SO(3). For
any g = (R, t) ∈ SE(3), the projection map p : SE(3) → R3 projects g as p(R, t) = t. For any
x ∈ R3, we can define the section map s : R3 → SE(3) as s(x) = (I,x). The twist function
h : SE(3) × R3 → SO(3) is that h(g,x) = s(gx)−1gs(x) = R for any x ∈ R3 and any g =
(R, t) ∈ SE(3). This twist function is independent of x due to the fact that SE(3) = R3 ⋊ SO(3)
is a semidirect product group as stated in [18].
Example 5. Projection, section map, and twist function for S2 and SO(3): As shown in Ex. 3,
SO(3) can be viewed as a principal bundle with the base space as S2 and the fiber as SO(2). With
the rotation R ∈ SO(3) parameterized as R = RZ(α)RY (β)RZ(γ), the projection p : G → G/H
maps R as follows:

p(R) = RZ(α)RY (β)RZ(γ)[0, 0, 1]
T

= RZ(α)RY (β)[0, 0, 1]
T

= [sin(β)cos(α), sin(β)sin(α), cos(β)]T .

For any d ∈ S2, the section map s : S2 → SO(3) of p should satisfy that p ◦ s = idS2 as mentioned
above, i.e., s(d)[0, 0, 1]T = d. For instance, we could define the section map s as:

s(d) = RZ(αd)RY (βd),

where αd and βd satisfies that

d = [sin(βd)cos(αd), sin(βd)sin(αd), cos(βd)]
T .

Specifically, when d = [0, 0, 1]T , αd = 0 and βd = 0; when d = −[0, 0, 1]T , αd = 0 and βd = π.

As defined, the twist function h : SO(3)× S2 → SO(2) is that h(R,d) = s(Rd)−1Rs(d).
Example 6. Projection, section map, and twist function for R and SE(3): The final example is
SE(3) with R as the base space and SO(2)×R as the fiber, which is the focus of this work, as shown

16



Figure 12: For a ray x = (d,m), we need to choose an element (R, t) ∈ SE(3) as the representative
element s(x) such that s(x)([0, 0, 1]T , [0, 0, 0]T ) = x. This figure shows one example of the section
map s from ray space to SE(3). This map also serves as the section provided in this paper. The axes
of the coordinate frame in the figure represent R = sa(d) = RZ(αd)RY (βd), where the green axis,
purple axis, and red axis represent 1st, 2nd and 3rd column in the rotation matrix R, respectively.The
origin of the frame,t = sb(d,m) = d×m, denotes the translation.

in figure 11. According to the group action defined in Eq. 5, the projection map p : SE(3) → R is:

p((R, t)) = (R, t)η = (R[0, 0, 1]T , t× (R[0, 0, 1]T )).

This represents a ray direction d with the 3rd column of a rotation matrix and the moment m with
the cross product of the translation and the ray direction. We can construct a section s : G/H → G
using the Plücker coordinate:

s((d,m)) = (sa(d), sb(d,m)),

where sa(d) ∈ SO(3) is a rotation that sa(d)[0, 0, 1]T = d, i.e., sa is a section map from S2 to
SO(3) as shown in Ex. 5; and sb(d,m) ∈ R3 is a point on the ray (d,m). In this paper, we
define the section map as s((d,m)) = (RZ(αd)RY (βd),d × m), where αd and βd satisfy that
d = RZ(αd)RY (βd)[0, 0, 1]

T , which is the same as Ex. 5. Figure 12 displays the visualization of
the section map.

Given the section map, for any g = (Rg, tg) ∈ SE(3) and x = (dx,mx) ∈ R, we have the twist
function h : SE(3) × R → SO(2) × R is h(g, x) = s−1(gx)gs(x) = (ha(Rg,dx),hb(g, x)),
where ha : SO(3)× S2 → SO(2) is the twist function corresponding to sa, as shown in Ex. 5, and
hb(g, x) = ⟨Rgsb(x) + tg − sb(gx), Rgdx⟩. With the above section s defined in this paper, the twist
function h : SE(3)×R → SO(2)× R is

h(g, x) = s−1(gx)gs(x) = (RZ(Rg,dx), ⟨tg, (Rgdx)⟩),

where RZ(Rg,dx) = R−1
Y (βRgdx)R

−1
Z (αRgdx)RgRZ(αdx)RY (βdx).

To understand the twist function clearly, we visualize a twist induced by a translation in SE(3) in
figure 13,

A.3 Associated Vector Bundle

Given the principal bundle G, we can construct the associated vector bundle by replacing the fiber
H with the vector space V , where V ≃ Rn and H acts on V through a group representation

17



Figure 13: When we translate a ray x = (d,m) with g = (I, t) ∈ SE(3), we will find that gs(x)
does not agree with s(gx). As defined in figure 12, we have sb(x) ⊥ d and sb(gx) ⊥ d. Following
the geometry of the figure, we obtain that hb(g, x) = ⟨t,d⟩[0, 0, 1]T , i.e.,h(g, x) = s(gx)−1gs(x) =
(I, ⟨t,d⟩[0, 0, 1]T ) = (0, ⟨t,d⟩).

ρ : H → GL(V ). The group representation corresponds to the type of geometric quantity in the
vector space V , for example, the scalar, the vector, or the higher-order tensor.

The quotient space E = G×ρ V/H is defined through the right action of H on G× V : (g, v)h =
(gh, ρ(h)−1v) for any h ∈ H , g ∈ G and v ∈ V . With the defined projection map p : G ×ρ V →
G/H: p([g, v]) = gH , where [g, v] =

{
(gh, ρ(h)−1v)|h ∈ H

}
, the element in G×ρ V , we obtain

the fiber bundle E = G×ρ V associated to the principal bundle G. For more background and details
of the associated vector bundle, we recommend referring to the following sources: [52] and [18].

The feature function f : U ⊆ G/H → V can encode the local section of the associated vector bundle
sv : U ⊆ G/H → G×ρ V : sv(x) = [s(x), f(x)], where s is the section map of the principal bundle
as defined in Sec. A.2. The group G acting on the field f as shown in [18]:

(Lgf)(x) = ρ(h(g−1, x))−1f(g−1x), (6)

where h : G×G/H → H is the twist function as defined in Sec. A.2.

A.4 Equivariant Convolution Over Homogeneous Space

The generalized equivariant convolution over homogeneous space, as stated in [18], that maps a
feature field f lin over homogeneous space G/H1 to a feature f l′out over homogeneous space G/H2

by convolving with a kernel κ is defined as:

f l′out(x) =

∫
G/H1

κ(s2(x)
−1y)ρin(h1(s2(x)−1s1(y)))f

lin(y)dy, (7)

where lin and l′out
2 denote the input and output feature types, respectively. ρin is the group

representation of H1 corresponding to the feature type lin, s1 is the section map from G/H1 to
G (see Sec. A.2), s2 is the section map from G/H2 to G (see Sec. A.2), h1 is the twist function
corresponding to s1 (see Sec. A.2).

The convolution is equivariant with respect to G, that is

Lout
g f l′out = κ ∗ Lin

g f lin ,

2In this context, the feature type indicates the specific geometric quantity in vector spaces Vin and Vout. Vin

corresponds to the stabilizer H1 and Vout corresponds to the stabilizer H2. H1 and H2 can be distinct; therefore,
to differentiate the types of features corresponding to different stabilizers, we utilize l and l′ as notations for the
feature types.

18



if and only if κ(h2x) = ρout(h2)κ(x)ρin(h−1
1 (h2, x)) for any h2 ∈ H2, where ρout is the group

representation of H2 corresponding to the feature type l′out.

In the following examples, we will illustrate three instances where the input and output homogeneous
spaces, denoted as G/H1 and G/H2, respectively, are identical, meaning that H1 = H2. These
examples involve convolutions from R3 to R3, from S2 to S2, and from R to R. Furthermore, we
will show an example where H1 and H2 differ, explicitly focusing on the convolution from R to R3.
Example 7. SE(3) equivariant convolution from R3 to R3: If we use the section map as stated in Ex.
4, we will find that h(s(x)−1s(y)) = I , therefore convolution 7 becomes:

f lout(x) =

∫
R3

κ(s(x)−1y)f lin(y)dy

=

∫
R3

κ(y − x)f lin(y)dy

and κ should satisfy

κ(Rx) = ρout(R)κ(x)ρin(h
−1(R, x))

= ρout(R)κ(x)ρin(h
−1(R))

= ρout(R)κ(x)ρ−1
in (R)

for any R ∈ SO(3). When the feature type lin and lout corresponds to the irreducible representation,
we have

κ(Rx) = Dlout(R)κ(x)Dlin(R)−1

where Dlin and Dlout are the Wigner-D matrices, i.e. irreducible representations corresponding to
the feature types lin and lout, which is the same as the analytical result in [63].
Example 8. SO(3) equivariant spherical convolution from S2 to S2: For spherical convolution, when
we substitute the section in Eq. 7 with the section we defined in Ex. 5, the convolution integral takes
the following form:

f lout(α, β)

=

∫
α′∈[0,2π),β′∈[0,π)

κ(R−1
Y (β)R−1

Z (α)RZ(α
′)RY (β

′)[0, 0, 1]T )

ρin(h(R
−1
Y (β)R−1

Z (α)RZ(α
′)RY (β

′))f lin(α′, β′)dα′sin(β′)dβ′

where [0, 0, 1]T is the fixed original point as stated in Ex. 3, ρin is the group representation of SO(2)
corresponding to the feature type lin. When ρin and ρout are the irreducible representations of SO(2),
ρin and ρout can be denoted as ρin(θ) = e−ilinθ and ρout(θ) = e−iloutθ.

To simplify the notation, we utilize R(θ) to represent RZ(θ) ∈ SO(2), where θ ∈ [0, 2π). When
considering the cases where x = [0, 0, 1]T , h(R(θ)x) = R(θ); when x = −[0, 0, 1]T , h(R(θ)x) =
R(−θ); and when x ∈ S2 −

{
[0, 0, 1]T ,−[0, 0, 1]T

}
, h(R(θ)x) = R(−θ) = I . Therefore, the

kernel κ should satisfy the following conditions: κ(R(θ)x) = e−iloutθκ(x) for any R(θ) ∈ SO(2)
and any x ∈ S2 −

{
[0, 0, 1]T ,−[0, 0, 1]T

}
; κ(x) = e−i(lout−lin)θκ(x) for x = [0, 0, 1]T ; and

κ(x) = e−i(lout+lin)θκ(x) for x = −[0, 0, 1]T .

Specifically, when the input and output are scalar feature fields over the sphere, convolution reads

fout(α, β)

=

∫
α′∈[0,2π),β′∈[0,π)

κ(R−1
Y (β)R−1

Z (α)RZ(α
′)RY (β

′)η)

f in(α′, β′)dα′sin(β′)dβ′

κ has such constraint:
κ(R(θ)x) = κ(x)

for any R(θ) ∈ SO(2), which is consistent with the isotropic kernel of the convolution in [22].

19



Example 9. SE(3) equivariant convolution from R to R: In our case, the equivariant convolu-
tion from ray space to ray space is also based on the generalized equivariant convolution over a
homogeneous space. See Sec. 3.4.1 for the details. We solve the constraint of the kernel here:

κ(hx) = ρout(h)κ(x)ρin(h−1(h, x)), (8)

for any h ∈ SO(2)× R.

The irreducible group representation ρin for the corresponding feature type lin = (ω1
in, ω

2
in), where

ω1
in ∈ N and ω2

in ∈ R, can be written as ρin(γ, t) = e−i(ω1
inγ+ω2

int) for any h = (γ, t) ∈ SO(2)×R;
and the irreducible group representation ρout(γ, t) = e−i(ω1

outγ+ω2
outt) for the feature type lout =

(ω1
out, ω

2
out), where ω1

out ∈ N and ω2
out ∈ R, for any h = (γ, t) ∈ SO(2)× R.

To simplify the notation, we utilize R(γ) to represent RZ(γ) ∈ SO(2), where γ ∈ [0, 2π). For
any h = (γ, t) ∈ SO(2) × R and any x = (dx,mx) ∈ R, we have h(h, x) = s(hx)−1hs(x) =
(RZ(R(γ),dx), ⟨t[0, 0, 1]T ,dx⟩) according to Ex. 6. Since SO(2)× R is a product group, we can
have κ(x) = κ1(x)κ2(x), where

κ1((γ, t)x) = ρout((γ, 0))κ1(x)ρ
−1
in ((RZ(R(γ),dx), 0)) (9)

κ2((γ, t)x) = ρout((0, t))κ2(x)ρ
−1
in ((0, ⟨t[0, 0, 1]T ,dx⟩)) (10)

Now we solve the constraint for the kernel κ1:

One can check that for any dx ∈ S2 −
{
[0, 0, 1]T ,−[0, 0, 1]T

}
, RZ(R(γ),dx) = I; when dx =

[0, 0, 1]T , RZ(R(γ),dx) = R(γ); and when dx = −[0, 0, 1]T , RZ(R(γ),dx) = R(−γ).

Therefore, we obtain the constraint that

κ1((γ, t)x) = e−iω1
outγκ1(x) (11)

when dx ∈ S2 −
{
[0, 0, 1]T ,−[0, 0, 1]T

}
;

κ1((γ, t)x) = e−i(ω1
out−ω1

in)γκ1(x) (12)

when dx = [0, 0, 1]T ;

κ1((γ, t)x) = e−i(ω1
out+ω1

in)γκ1(x) (13)

when dx = −[0, 0, 1]T ;

The solution for Eq. 11 is that κ1(x) = f(d(η, x),∠([0, 0, 1]T ,dx))e
−iω1

outatan2([0,1,0]dx,[1,0,0]dx),
where atan2 is the 2-argument arctangent function, and f is an arbitrary function that maps
(d(η, x),∠([0, 0, 1]T ,dx)) to the complex domain.

The solution for Eq. 12 is that when ω1
out = ω1

in, κ1(x) = C, where C is any constant
value; when ω1

out ̸= ω1
in and x = η, κ1(x) = 0; when ω1

out ̸= ω1
in and x ̸= η, κ1(x) =

f(d(η, x))e−i(ω1
out−ω1

in)atan2([0,1,0]mx,[1,0,0]mx),where f is an arbitrary function that maps d(x, η)
to the complex domain.

The solution for Eq. 13 is that when ω1
out = −ω1

in, κ1(x) = C, where C is any constant
value; when ω1

out ̸= −ω1
in and x = −η, κ1(x) = 0; when ω1

out ̸= −ω1
in and x ̸= −η,

κ1(x) = f(d(η, x))e−i(ω1
out+ω1

in)atan2([0,1,0]
Tmx,[1,0,0]

Tmx),where f is an arbitrary function that
maps d(x, η) to the complex domain.

Next, we will solve the constraint for the kernel κ2, which is that κ2((γ, t)x) =

e−i(ω2
out−ω2

in⟨[0,0,1]
T ,dx⟩)tκ2(x).

When dx = [0, 0, 1]T , and ω2
out ̸= ω2

in, κ2(x) = 0; When dx = −[0, 0, 1]T and ω2
out ̸= −ω2

in,
κ2(x) = 0; When dx = [0, 0, 1]T , and ω2

out = ω2
in, κ2(x) = f(d(x, η)), where f is an arbitrary

20



function that maps d(x, η) to the complex domain; When dx = −[0, 0, 1]T , and ω2
out = −ω2

in,
κ2(x) = f(d(x, η)), where f is an arbitrary function that maps d(x, η) to the complex domain; when
dx ∈ S2 −

{
[0, 0, 1]T ,−[0, 0, 1]T

}
,

κ2(x) = f(d(η, x),∠([0, 0, 1]T ,dx))e
−i(ω2

out−ω2
in⟨[0,0,1]

T ,dx⟩)g(x), (14)

where f is an arbitrary function that maps (d(η, x),∠([0, 0, 1]T ,dx)) to the complex domain; g(x) =
[0, 0, 1](xQ − [0, 0, 0]T ), where xQ represents the 3D coordinates of a point Q. This point Q can be
defined as the intersection of x and η if x and η intersect. Alternatively, if x and η do not intersect,
Q is determined as the intersection of η and the ray y, which is perpendicular to both x and η, and
intersects with both x and η. Refer to Figure 16 for a visual representation. One can easily check that
g((γ, t)x) = t+ g(x), as shown in figure 16, which makes the solution valid.

If x and η are intersected, i.e., [0, 0, 1]mx = 0,

g(x) = [0, 0, 1](dx ×mx − [1, 0, 0](dx ×mx)

[1, 0, 0]dx
dx)

when [1, 0, 0]dx ̸= 0;

g(x) = [0, 0, 1](dx ×mx − [0, 1, 0](dx ×mx)

[0, 1, 0]dx
dx)

when [1, 0, 0]dx = 0;

When x and η are not intersected,

g(x) = [0, 0, 1](dx ×mx − [1, 0, 0](dx ×mx)[1, 0, 0]dx + [0, 1, 0](dx ×mx)[0, 1, 0]dx

([1, 0, 0]dx)2 + ([0, 1, 0]dx)2
dx).

Regular Representation Here, we delve into the case where the output field type corresponds to the
group representation of SO(2)×R that ρ(γ, t) = ρ1(γ)⊗ ρ2(t) for any (γ, t) ∈ SO(2)×R, where
ρ2 is the regular representation. The regular representation of a group G is a linear representation
that arises from the group action of G on itself by translation, that is when ρ2 : R → GL(V ) is the
regular representation, for any v ∈ V , for any t, t′ ∈ R, we have (ρ2(t

′)v)t = vt−t′ , in other words,
v ∈ V can be viewed as a function defined on R or an infinite dimensional vector. Then according to
Ex. 6, the group SE(3) acting on the the field f would be:

(Lgf)(x)t = (ρ(h(g−1, x))−1f(g−1x))t

= ρ1(ha(Rg−1 ,dx))
−1f(g−1x)t+hb(g−1,x)

= ρ1(RZ(Rg−1 ,dx))
−1f(g−1x)t+⟨tg−1 ,(Rg−1dx)⟩

for any t ∈ R, x ∈ R and g ∈ SE(3).

The points x on the ray x = (dx,mx) can be uniquely expressed as x = sb(x) + txdx =
dx ×mx + txdx, therefore for any x ∈ R, any t ∈ R, f(x)t can be expressed as a feature attached
to the point sb(x) + tdx along the ray x,i.e., f(x)t = f ′(sb(x) + tdx,dx) as shown in figure 14.

Therefore, we have f ′(x,d) = f((d,x× d))⟨x−d×(x×d),d⟩, one can easily check:

(Lgf
′)(x,d) = ρ1(ha(Rg−1 ,d))−1f ′(Rg−1x+ tg−1 , Rg−1d) = ρ1(RZ(Rg−1 ,d))−1f ′(g−1x, Rg−1d)

(15)

We should note the difference of the point x along the ray and the independent point x, as shown
in the above equation, the point x along the ray x = (d,x × d) is denoted as (x,d) instead of x.
Actually, it can be viewed as a homogeneous space of SE(3) larger than R3, whose elements are in
R3 × S2, as shown in figure 15.

To summarize, the features attached to the ray, whose type corresponds to the regular representation
of translation, can be considered as the features attached to the points along the ray. The action of
SE(3) on features attached to these points can be expressed as shown in Eq. 15.

The solution κ also can be expressed as

κ(x)t = κ1(x)κ2(x)t (16)

21



Figure 14: The feature attached to the ray, which corresponds to the regular representation of
translation, can also be treated as the features attached to the points along the ray.

for any t ∈ R, and their constraint is also the same as Eq. 9 and Eq. 10. As a result, the solution for
κ1 should be the same. We only need to solve κ2:

κ2((γ, t
′)x)t = eiω

2
in⟨[0,0,1]

T ,dx⟩t′κ2(x)t−t′ (17)

for any (γ, t′) ∈ SO(2)× R.

When dx ∈ S2 −
{
[0, 0, 1]T ,−[0, 0, 1]T

}
,

κ2(x)t = f(d(η, x),∠([0, 0, 1]T ,dx))e
iω2

in⟨[0,0,1]
T ,dx⟩g(x)δ(t− g(x)), (18)

where f and g are the same function as defined in 14, and δ(t) = 1 only when t = 0.

when dx ∈
{
[0, 0, 1]T ,−[0, 0, 1]T

}
, κ2(x)t = 0 for any t ∈ R.

Example 10. SE(3) equivariant convolution from R to R3: Following [18], the convolution from
rays to points becomes:

f lout
2 (x) =

∫
R
κ(s2(x)

−1y)ρin(h1(s2(x)−1s1(y)))f
lin
1 (y)dy, (19)

where h1 is the twist function corresponding to section s1 : R → SE(3) defined aforementioned, ρin
is the group representation of SO(2)×R, corresponding to the feature type lin, s2 : R3 → SE(3) is
the section map defined in paper as s2(x) = (I,x).

In this paper, we give the analysis and solutions for the kernel where the input is the scalar field over
the ray space, i.e.,ρin = 1, the trivial group representation, which is also the case of our application
in reconstruction.

The convolution is equivariant if and only if

κ(h2x) = ρout(h2)κ(x),

22



Figure 15: As shown in the figure, the point along the ray is distinct from the independent point.
Moreover, we can observe that the type-1 feature of the point along the ray differs from that of the
independent point. Specifically, the type-1 feature for the point along the ray can be interpreted as a
vector on the plane orthogonal to the ray direction. In contrast, the type-1 feature for the independent
point can be interpreted as a three-dimensional vector.

for any h2 ∈ SO(3), where ρout is the group representation of SO(3) corresponding to the feature
type lout.

We can derive κ(h2x) = ρout(h2)κ(x) analytically. For irreducible representation ρout and any
x = (dx,mx) ∈ R, if ∥mx∥ = 0, κ(x) = cY lout(dx), where c is an arbitrary constant and
Y lout is the spherical harmonics and lout is the order (type) of output tensor corresponding to the
representation ρout; With ∥mx∥ ̸= 0, κ(x) becomes ρout(x̂)f(∥m∥x), where x̂ denotes the element
(dx,

mx

∥mx∥ ,dx × mx

∥mx∥ ) in SO(3) and f : R → R(2lout+1)×1.

Similar to the convolution from rays to rays, we also can have the local support of the kernel. We
set κ(x) ̸= 0 when ∥mx∥ ≤ d0, otherwise κ(x) = 0. One can easily check that it doesn’t break the
equivariant constraint for the kernel.

Specifically, when we set d0 = 0, the neighborhood of the target points in the convolution only
includes the rays from all views going through the point. Hence, we can simplify the convolution to
f lout
2 (x) =

∫
d(y,x)=0

Y lout(ds2(x)−1y)f
in
1 (y)dy. This equation shows that for every point x, we can

treat the ray y going through x with feature f in
1 as a point y′, where y′ − x = ds2(x)−1y , as shown in

figure 17.

B Equivariant 3D Reconstruction

B.1 Approximation of the Equivariant Convolution from Rays to Rays

In practical 3D reconstruction, we have multiple views instead of the whole light field. Although
the convolution above is defined on the continuous ray space, the equivariance still strictly holds
when the ray sampling (pixels from camera views) is the same up to coordinate change. In this case,
we will show how we adjust the equivariant convolution from rays to rays and approximate it by an
intra-view SE(2)-convolution.

23



Figure 16: Visualization of g(x). The left is the case that the ray x and the ray η are intersected, and
the right is the case that the ray x and the ray η are not intersected. For the left, the point Q is the
intersection of x and η, and Q = (0, 0, g(x)); for the right, the point Q is the intersection of the line
y and the ray η, where y is perpendicular to both η and x, and intersects with both η and x. From the
figure, in both cases, we can see that for any t ∈ R, g((0, t)x) = t+ g(x). In general, we actually
have for any (γ, t) ∈ SO(2)× R, g((γ, t)x) = t+ g(x).

Figure 17: Interpreting rays yi as points y′i

B.1.1 From Light Field to Intra-view Convolution

Following Fig. 18, neighboring rays are composed of two parts: a set of rays from the same view and
another set of rays from different views. For one ray x in view A, the neighboring rays from view
B are in the neighborhood of the epipolar line of x in view B. When the two views are close, the
neighborhood in the view B would be very large.

The kernel solution in Ex. 9 suggests that κ(x) is related to ∠(dx, [0, 0, 1]
T ) and d((x, η), where

η = ([0, 0, 1]T , [0, 0, 0]T ) as mentioned before. It would be memory- and time-consuming to
memorize the two metrics beforehand or to compute the angles and distances on the fly. Practically,
the light field is only sampled from a few sparse viewpoints, which causes the relative angles of the
rays in different views to be large and allows them to be excluded from the kernel neighborhood;
therefore, in our implementation, the ray neighborhood is composed of only rays in the same view.

24



Figure 18: For simplification, we show a situation of two views. For a ray x from view A, one part of
the neighboring rays is from view A (the blue rays in the figure), NA(x). For any ray y ∈ NA(x), we
have d(y, x) = 0, and we require ∠(dy,dx) ≤ β0. The other part is from the other view B (the red
rays in the figure). As illustrated in figure 5, the neighboring rays always cross a cylinder around x;
therefore, the neighboring rays from view B are the projection of the cylinder with radius r = d0 in
view B, that is, NB is composed of the neighboring pixels of the epipolar line (the black dotted dash)
corresponding to x in view B. For any ray y in the projection of the cylinder, we have d(y, x) ̸= d0.
Since we require that ∠(dy,dx) ≤ β0 for any ray y ∈ NB(x), NB(x) is part of the projection of the
cylinder, denoted as the shaded yellow part in view B.

B.1.2 From Intra-view Light Field to Spherical Convolution

After showing that a small kernel support in the case of sparse views affects only intra-view rays, we
can prove that an intra-view light-field convolution is equivalent to a spherical convolution when we
constrain the feature field types over R.

We exploit the desired property that a feature defined on a ray is constant along the ray. This means
that the translation part of the stabilizer group (translation along the ray) leaves the feature as is. In
math terms, the irreducible representation for the translation R is the identity, which means that the
field function is a scalar field for the translation group, with the formula (Ltf)(x) = f(t−1x). We
prove that, in this case, the intra-view convolution over rays is equivalent to the spherical convolution;
please see Sec. C.

B.1.3 From SO(3)- to SE(2)-convolution

While there is an established framework for spherical convolution using a Fourier transform [17, 22,
24] it is not applicable in our case because the boundaries of the constrained field of view cause an
explosion in the high frequencies of the spherical harmonics. We will make a compromise here and
approximate the SO(3) convolution with an SE(2) convolution on the image plane by making the
assumption that the field of view is small. One can see the rationale behind this approximation by
keeping only the first order terms in the optical flow equation: the rotational term is only due to Ωz

while the translational term is (−Tx −Ωy,−Ty +Ωx) with (Ωx,Ωy,Ωz) as the angular velocity. We
provide a justification using the formalism of the previous paragraphs in appendix Sec. E.

B.2 Ray Fusion: Equivariant Convolution and Transformer

To reconstruct a 3D object, we use an implicit function known as the signed distance function (SDF)
defined on R3. As a result, we require an equivariant model that can transform features from rays to

25



points to obtain the SDF. This can be achieved using the equivariant convolution in Sec. 3.4.2 and
transformer in Sec. 3.2 in the paper 3.5, which allows us to transform features from the ray space to
points in 3D space while maintaining equivariance.

B.2.1 Equivariant Convolution from Rays to Points

In this paper, we obtain the scalar feature field over rays after the SE(2)-equivariant CNNs. As
illustrated in figure 3 , we utilize the equivariant convolution (discussed in Sec. 3.4.2 ) to compute
features for a query point by convolving over neighboring rays. Our experiments have shown that
convolving only over rays that go through the point achieves the best results, and the equivariant kernel
used for this convolution is provided in Ex.10. Moreover, in the implementation, we can concatenate
the input feature f in

1 with the depth embedding of the query point x. While this theoretically breaks
the ideal equivariance for continuous light fields, it does not affect the practical equivariance, as it is
rare for two cameras to share the same ray.

B.2.2 Equivariant Transformer from Rays to Points

For the third step, we introduce an equivariant transformer to alleviate the loss of expressivity due to
the constrained kernel κ in Eq. 19. Again, the attention key and values are generated from the feature
attached to rays, while the query is generated from the feature attached to points.

In the implementation, we apply a transformer over the rays going through the query point. We
can continue to use the interpretation that treats any ray y passing through the point x as a point y′
such that y′ − x = ds2(x)−1y, as shown in figure 17. Since y becomes point y′, the ray feature f in

1

becomes the feature over R3 attached to “points" y′. We can update the neighboring ray feature by
directly concatenating the equivariant feature of the point to every ray feature before through a SO(3)
equivariant MLP. The transformer in Eq. 4 would be converted to the transformer in [27] over R3.
See appendix Sec. H for details. The composition of the ray updating block and transformer block
are shown in figure 22.

C Proof of Equivalence of Intra-view Light Field Convolution and Spherical
Convolution

The property that a feature defined on a ray is constant along the ray means that the translation part of
the stabilizer group (translation along the ray) leaves the feature as is. In math terms, the irreducible
representation for the translation R is the identity, which means that the field function is a scalar field
for the translation group, with the formula (Ltf)(x) = f(t−1x). The equivariant condition on the
kernel can then be simplified as

κ((h, t)x) = ρout(h)κ(x)ρin(h−1
a (h,dx)),

where h ∈ SO(2) and t ∈ R, ρin and ρout are irreducible representations for SO(2), and ha is the
twist function as shown in Ex. 6 that h(g, x) = (ha(Rg,dx), hb(g, x)),i.e., the twist of the fiber
introduced by action of SO(3) corresponding to the section map sa of SO(3) in Ex. 5 and Ex. 6.
Now we describe the relationship between the intra-view light-field convolution and the spherical
convolution:
Proposition C.1. When the translation group acts on feature f : R → V as (Ltf)(x) = f(t−1x)
for any x ∈ R, the equivariant intra-view light-field convolution:

f lout(x) =

∫
y∈N (x)

κ(s(x)−1y)ρin(h(s(x)−1s(y)))f lin(y)dy

becomes a spherical convolution:

f lout(x) =

∫
dy∈S2

κ′(sa(dx)
−1dy)ρin(ha(sa(dx)

−1sa(dy)))

f ′lin(dy)ddy, (20)

where f ′lin(dy) = f lin(dy, cx × dy), cx denotes the camera center that x goes through,
sa is the section map of SO(3) as defined in appendix Ex. 5, and κ′(sa(dx)

−1dy) =
κ(sa(dx)

−1dy, (s(x)
−1xc)× (sa(dx)

−1dy)).

26



Proof. The SE(3) equivariant convolution over rays transforms into intra-view convolution when
the neighboring lights are in the same view. Moreover, the simplified kernel constraint derived in the
paper is that for any (h, t) ∈ SO(2)× R and x = (dx,mx) ∈ R :

κ((h, t)x) = ρout(h)κ(x)ρin(h−1
a (h,dx)),

where ha : SO(3) × S2 → SO(2) is the twist function: ha(g,d) = sa(gd)
−1gsa(d) for any

g ∈ SO(3) and d ∈ S2.

With the simplified kernel constraint, we can prove that intra-view light field convolution is equivalent
to spherical convolution:

f lout(x)

=

∫
d(y,cx)=0

κ(s(x)−1y)ρin(h(s(x)−1s(y)))f lin(y)dy (21)

=

∫
d(y,cx)=0

κ(s(x)−1y)ρin(ha(sa(dx)
−1sa(dy)))f

lin(y)dy (22)

=

∫
dy∈S2

κ(sa(dx)
−1dy, s(x)

−1xc × (sa(dx)
−1dy))

ρin(ha(sa(dx)
−1sa(dy)))f

lin(dy, cx × dy)ddy (23)

=

∫
dy∈S2

κ′(sa(d(x))
−1dy)ρin(ha(sa(dx)

−1sa(dy)))

f ′lin(dy)ddy. (24)
In line 21, cx is the camera center that x goes through.

The line 21 is equal to the line 22 because we assume that the irreducible representation for the
translation R is the identity as mentioned in the paper.

From line 22 to line 23, We can replace s(x)−1y with

(sa(dx)
−1dy, (s(x)

−1xc)× (sa(dx)
−1dy))

due to the facts that sa(dx)
−1dy = ds(x)−1y and point s(x)−1xc is on the ray s(x)−1y. Since y

goes through cx, we can replace y with (dy, cx × dy).

From line 23 to 24, we have f ′lin(dy) = f lin(dy, cx × dy) because cx is fixed for any view.
Additionally, from line 23 to 24 we replace

κ(sa(dx)
−1dy, (s(x)

−1xc)× (sa(dx)
−1dy))

with κ′(sa(dx)
−1dy). It is because according to

κ((h, t)x) = ρout(h)κ(x)ρin(h−1
a (h,dx)),

we have κ((e, t)x) = κ(x) for any t ∈ R, where e is the identity element in SO(2); thus when
t = ((−s(x)−1xc))

T [0, 0, 1]T , we have

κ(sa(x)
−1dy, s(x)

−1xc × (sa(x)
−1dy))

= κ(sa(x)
−1dy, (s(x)

−1xc + t[0, 0, 1]T )× (sa(x)
−1dy)) (25)

= κ((sa(x)
−1dy, [0, 0, 0]

T ) (26)

= κ′((sa(x)
−1dy).

Line 25 is equal to 26 because s(x)−1xc is always on the z axis, and thus s(x)−1xc + t[0, 0, 1]T =
[0, 0, 0]T .

D Spherical Convolution Expressed in Gauge Equivariant Convolution
Format

Group convolution is a particular case of gauge equivariant convolution [64], where gauge equivariant
means the equivariance with respect to the transformation of the section map (transformation of the

27



Figure 19: Illustration of hx→y. s(x)[1, 0, 0]T and s(x)[0, 1, 0]T (yellow) attached to x are tangent
vectors on x. We parallel transport s(x)[1, 0, 0]T and s(x)[0, 1, 0]T along the geodesic (black dashed
line) between x and y. The transported tangent vectors need to undergo a transformation hx→y in
SO(2) to align with the vectors s(y)[1, 0, 0]T and s(y)[0, 1, 0]T (green) attached to y.

tangent frame). In the following paragraph we give the elaborated definition of gauge equivariance
for the sphere.

Suppose f : S2 → V is the field function corresponding to the section choice sa : S2 → SO(3),
we use Lsa→s′a

acting on f to denote the change of section map from sa to s′a: (Lsa→s′a
f)(x) =

ρ(sa(x)
−1s′a(x))

−1f(x), where ρ is the irreducible representation of SO(2) corresponding to the
field type of f . The convolution Φ is gauge equivariant when Φ(Lsa→s′a

f) = Lsa→s′a
(Φ(f)).

In this section, we show that the spherical convolution can be expressed in terms of the gauge
equivariant convolution [16], which provides the convenience for us to verify the approximation of
spherical convolution through the SE(2) convolution:

f lout(x) =

∫
y∈N (x)

κ′(s(x)−1y)ρin(hy→x)
−1f lin(y)dy,

where κ′(hx) = ρout(h)κ
′(x)ρ−1

in (h) for any h ∈ SO(2).

Since the focus of this section’s discussion is spherical convolution, here we use s(x) to denote sa(x)
for any x ∈ S2.

For any x, y ∈ S2, s(x)[1, 0, 0]T , s(x)[0, 1, 0]T attached to x are tangent vectors on x, we parallel
transport s(x)[1, 0, 0]T and s(x)[0, 1, 0]T along the geodesic between x and y and get two tangent
vectors on y, denoted as s(x → y)1 and s(x → y)2 as shown in the figure 19, where the parallel
transport along a smooth curve is a way to translate a vector “parallelly" based on the affine connection,
that is, for a smooth curve γ : [0, 1] → S2, the parallel transport X : Im(γ) → T S2 along the curve
γ satisfies that ∇γ̇(t)X = 0, where Im(γ) = {γ(t)|t ∈ [0, 1]} and ∇ is the affine connection.

s(x → y)1 and s(x → y)2 need to undergo a transformation in SO(2) to align with s(y)[1, 0, 0]T

and s(y)[0, 1, 0]T on y as shown in the figure 19. We denote the transformation as hx→y .

28



With the above notation, the spherical convolution can be expressed as:

f lout(x) =

∫
y∈N (x)

κ(s(x)−1y)ρin(h(s(x)−1s(y)))f lin(y)dy

=

∫
y∈N (x)

κ(s(x)−1y)ρin(hs(x)−1y→η)

ρin(hs(x)−1y→η)
−1ρin(h(s(x)−1s(y))f lin(y)dy

=

∫
y∈N (x)

κ(s(x)−1y)ρin(hs(x)−1y→η)

ρin(hy→x)
−1f lin(y)dy

=

∫
y∈N (x)

κ′(s(x)−1y)ρin(hy→x)
−1f lin(y)dy,

where η = [0, 0, 1]T , the fixed origin point in S2, and κ′(x) = κ(x)ρin(hx→η)
−1 for any x ∈ N (η).

We can derive the equivariant condition that κ′ should satisfy:

κ′(hx) = κ(hx)ρin(hhx→η)
−1

= ρout(h)κ(x)ρin(h(h, x))−1ρin(hhx→η)

= ρout(h)κ(x)ρin(hx→η)
−1ρin(h

−1)

= ρout(h)κ
′(x)ρ−1

in (h).

Therefore, the spherical convolution can be expressed as the gauge equivariant convolution format:

f lout(x) =

∫
y∈N (x)

κ′(s(x)−1y)ρin(hy→x)
−1f lin(y)dy,

where κ′(hx) = ρout(h)κ
′(x)ρ−1

in (h) for any h ∈ SO(2).

E Converting Spherical Convolution to SE(2) Equivariant Convolution

As stated in Sec. D, spherical convolution is gauge equivariant with respect to the choice of section
map sa, and the spherical convolution can be written as gauge equivariant convolution. In this
section, we use the gauge equivariant convolution to analyze the SE(2) equivariant convolution’s
approximation of spherical convolution.

Since each view performs spherical convolution on its own, we only analyze the convolution for one
view for the sake of simplicity. We use V to denote the space of the rays in the same view, where
V ⊂ S2. For any x ∈ V , we can choose the section map sa such that hx→o = e, where o ∈ S2 that o
aligns with the optical axis as shown in the figure 20. Again, we use s(x) to denote sa(x) for any
x ∈ S2 in this section.

When FOV is small, for any x, y ∈ V , we can have such approximation: hx→y = e. Then the above
gauge equivariant convolution in Sec. D can be approximated as

f lout(x) =

∫
y∈N (x)

κ′(s(x)−1y)f lin(y)dy

t=s(x)−1y
========

∫
t∈N (η)

κ′(t)f lin(s(x)t)dt,

where η = [0, 0, 1]T , the fixed origin in S2, and κ′(hx) = ρout(h)κ
′(x)ρ−1

in (h) for any h ∈ SO(2).

Additionally, as illustrated in figure 21, we have a map from V to the projection points on the picture
plane represented as ω : V → R2, where ω(o) is defined as [0, 0]T . When FOV is small, we have
such approximation that for any h ∈ SO(2), t ∈ N (η), and x ∈ V ,

ω(s(x)t) ≈ ω(x) + ω(s(o)t).

29



Figure 20: Section choice for every view

It is because

ω(s(x)t) = ω(x) + ω(s(o)t)

+ r(
sinβt

cosβt
− sinβt

cosβxcos(βx + βt)
),

and we have

limt→ηr(
sinβt

cosβt
− sinβt

cosβxcos(βx + βt)
)

= r(tanβx)
2βt + o(β2

t ),

when βx is small (FOV is small), the approximation stands.

Then f lout(x) = κ′(t)f lin(s(x)t)dt can be approximately conducted in the image plane:

f ′lout(ω(x))

=

∫
ω(s(o)t)∈N ([0,0]T )

κ′′(ω(s(o)t))f ′lin(ω(x) + ω(s(o)t))

d(ω(s(o)t)), (27)

where for any x ∈ S2, f ′(ω(x)) = f(x), and for any t ∈ N (η), κ′′(ω(s(o)t)) = κ′(t).

Since for any h ∈ SO(2) and any t ∈ N (η), ω(s(o)ht) = hω(s(o)t), we have for any h ∈ SO(2)
and any t ∈ N (η),

κ′′(hω(s(o)t)) = κ′′(ω(s(o)ht)) = κ′(ht)

= ρout(h)κ
′(t)ρ−1

in (h) = ρout(h)κ
′′(s(o)t)ρ−1

in (h)

p=ω(s(o)t)∈R2

=========== k′′(hp)

= ρout(h)κ
′′(p)ρ−1

in (h).

30



Figure 21: Illustration of projection map ω

Therefore, convolution 27 is exactly SE(2) equivariant convolution and it can be used to approximate
the spherical convolution.

In other words, we can intuitively approximate the equivariant convolution over the partial sphere
using the SE(2) equivariant network when the distortion of the sphere and the tangent plane of the
optical axis is modest.

F Construction of Features in Equivariant Light Field Transformer

Noted that fout
2 , f in

2 and f in
1 are features that are composed of fields of different types, denoted as

fout
2 = ⊕if

louti
2 , f in

2 = ⊕if
lini
2 , and f in

1 = ⊕if
l′ini
1

3. fk, fq , and fv are constructed equivariant key
features, query features, and value features, respectively, which are composed of fields of different
types as well.

We use fk = ⊕if
lki

k , fq = ⊕if
lki
q , and fv = ⊕if

lvi
v to denote fk, fq and fv, respectively. We con-

struct the features fk,fq and fv through the equivariant kernels κk = ⊕j,iκ
lkj

,l′ini

k , κv = ⊕j,iκ
lvj ,l

′
ini

v

and equivariant matrix Wq = ⊕j,iW
lkj

,lini
q :

f
lkj

k (x, y, f in
1 )

=
∑
i

κ
lkj

,l′ini

k (s2(x)
−1y)ρ

l′ini
1 (h1(s2(x)−1s1(y)))f

l′ini
1 (y); (28)

f
lvj
v (x, y, f in

1 )

=
∑
i

κ
lvj ,l

′
ini

v (s2(x)
−1y)ρ

l′ini
1 (h1(s2(x)−1s1(y)))f

l′ini
1 (y); (29)

f
lkj
q (x, f in

2 ) =
∑
i

W
lkj

,lini
q f

lini
2 (x), (30)

where for any i, j, any h2 ∈ SO(3), and any x ∈ R κ
lkj

,l′ini

k and κ
lvj ,l

′
ini

v should satisfy that:

κ
lkj

,l′ini

k (h2x) = ρ
lkj

2 (h2)κ
lkj

,l′ini

k (x)ρ
l′ini
1 (h−1

1 (h2, x));

κ
lvj ,l

′
ini

v (h2x) = ρ
lvj
2 (h2)κ

lvj ,l
′
ini

v (x)ρ
l′ini
1 (h−1

1 (h2, x)),

3Since here the homogeneous spaces of input and output might be different, so as the stabilizer groups, we
use l and l′ to denote the representations of different stabilizer groups.

31



where h1(h2, x) = s1(h2x)
−1h2s1(x) is the twist function, and for any i, j and any h2 ∈ SO(3),

W
lkj

,lini
q satisfies that:

ρ
lkj

2 (h2)W
lkj

,lini
q = W

lkj
,lini

q ρ
lini
1 (h2). (31)

When the group representation is irreducible representation, due to Schur’s Lemma, we have

W
lkj

,lini
q = cI when lkj

= lini
, where c is an arbitrary real number, otherwise W

lkj
,lini

q = 0.

G Proof for Equivariance of Light Field Transformer

The equivariant light field transformer defined in the paper reads:

fout
2 (x)

=
∑

y∈N (x)

exp(⟨fq(x, f in
2 ), fk(x, y, f

in
1 )⟩)∑

y∈N (x) exp(⟨fq(x, f in
2 )fk(x, y, f in

1 )⟩

fv(x, y, f
in
1 )) (32)

is in a general form.

According to [18], one can prove that fq, fk and fv are equivariant, that is, for any g ∈ SE(3),
x ∈ R3 and y ∈ R,

f
lkj
q (g · x,Lin

g (f in
2 )) = ρ

lkj

2 (h2(g
−1, g · x)−1)f

lkj
q (x, f in

2 );

f
lkj

k (g · x, g · y,L′in
g (f in

1 )) = ρ
lkj

2 (h2(g−1, g · x)−1)f
lkj

k (x, y, f in
1 );

f
lvj
v (g · x, g · y,L′in

g (f in
1 )) = ρ

lvj
2 (h2(g−1, g · x)−1)f

lvj
v (x, y, f in

1 ),

where Lin and L′in are group action of SE(3) on f in
2 and f in

1 , respectively.

The inner product ⟨fq, fk⟩ =
∑

i(f
lki
q )T f

lki

k is invariant due to the property of unitary representation,
which results in the equivariance of the transformer.

H From SE(3) Equivariant Transformer in Ray Space to SE(3) Equivariant
Transformer in Euclidean Space

In our implementation for the reconstruction task, the attention model is always only applied over
the rays going through the points. We can continue to use the interpretation in the convolution from
ray space to R3 in Ex. 10 that treats any ray y passing through the point x as a point y′ such that
y′ − x = ds2(x)−1y as shown in the figure 17.

After we get the initial feature of query points through equivariant convolution from R to R3, we
update the neighboring ray feature by directly concatenating the query point feature to every ray
feature before through a SO(3) equivariant MLP as shown in the figure 22. SO(3) equivariant MLP
is composed of an equivariant nonlinear layer and self-interaction layer as in the tensor field networks
[55].

Since y becomes point y′, and f in
1 is the feature over R3 attached to “points" y′, it becomes ⊕if

lini
1

4.
Then transformer 32 would be converted to the transformer in [27] over R3:

4Since here f in
1 is the fields over R3, we use l instead of l′ as the denotation

32



Figure 22: The structure of ray updating and SE(3) transformer. We treat any ray y going through
point x as a point y′ ∈ R3 such that y′ − x = ds2(x)−1y. The blue block indicates the ray feature
update, and the pink block is the equivariant attention model. For the ray feature updating, the point
feature (lavender) is concatenated to every ray feature (light yellow, light blue, and light red) and
goes through an equivariant MLP. For the transformer, we get the equivariant query, key, and value
feature through the designed linear matrix Wq, designed kernels κk and κv, then apply multi-head
attention to obtain the output point feature, which can subsequently be fed into the next ray feature
updating and SE(3) transformer block.

fout
2 (x)

=
∑

y′∈N (x)

exp(⟨fq(x, f in
2 ), fk(x, y

′, f in
1 )⟩)∑

y′∈N (x) exp(⟨fq(x, f in
2 )fk(x, y′, f in

1 )⟩

fv(x, y
′, f in

1 )), (33)

where the subscript denotes the points to which the feature is attached, i.e., x and y′.

The features fk, fv are constructed by the equivariant kernels κk = ⊕j,iκ
lkj

,lini

k , κv = ⊕j,iκ
lvj ,lini
v :

f
lkj

k (x, y, f in
1 ) =

∑
i

κ
lkj

,lini

k (y′ − x)f
lini
1 (y);

f
lkj
v (x, f in

2 ) =
∑
i

κ
lvj ,lini
v (y′ − x)f

lini
2 (y),

where for any i, j, any h2 ∈ SO(3), and any x ∈ R3 κ
lkj

,lini

k and κ
lvj ,lini
v should satisfy that:

κ
lkj

,lini

k (h2x) = ρ
lkj

2 (h2)κ
lkj

,lini

k (x)ρ
lini
2 (h−1

2 );

κ
lvj ,lini
v (h2x) = ρ

lvj
2 (h2)κ

lvj ,lini
v (x)ρ

lini
1 (h−1

2 )

as stated in [27].

The feature fq is constructed in the same way as Equation 30.

33



Figure 23: The comparison of the equivariant light field transformer and the conventional transformer.
The left is the equivariant light field transformer, and the right is the conventional transformer. In
our light field transformer, the position encoding is not directly concatenated to the features because
this is not equivariant. We first obtain the equivariant feature attached to the point by equivariant
convolution over the rays. We then construct features fk, and fv with derived designed kernels κk

and κv to keep them equivariant; we construct fq by the designed equivariant linear layer Wq . Since
fk, fq , and fv are all equivariant, the inner product of fk and fq is invariant, which results in invariant
attention weight. Therefore, the whole transformer is equivariant. In contrast, the conventional
transformer concatenates the ray position encoding with the feature attached to the ray, uses the point
position encoding for the query feature for the point, and applies multi-head attention using fk, fq,
and fv , which are obtained by the Linear layer. We should note that Wq in the light field transformer
is designed to be equivariant, satisfying equation 31, which differs from the conventional linear map
Wq in the conventional transformer. For the attention blocks after the first block, the query features of
the point in our model and the conventional model are both the output of the last attention block. The
difference is that our query feature keeps equivariant while the feature in the conventional transformer
is not.

Figure 22 shows the structures of ray feature update and SE(3) equivariant transformer.

In figure 23, we compare the SE(3) equivariant transformer and the conventional transformer to
illustrate how the equivariance is guaranteed in the equivariant transformer. In figure 24, we present
the types of futures in SE(3) equivariant attention head and conventional attention head, respectively.
It indicates that geometric information is aggregated equivariantly in multi-head attention in the
equivariant transformer.

I Equivariant Neural Rendering

Equivariant rendering relates to equivariant 3D reconstruction, where we focus on multiple views
instead of the entire light field. The equivariance property is maintained when the ray sampling is
invariant up to a coordinate change.

I.1 Convolution from Rays to Rays

For neural rendering tasks, we query one ray and apply the convolution over the neighboring rays
to obtain the feature attached to the target query ray. Similar to the reconstruction, we utilize a
kernel with local support. However, there is a distinction in that for neural rendering, the kernel κ is
constrained to be nonzero only when d(x, η) = 0, while there are no constraints on ∠(dx, [0, 0, 1]

T ).

34



Figure 24: The comparison of multi-head attention modules in the equivariant light field transformer
and in the conventional transformer. The figure above is the multi-head attention module in an
equivariant light transformer, and the figure below is the conventional transformer. In the light field
transformer, the query, key, and value features are composed of different types of features; they can be
scalars, vectors, or higher-order tensors. The inner product should apply to the same type of features,
and the type of feature determines the way of applying the inner product. In contrast, the feature in a
conventional transformer doesn’t contain vectors and tensors, and the inner product is conventional.

As a result, the neighboring rays exclusively encompass the rays on the epipolar line for the target ray
in each source view, as depicted in Figure 25.

The scalar field over rays serves as the input to the convolution. The output field type corresponds
to the regular representation of translation. This is because this field type serves as the input for
the cross-attention module later on. If this field type were not utilized, the transformer would reach
the entire neighboring set, leading to inferior performance compared to applying the transformer
individually for each point and then applying it over the points along the ray. A similar observation
is made in [58], which states that the two-stage transformer outperforms the one-stage transformer.
Using the field type corresponding to the regular representation of the translation as the input, the
transformer from rays to rays is equivalent to performing a transformer for each point, respectively,
as explained in the following section.

In Eq. 18, we already provide the solution of the kernel. We give a detailed explanation in this case
and show that it is equivalent to performing convolution from rays to rays with output field types
corresponding to irreducible representations, followed by applying Inverse Fourier Transform. Given
that the input field is a scalar field, we have ω1

in = 0 and ω2
in = 0. When considering an output field

type of (ω1
out, reg), where reg represents the regular representation of translation, the convolution

can be expressed as follows:

(f
(ω1

out,reg)
out )t =

∫
y∈N (x)

κ1(s(x)
−1y)(κ2(s(x)

−1y))tfin(y)dy

=

∫
y∈N (x)

κ1(s(x)
−1y)f(d(η, s(x)−1y),∠([0, 0, 1]T ,ds(x)−1y))δ(t− g(s(x)−1y))fin(y)dy

=

∫
g(s(x)−1y)=t

κ1(s(x)
−1y)f(d(η, s(x)−1y),∠([0, 0, 1]T ,ds(x)−1y))fin(y)dy.

From the above equation, we can intuitively find that when the output field corresponds to the regular
representation of the translation, the convolution happens at every point along the ray, respectively.
We can treat f (ω1

out,reg)
out as a function over R, and for any ω ∈ R we apply the Fourier Transform to

f
(ω1

out,reg)
out :

35



Figure 25: For simplification, we show two source views. For a target query ray x, the neighboring
rays (denoted by red rays) are on the epipolar lines (denoted as yellow dotted dashes) for the target
ray in each source view. For any ray y ∈ N (x), d(x, y) = 0.

F(ω) =

∫
t

f
(ω1

out,reg)
out (t)e−iωtdt

=

∫
t

∫
g(s(x)−1y)=t

κ1(s(x)
−1y)f(d(η, s(x)−1y),∠([0, 0, 1]T ,ds(x)−1y))fin(y)dye

−iωtdt

=

∫
y

κ1(s(x)
−1y)f(d(η, s(x)−1y),∠([0, 0, 1]T ,ds(x)−1y))e

−iωg(s(x)−1y)fin(y)dy

=

∫
y

κ1(s(x)
−1y)κ′

2(s(x)
−1y)fin(y)dy,

where κ′
2 = f(d(η, s(x)−1y),∠([0, 0, 1]T ,ds(x)−1y))e

−iωg(s(x)−1y), which is exactly the kernel
corresponding to ω2

out = ω and ω2
in = 0 as stated in Eq. 14. Therefore, we know that the field

corresponding to the irreducible representation of the translation can be treated as the Fourier
coefficients of the field corresponding to the regular representation. We can first obtain the features
of different irreducible representations attached to the ray and subsequently apply the Inverse Fourier
Transform to get the features for points along the ray,as shown in figure 26.

I.2 Cross-attention over Rays

The feature that generates the query in the transformer is the feature attached to the target ray, whose
feature type corresponds to the regular representation of the translation. The feature that generates
the key and value in the transformer is attached to the neighboring rays in the source view, whose

36



Figure 26: The features for points along the ray (the field type corresponds to the regular represen-
tation) can be obtained by the Inverse Fourier Transform of features attached to the ray, where the
types of feature fields correspond to the irreducible representation of the translation.

feature type corresponds to the scalar field. The output is the feature attached to the target ray, whose
feature type corresponds to the regular representation. Therefore, the transformer becomes:

(fout
2 (x))t =

∑
y∈N (x)

exp(⟨(fq(x, f in
2 ))t, (fk(x, y, f

in
1 ))t⟩)∑

y∈N (x) exp(⟨(fq(x, f in
2 ))t(fk(x, y, f in

1 ))t⟩
)(fv(x, y, f

in
1 ))t, (34)

where

(fk(x, y, f
in
1 ))t = (κk(s2(x)

−1y))tf
in
1 (y)

(fv(x, y, f
in
1 ))t = (κv(s2(x)

−1y))tf
in
1 (y)

(fq(x, f
in
2 ))t = C(f in

2 (x))t.

In the equations above, κk and κv are the kernels derived in Ex. 9 Eq. 16, C is the equivariant weight
matrix satisfying Eq. 31.

The expression above indicates that the feature types of both key and value correspond to the regular
representation of translation, as well as the feature type of the query. Moreover, the transformer
operates on each point along the ray independently. It should be noted that the features (fk)t,
(fq)t, (fv)t and (f in

2 )t may have multiple channels and may consist of different types of features
corresponding to various representations of SO(2). The inner product ⟨·, ·⟩ can only happen in the
field type of the same representation of SO(2). This allows for the implementation of a multi-head
attention module, where each head can attend to a specific type of feature and multiple channels.

37



I.3 Self-attention over Points Along the Ray

After the cross-attention over rays, we get the features of the points along the ray, i.e., the feature
attached to the ray corresponding to the regular representation of translation. SE(3) acts on the
feature f ′ attached to the point along the ray as mentioned in Eq.15 :

(Lgf
′)(x,d) = ρ1(RZ(Rg−1 ,d))−1f ′(g−1x, Rg−1d),

where ρ1 is the group representation of SO(2).

We will apply the self-attention model to these points along the same ray. For two points
x1 and x2 on the same ray (d,x1 × d), one can observe that for the same type of feature,
⟨(Lgf

′)(x1,d), (Lgf
′)(x1,d)⟩ = ⟨f ′(g−1x1, Rg−1d), f ′(g−1x1, Rg−1d)⟩, which makes atten-

tion weight invariant, the transformer could be formulated as:

fout(x) =
∑

y on the same ray as x

exp(⟨fq(f in, x), fk(f
in, x, y)⟩)∑

y on the same ray as x exp(⟨fq(f in, x), fk(f in, x, y)⟩)
fv(x, y, f

in), (35)

where

f l
k(x, y, f

in) = ck(d(x, y))I(f
in)l(y)

f l
v(x, y, f

in) = cv(d(x, y))I(f
in)l(y)

f l
q(x, f

in) = cqI(f
in)l(x),

and x and y are the points along the same ray with direction d, we can denote x as (x,d) and y
as (y,d), d(x, y) is the signed distance ⟨d,y − x⟩, ck,cv are arbitrary functions that take signed
distance as the input and output complex values and cq is an arbitrary constant complex. It should
be noted that the features fk, fq, fv, and f in may have multiple channels and consist of different
types of features corresponding to various representations of SO(2), the inner product ⟨·, ·⟩ can only
happen in the same type of field. This allows for implementing a multi-head attention module, where
each head can attend to a specific feature type and multiple channels. Here, f l

k denotes the type−l
feature in feature fk, f l

v represents the type−l feature in feature fv , f l
q denotes the type−l feature in

feature fl, and (f in)l represents the type−l feature in feature f in.

Note that this transformer architecture also follows the general format of the transformer in Eq. 4.
We only simplify the kernel κk, κv to be trivial equivariant kernels.

To obtain a scalar feature density for each point, the feature output of each point can be fed through
an equivariant MLP, which includes equivariant linear layers and gated/norm nonlinear layers. These
layers are similar to the ones used in [62] and [63].

J 3D Reconstruction Experiment

J.1 Generation of the Dataset

The I dataset is obtained by fixing the orientation of the object as well as the eight camera orientations.
With the object orientation fixed, we can independently rotate each camera around its optical axis by
a random angle in a uniform distribution of (−π, π] to obtain the Z dataset. For the R dataset, we
rotate every camera randomly by any rotation in SO(3) while fixing the object. The equivariance
stands with the content unchanged. Therefore, in practice, we require that the object projection
after the rotation does not have new parts of the object. We satisfy this assumption by forcing the
camera to fixate on a new random point inside a small neighborhood and subsequently rotate each
camera around its optical axis with the uniformly random angle in (−π, π]. We generate the Y
dataset by rotating the object only with azimuthal rotations while keeping the camera orientations the
same. The SO(3) dataset is generated by rotating the object with random rotation in SO(3) with the
orientations of cameras unchanged, which will potentially result in new image content. Equivariance
is not theoretically guaranteed in this setup, but we still want to test the performance of our method.

38



Figure 27: The number of parameters and FLOPs of SE(2) equivariant CNNs. We set batch size as
one to calculate number of FLOPs.

J.2 Implementation Details

We use SE(2) equivariant CNNs to approximate the equivariant convolution over the rays. We use
the same ResNet backbone as implemented in [30] that is equivariant to the finite group C8, which
we find achieves the best result compared with other SE(2) equivariant CNNs. We use a similar
pyramid structure as [69] that concatenates the output feature of every block. Since every hidden
feature is the regular representation, in the final layer we use 1× 1 SE(2)-equivariant convolutional
layers to transfer the hidden representation to scalar type.

For the fusion from the ray space to the point space model, we use one layer of convolution and
three combined blocks of updating ray features and SE(3) transformers. For the equivariant SE(3)
multi-head-attention, we only use the scalar feature and the vector (type-1) feature in the hidden layer.
The kernel matrix includes the spherical harmonics of degrees 0 and 1. We also concatenate every
output point feature of every block as in the 2D backbone. Since the output feature of every block
includes the vector feature, we transfer it to the scalar feature through one vector neuron layer and the
inner vector product. We use the same weighted SDF loss as in [69] during training, which applies
both uniform and near-surface sampling. We report the number of parameters and floating-point
operations (FLOPs) of our 2D backbone and light fusion networks in Fig. 27 and Fig. 28 respectively.

39



Figure 28: The number of parameters and FLOPs of the ray fusion model, which is composed of
convolution from rays to points and transformer from rays to points. We set batch size as one to
calculate the number of FLOPs.

J.3 Discussion of Results

There is still a performance gap between I/I and I/Z. Although SE(2) equivariant networks are
theoretically strictly equivariant, the error in practice is introduced by the finite sampling of the image
and the pooling layers. Additionally, we use the ResNet that is equivariant to C8 approximation of
SO(2), which causes this gap but increases the whole pipeline performance in the other tasks. There
is no significant difference between I/Z and I/R, which shows that approximating the spherical
field convolution by SE(2) equivariant convolution is reasonable in practice.

J.4 Qualitative Results

Figure 29 shows a qualitative result for the chair category. There are more qualitative results shown
in Fig. 37, Fig. 38, and Fig. 39.

J.5 Ablation Study

First, we replace the SE(2) CNNs backbone with the conventional CNNs to test the effectiveness
of SE(2) CNNs. Secondly, we remove the equivariant convolution/transformer part and use trivial
aggregation (max-pooling) combined with MLP. Finally, we run an equivariant convolution and
transformer without using the type-1 (vector) feature while keeping the number of parameters similar
to our model.

40



Figure 29: Qualitative results for equivariant reconstruction. Left: input views; Right: reconstruction
meshes of different models and ground truth meshes. The captions below the meshes show how the
model is trained and tested, explained in the text.

Table 3 summarizes the result on the chair category, which illustrates that in the I/I and Y/Y trials,
SE(2) CNN is less expressive than traditional CNN, but it contributes to the equivariance of our
model looking at the results of I/Z, I/R, and Y/SO(3). Equivariant ray convolution and transformer
improve both the reconstruction performance and the equivariance outcome. We also compare the
ray convolution and transformer with the models operating only on scalar features without vector
features, and again, we see a drop in performance in every setting, proving the value of taking ray
directions into account.

We also compare to a baseline where the ray difference information is encoded in the feature explicitly.
Most models that encode ray directions aim at rendering, like IBRnet. Here, we modified IBRnet
(Fig.2 of IBRnet paper) to query 3D points only for their SDF value instead of querying all densities
along the ray that would be necessary for rendering. We replaced the ray direction differences with
the ray directions themselves because we use a query point and not a query ray. We report in table
4 IoU result for Y/Y and Y/SO(3) (where Y is augmentation only along the vertical axis) for two
models – IBRNet with conventional CNNs as 2D backbone and IBRNet with SE(2)-equivariant
CNNs as 2D backbone. For the SO(3) setting, we rotate the whole 8 cameras with the same rotation,
which is equivalent to rotating the object with the inverse rotation, and we use the object canonical
frame to encode the ray information.

The baseline is not equivariant: It explicitly uses the ray directions as inputs to MLPs. Ray directions
or their differences change when the coordinate system is transformed, breaking, thus, equivariance.
Table 4 demonstrates that our model is more resilient to object rotations. We can enhance equivariance

41



Method w/o SE(2) w/o conv& trans w/o type-1 Full model
I/I 0.767/0.079 0.695/0.105 0.722/0.093 0.731/0.090
I/Z 0.430/0.234 0.533/0.175 0.553/0.158 0.631/0.130
I/R 0.417/0.249 0.442/0.241 0.466/0.203 0.592/0.137
R/R 0.672/0.112 0.658/0.122 0.682/0.109 0.689/0.105
Y/Y 0.731/0.090 0.644/0.124 0.677/0.111 0.698/0.102

Y/SO(3) 0.467/0.0.217 0.534/0.170 0.569/0.163 0.589/0.142
SO(3)/SO(3) 0.655/0.120 0.616/0.142 0.636/0.130 0.674/0.113

Table 3: Ablation: w/o SE(2) means replacing SE(2) equivariant network with conventional; w/o
ray conv& trans denotes the model where we replace the light field convolution and the light field
equivariant transformer with max-pooling; w/o type-1 means using only scalar features in convolution
and transformers.

Method Y/Y Y/SO(3) SO(3)/SO(3)
IBRNet [61] w/o SE(2) 0.689 0.432 0.611
IBRNet [61] w/SE(2) 0.652 0.501 0.619

Ours 0.698 0.598 0.674
Table 4: Comparison of our model and a baseline which encodes the ray information explicitly.
IBRNet w/o SE(2) is the modified IBRNet with conventional CNN backbone, IBRNet w/SE(2) is the
model where we replace the conventional CNN backbone with the SE(2) equivariant CNN.

by using SE(2) equivariant modeling, and our model outperforms the baseline in the Y/Y setting. We
believe that the transformer in our model is responsible for the performance improvement.

K Neural Rendering Experiment

K.1 Experiment Settings Discussion

Two experiment settings illustrate our model’s equivariance: I/I and I/SO(3). I/I is the canonical
setting, where we train and test the model in the same canonical frame defined in the dataset. I/SO(3)
is that we test the model trained in the canonical frame under arbitrary rotated coordinate frames,
which means that all the camera poses in one scene are transformed by the same rotation without
changing their relative camera poses and relative poses between the camera and the scene, which
doesn’t change the content of the multiple views. The reason we don’t apply translation to the
cameras is that there exists a depth range for points sampling in the model and the comparing baseline
[61], which effectively mitigates the impact of translation.

We should note that the SO(3) setting in this experiment setting differs from R and SO(3) settings
in reconstruction. R changes the relative pose of the cameras, and each image is transformed due to
the rotation of each camera without altering the content, i.e., the sampling of the light field is nearly
unchanged. The R setting aims to demonstrate that replacing the conventional method with ray-based
convolution can get rid of the canonical frame for each view.

SO(3) in reconstruction is to rotate the object pose randomly without changing the pose of the
camera, which is equivalent to transforming the cameras by the inverse rotation but fixing the object,
resulting in changes in the relative poses between the camera and the object, the content of the image
and, therefore, the sampling of the light field. This setting shows that even for non-theoretically
equivariant cases, our model in reconstruction still demonstrates robustness.

In the rendering experiment using the SO(3) setting, each image itself is not transformed, unlike the
R setting in the reconstruction. The content of the images remains unchanged, including the light
field sampling, unlike the SO(3) setting in the reconstruction. Since each image is not transformed,
even if the conventional 2D convolution is applied to the image, the scalar feature attached to the
ray is not altered, and the light feature field sampling remains the same up to the transform of the
coordinate frame. This setting was used to demonstrate that our model is SE(3)-equivariant when
the input is the scalar light feature field.

42



Figure 30: The number of parameters and FLOPs of the model, which takes the scalar feature attached
to rays as input and predicts the color and density for points along the target ray. The calculation of
FLOPs is performed for single-pixel rendering with 10 source views.

Figure 31: In terms of qualitative results for rendering, we compare the performance of IBRNet and
our model in both the given canonical frame (denoted as "IBRNet(I)" and "Ours(I)" respectively) and
a rotated frame (denoted as "IBRNet(SO(3))" and "Ours(SO(3))" respectively). Our model performs
comparably to IBRNet in the canonical setting. However, IBRNet experiences a performance drop in
the rotated frame, while our model remains robust to the rotation.

K.2 Implementation Details

As described in the paper, we use a similar architecture as [61], where we replace the aggregation
of view features by equivariant convolution and equivariant transformer over rays. In equivariant
convolution, the input is scalar feature field over rays, which means that ω1

in = 0 and ω2
in = 0;

for the output field, we use regular representation of translation as described in Sec. 3.3 , and we
use ω1

out = 0, 21, · · · , 27 for group representation of SO(2), each field type has 4 channels. In
equivariant transformer over rays, we update the key and value before going to the attention module
in the experiment; the specific operation is that we concatenate key fk and query fq , we concatenate

43



Figure 32: In terms of qualitative results for rendering, we compare the performance of IBRNet and
our model in both the given canonical frame (denoted as "IBRNet(I)" and "Ours(I)" respectively) and
a rotated frame (denoted as "IBRNet(SO(3))" and "Ours(SO(3))" respectively). Our model performs
comparably to IBRNet in the canonical setting. However, IBRNet experiences a performance drop in
the rotated frame, while our model remains robust to the rotation.

Figure 33: In terms of qualitative results for rendering, we compare the performance of IBRNet and
our model in both the given canonical frame (denoted as "IBRNet(I)" and "Ours(I)" respectively) and
a rotated frame (denoted as "IBRNet(SO(3))" and "Ours(SO(3))" respectively). Our model performs
comparably to IBRNet in the canonical setting. However, IBRNet experiences a performance drop in
the rotated frame, while our model remains robust to the rotation.

fv and query fq, and then we feed the concatenated key and value into two equivariant MLPs
(equivariant linear layers and gated/norm nonlinear layers, similar to the ones used in [62]) to get the
newly updated key and updated value, which will be fed into attention module. In line with [61], our
approach does not involve generating features for the color of every point. In our implementation, we
directly multiply the attention weights obtained from the softmax operator in the transformer with the
corresponding colors in each view to perform color regression.

We replace the ray transformer with the equivariant transformer over the points along the ray; the input
features comprise the feature types corresponding to the group representations ωin = 0, 21, · · · , 27
for SO(2). Each feature type has 4 channels; the output comprises the same feature type, and each
type has 2 channels. We will first convert the feature into a scalar feature by an equivariant MLP
(equivariant linear layers and gated/norm nonlinear layers, similar to the ones used in [62].) and then
feed it into a conventional MLP to get the density. We report in Fig. 30 the number of parameters and
floating-point operations (FLOPs) of the model composed of the convolution and transformers.

K.3 Qualitative Results

Fig. 32, Fig. 33, Fig. 34, Fig. 31, Fig. 35 and Fig. 36 show the qualitative results on Real-Forward-
Facing [41] and Realistic Synthetic 360◦ [49] data. Our model performs comparably to IBRNet in
the canonical setting. However, IBRNet experiences a performance drop in the rotated frame, while
our model remains robust to the rotation.

44



Figure 34: In terms of qualitative results for rendering, we compare the performance of IBRNet and
our model in both the given canonical frame (denoted as "IBRNet(I)" and "Ours(I)" respectively) and
a rotated frame (denoted as "IBRNet(SO(3))" and "Ours(SO(3))" respectively). Our model performs
comparably to IBRNet in the canonical setting. However, IBRNet experiences a performance drop in
the rotated frame, while our model remains robust to the rotation.

Figure 35: In terms of qualitative results for rendering, we compare the performance of IBRNet and
our model in both the given canonical frame (denoted as "IBRNet(I)" and "Ours(I)" respectively) and
a rotated frame (denoted as "IBRNet(SO(3))" and "Ours(SO(3))" respectively). Our model performs
comparably to IBRNet in the canonical setting. However, IBRNet experiences a performance drop in
the rotated frame, while our model remains robust to the rotation.

Figure 36: In terms of qualitative results for rendering, we compare the performance of IBRNet and
our model in both the given canonical frame (denoted as "IBRNet(I)" and "Ours(I)" respectively) and
a rotated frame (denoted as "IBRNet(SO(3))" and "Ours(SO(3))" respectively). Our model performs
comparably to IBRNet in the canonical setting. However, IBRNet experiences a performance drop in
the rotated frame, while our model remains robust to the rotation.

45



Figure 37: Qualitative Result for the chair. Left: input views; Right: reconstruction meshes of
different models. The captions below the meshes show how the model is trained and tested.

46



Figure 38: Qualitative Result for the car. Left: input views; Right: reconstruction meshes of different
models. The captions below the meshes show how the model is trained and tested.

47



Figure 39: Qualitative Result for the car. Left: input views; Right: reconstruction meshes of different
models. The captions below the meshes show how the model is trained and tested.

48


