
Under review as a conference paper at ICLR 2024

Ethics and Reproducibility Statements
We have followed the ICLR Code of Ethics in our work.

For the reproducibility of the proposed STIL system, the source code can be downloaded from
https://github.com/STILalg/STIL.

Appendix

CONTENTS

A. THEOREMS 1-4 AND PROOFS

A.1 Theorem 1

A.2 Theorem 2

A.3 Theorem 3

A.4 Theorem 4

B. NETWORK ARCHITECTURES, HYPERPARAMETERS, TRAINING DE-
TAILS, AND DATASETS

C. ALGORITHMS

C.1 Algorithm 1 LWSimilarity

C.2 Algorithm 2 basesComputing

C.3 Algorithm 3 STIL

D. ADDITIONAL EXPERIMENTAL RESULTS

D.1 Efficiency and Memory Performance Comparisons

D.2 ACC and BWT Performances of STIL of Task-wise vs. Layer-wise

D.3 The Accuracy Evolution of Task t of STIL and Baselines

D.4 The KT Performance of STIL and Baselines on Mixed Tasks Datasets

D.5 The Number of Learnable Tasks of STIL and OG-based OWM

14

Under review as a conference paper at ICLR 2024

A THEOREMS 1-4 AND PROOFS

A.1 Theorem 1. The learning of the new task t ≤ T will not interfere with the knowledge (weights
Wt−1) of the previous learned t − 1 tasks (i.e., there is no CF) if and only if 1) task t occupies
its own independent weight subspace Wt. that is orthogonal to all other weight subspaces of the
previous tasks in the whole weight space Sw of the model, and 2) the modified weights spanned by
the orthogonal gradient to the previous learned tasks are imposed in its weight subspace Wt of task t.

1) Sufficiency

Proof. Given a DNN model, if Wt and Wt−1 (i.e., weight matrices of task t and t−1) are orthogonal
weight subspaces of the model after learning tasks t and t− 1 respectively, and if the weight subspace
spanned by ▽Wt is Wt in learning task t, then Eq. (1) becomes Eq.(12) as follows:

W i+1
t = W i

t − λ▽W i
t , λ▽W

i
t ∈W i

t (12)

where λ is the learning rate, and W i+1
t and W i

t are the (i+1)th and ith iteration optimization results
of the weight subspace in learning task t respectively. Eq.(12) means that Wt has no interference
with Wt−1 of the previous learned task t− 1 in the new task t learning.

2) Necessity

Proof. In learning a new task t, if there is no interference in Wt and Wt−1, i.e., no CF issue, which
means Wt ·Wt−1 = 0 and the projection of λ▽Wt on Wt−1 is zero, that is W i

t−1 − λ▽W i
t =

W i
t−1 − 0 (λ is the learning rate). Thus W i

t−1 of task t− 1 would not be changed in the learning of
task t.

A.2 Theorem 2. The upper bound of the minimum number of learnable tasks of method OWM
(Zeng et al., 2019) is rank(POWM), which is the rank of the orthogonal projection operator POWM
formulated as follows:

rank(POWM) = r, r ≤ rank(W) ≤ min(m,n) (13)

where W ∈ Rm×n is the weight matrix of the model, and min(m,n) is the minimum value of the
weight matrix dimensions. See OWM (Zeng et al., 2019) for proof.

A.3 Theorem 3. The upper bound of the minimum number of learnable tasks of the proposed
OIWS-based TIL method is

∑T
t=1 rank(Bt) ≫ min(m,n), where rank(Bt) is the rank of the

bases Bt = {Bl
t}Ll=1 (see Eq. (21)) of the weight subspace of task t).

Proof. Based on the optimization theory (Saad, 2003; Shah et al., 1992), as 1 < rank(Bt) ≤
min(m,n) (t ∈ [1, T]) and rank(Bt) will increase with the learning of more tasks, the upper bound
of the minimum number of learnable tasks of the proposed OIWS-based TIL method is at least

T∑
t=1

rank(Bt) > 1 + 2+, ...,+min(m,n) = T (2 +min(m,n))/2≫ min(m,n), T ≫ 2 (14)

where T is the total member of the learned tasks.

A.4 Theorem 4. The theoretical bounds for FWT and BWT of tasks i and t (i < t, i ∈ [1, T − 1],
t ∈ [2, T]) in TIL are as follows.

FWT : ϵt(h) ≤ ϵi(h) + d(D′
i,D′

t) + min{ED′
t−1 [|li(x)− lt(x)|] ,ED′

t [|li(x)− lt(x)|]}

BWT : ϵi(h) ≤ ϵt(h) + d(D′
i,D′

t) + min{ED′
i
[|li(x)− lt(x)|] ,ED′

t
[|li(x)− lt(x)|]}

15

Under review as a conference paper at ICLR 2024

Proof. Recall that ϵt(h) = ϵt(h, lt) and ϵi(h) = ϵi(h, li). Let gi and gt be the density functions of
D′

i and D′
t respectively. For the theoretical bound of FWT,

ϵt(h) = ϵt(h) + ϵi(h)− ϵi(h) + ϵi(h, lt)− ϵi(h, lt)

≤ ϵi(h) + |ϵi(h, lt)− ϵi(h, li)|+ |ϵt(h, lt)− ϵi(h, lt)|
≤ ϵi(h) + ED′

i
[|li(x)− lt(x)|] + |ϵt(h, lt)− ϵi(h, lt)|

≤ ϵi(h) + ED′
i
[|li(x)− lt(x)|] +

∫
|gi(x)− gt(x)||h(x)− lt(x)|dx

≤ ϵi(h) + ED′
i
[|li(x)− lt(x)|] + d1(D′

i,D′
t).

(15)

For the theoretical bound of BWT, in the first line of the above Eq. (15), we could instead choose to
add and subtract ϵt(h, lt) rather than ϵi(h, lt), which would result in the same bound only with the
expectation taken with respect to D′

t instead of D′
i. Choosing the smaller of the two gives us the

bound of BWT.

B NETWORK ARCHITECTURES, HYPERPARAMETERS, TRAINING DETAILS,
AND DATASETS

Network Architectures and hyperparameters. To test the efficacy and scalability of our method, we
use various DNN models/backbones on the 11 benchmark datasets. We use a 3-layer fully connected
network (FCN) with two hidden layers of 100 units each for PMINIST, F-CelebA-1, F-CelebA-2,
(EMNIST, F-EMNIST-1) and (CIFAR 100, F-CelebA-1) following (Lopez-Paz & Ranzato, 2017) and
(LeCun et al., 1998). For experiments with CIFAR 100 we use a 5-layer AlexNet similar following
(Serrà et al., 2018). For experiments with CIFAR-100 Sup, we use a 5-layer LeNet-5 (Yoon et al.,
2020). For experiments with MiniImageNet, 5-Datasets, F-EMNIST-1 and F-EMNIST-2, similar
to (Chaudhry et al., 2019), we use a reduced ResNet-18 architecture. No bias units and batch
normalization parameters are learned for the first task and shared with all the other tasks following
(Mallya & Lazebnik, 2018). For PMNIST, F-CelebA-1 and F-CelebA-2, we evaluate and compare
our STIL in the ‘single-head’ setting (Hsu et al., 2018; Farquhar & Gal, 2018) where all tasks share
the final classifier layer and inference is performed without task hint. For all other experiments,
we evaluate our STIL in the ‘multi-head’ setting, where each task has a separate head or classifier.
The correspondence between the training dataset and its network structure, as well as the training
hyperparameters used by each network structure, are shown in Table 4.

Datasets Details. Eleven benchmark image classification datasets are used in our experiments, which
are divided into the following categories:

–Dissimilar tasks datasets. (1.1). PMNIST (Permuted MNIST, 10 tasks) (Lecun et al., 1998). It
is a variant of MNIST dataset where each task is considered as a random permutation of the original
MNIST pixels. We create 10 sequential tasks using different permutations where each task has 10
classes. (1.2). CIFAR-100 (10 tasks) (Krizhevsky & Hinton, 2009). It is constructed by randomly
splitting 100 classes of CIFAR-100 (Krizhevsky & Hinton, 2009) into 10 tasks with 10 classes per
task. (1.3). CIFAR 100 Sup (20 tasks) (Krizhevsky & Hinton, 2009): It is constructed by splitting 100
classes of CIFAR 100 into 20 tasks with 5 classes of the same attributes per task. (1.4). MiniImageNet
(20 tasks) (Vinyals et al., 2016): It is constructed by splitting 100 classes of miniImageNet into 20
sequential tasks where each task has 5 classes. (1.5). 5-Datasets (5 tasks) (Ebrahimi et al., 2020): It
includes CIFAR-10, MINIST, SVHN (Netzer et al., 2011), notMNIST (Bulatov, 2011) and Fashion
MNIST (Xiao et al., 2017), where the classification of each dataset is considered as a task.

–Similar tasks datasets. (2.1) F-EMINIST-1 and (2.2) F-EMINIST-2 (10/35 tasks). They are
similar task datasets from federated learning, which are constructed by randomly choosing 10/35
tasks from two publicly available federated learning datasets (Caldas et al., 2018). (2.3) F-CelebA-1
and (2.4) F-CelebA-2 (10/20 tasks). They are also similar task datasets from federated learning,
which are constructed by randomly choosing 10/20 tasks from two publicly available federated
learning datasets (Caldas et al., 2018). Each of the 10/20 tasks contains images of a celebrity labeled
by whether he/she is smiling or not. Note that for the four datasets (2.1)-(2.4), the training and testing
sets are already provided in (Caldas et al., 2018). We further split about 10% of the original training
set and kept it for validation purposes.

16

Under review as a conference paper at ICLR 2024

–Mixed tasks datasets. (3.1) (EMNIST, F-EMNIST-1) (20 tasks). It is a randomly mixed similar
and dissimilar task sequences constructed from EMNIST (LeCun et al., 1998) and F-EMNIST-1. (3.2)
(CIFAR-100, F-CelebA-1)(20 tasks). It is a randomly mixed similar and dissimilar task sequences
constructed from CIFAR-100 (10 tasks) and F-EMNIST-1 (10 tasks).

The sample sizes of the training/validation/testing are as follows: (1.1) PMNIST 6000 / 300 / 700,
(1.2) CIFAR100 5000/300/700, (1.3) CIFAR 100 Sup 5000 / 300 / 700, (1.4) MiniImageNet 5000
/ 200 / 800, and (1.5) 5-Datasets, which. Ihas 5 tasks in total, and the samples of per task are
50000 / 10000 / 10000, 50000 / 10000 / 10000, 63257 / 10000 / 26032, 50000 / 10000 / 10000, and
10000/6854/1872 respectively.

Running Environment. All of the experiments were conducted on the platform: Intel(R) Xeon(R)
Gold 6230 CPU 2.10GHz, 251GB RAM, and GPU - GeForce RTX 2080 Ti with 12GB MC (graphics
card Memory Capacity). And all the experimental results are standard deviation values over 5
different runs with the random seeds.

Table 4: Datasets, network architectures and hyperparameters.

Datasets Backbone Batch Size Epochs λ Optimizer ϵlt θ

PMNIST 3-Layers FCN 10 5 0.01 SGD 0.95/ 0.99/ 0.99 0.75

CIFAR 100 AlexNet 64 100 0.01 SGD 0.97 in all layers 0.75

CIFAR 100 Sup LeNet-5 64 100 0.01 SGD 0.98 in all layers 0.75

MiniImageNet ResNet 18 64 200 0.10 SGD 0.985 in all layers 0.80

5-Datasets ResNet 18 64 100 0.10 SGD 0.965 in all layers 0.95

F-EMNIST-1 ResNet 18 64 50 0.10 SGD 0.965 in all layers 0.80

F-EMNIST-2 ResNet 18 64 50 0.10 SGD 0.965 in all layers 0.80

F-CelebA-1 3-Layers FCN 64 50 0.01 SGD 0.95/ 0.99/ 0.99 0.75

F-CelebA-2 3-Layers FCN 64 50 0.01 SGD 0.95/ 0.99/ 0.99 0.70

(EMNIST, F-EMNIST-1) 3-Layers FCN 64 50 0.01 SGD 0.95/ 0.99/ 0.99 0.70

(CIFAR 100, F-CelebA-1) 3-Layers FCN 64 50 0.01 SGD 0.95/ 0.99/ 0.99 0.70
1 ϵlt is a feasible empirical threshold for the matrix approximation in Eq. (18), and θ is the distance threshold in Eq.(11) on each dataset.

C ALGORITHMS

C.1 Algorithm 1 LWSimilarity. It calculates the layer-wise similarity between tasks i and t shown
in Step 4, Sec.4.3, which is as follows:

(1) Feeding the sampled repay data D′ into modelori and modelCL sequentially to obtain their
corresponding layer-wise representations {x′l

j } and {xl
j} of modelori and modelCL, respectively,

where j ∈ [1, t] and l ∈ [1, L− 1].

(2) Calculating the layer-wise similarity between tasks i and t by metric SDM (Eq. 11). Note that in
this case, the distance in Eq.(10) corresponds to the distance between the representations of tasks i
and t.

(3) Outputting the results of the layer-wise similarities between tasks i and t (i ∈ [1, t− 1]) to Similar
Task Processing shown in Figure 1(a). Note that the layer-wise similarity may select different tasks
for different layers, which provides a more fine-grained characterization of task similarity in terms of
layer-level features of the model (see Table 6).

C.2 Algorithm 2 basesComputing

Definition 1 (Layer-wise representation and representation matrix Rl
t). Given a DNN model with

L layers, for the input data xt,i of task t, denote xl
t,i as the input of layer l, namely the representation

of xt,i at layer l, and x1
t,i = xt,i. The output xl+1

t,i for layer l is computed by xl+1
t,i = f(W l

t ,x
l
t,i),

where f(·) is the mapping function of the network layer. When learning task t, we only have access
to dataset Dt. The representation matrix of layer l is defined as Rl

t = [xl
t,1,x

l
t,2, ...,x

l
t,ns

] for task
t, which can be constructed by concatenating ns (which is a number of sampled data from the training

17

Under review as a conference paper at ICLR 2024

Algorithm 1 LWSimilarity
Input: The validation dataset D′; the original model modelori and learning model modelCL of STIL;
Output: The set {Tl

sim}L−1
l=1 of similar tasks between task t and previously learned (t-1) tasks;

1: for each task j ∈ [1, t] do
2: Feeding the validation dataset D′

j into modelori and modelCL, respectively, before learning
task t;

3: for each layer l ∈ [1, L− 1] do
4: Calculating the layer-wise representations {x′l

j } and {xl
j} of modelori and modelCL,

respectively;
5: end for
6: end for
7: for each layer l ∈ [1, L− 1] do
8: Tl

sim ← ∅;
9: end for

10: for each task i ∈ [1, t− 1] do
11: for each layer l ∈ [1, L− 1] do
12: Calculating the dis′ and dis between tasks i and t by Wasserstein distance (Panaretos &

Zemel, 2019) and Eq. (10);
13: // judging the similarity between tasks i and t by metric SDM shown in Eq. (11);
14: if dis < dis′ and |dis− dis′| < θ then
15: Tl

sim ← Tl
sim ∪ i;

16: end if
17: end for
18: end for
19: return {Tl

sim}L−1
l=1 ;

Algorithm 2 basesComputing
Input: The training data Dt of learning task t;
Output: The layer-wise bases blt of task t and common bases Bl

t between task t and previously
learned t− 1 tasks

1: {blt} ← ∅, {Bl
t} ← ∅;

2: for each layer l ∈ [1, L] do
3: Calculating its layer-wise representation matrix Rl

t after learning task t (see Def.1);
4: if t == 1 then
5: Calculating the SVD result of Rl

t by Eq.(17);
6: Calculating the k-rank approximation (Rl

t)k of Rl
t by Eq. (18);

7: Selecting the top-k vectors of U l
t from (Rl

t)k to construct blt;
8: Bl

t ← blt;
9: else

10: Calculating the orthogonal projection R̂l
t of Rl

t by Eq.(19);
11: Calculating the SVD result of R̂l

t by Eq.(17);
12: The k new orthogonal bases for the minimum value of k is selected for satisfying Eq. (20);
13: Selecting the top-k vectors of Û l

t from (R̂l
t)k to construct blt;

14: {blt} ← {blt}
⋃
blt;

15: Calculating the common bases Bl
t of task t and previously learnt t− 1 tasks by Eq. (21)

16: {Bl
t} ← {Bl

t}
⋃
Bl

t;
17: end if
18: end for
19: Storing {blt} and {Bl

t} to the KB of STIL;
20: return {Bl

t};

dataset) representations along the column obtained from the forward pass of ns random samples from
the current training dataset through the model after learning task t.

Definition 2 (SKG and SRG). Given a gradient space Sg for a DNN model, we divide Sg into two
orthogonal subspaces: Core/Key Gradient Space (denoted by SKG) and Residual Gradient Space

18

Under review as a conference paper at ICLR 2024

(denoted by SRG). SKG and SRG have the properties: (1) they are orthogonal and complementary
subspaces to each other, and (2) let SKG be the gradient subspace spanned by important gradients
of previously learned t− 1 tasks. So, for a new task t learning, its gradient steps along SKG would
induce a high level of interference on the learned tasks, whereas gradient steps along SRG have
minimum CF on the learned tasks.

The calculation process of the Algorithm 2 basesComputing is as follows.

Computing the layer-wise Bl
t bases of the space Sl of significant representation corresponding to

the SKG of task t. In proposed STIL, Bl
1 and Bl

t (t ∈ [2, T]) are calculated differently as follows:

Calculating Bl
1. After learning task 1, first, a layer-wise representation matrix {Rl

t}Ll=1 (t = 1, see
Def. 1) is constructed using dataset D1 for each layer of the model with L layers. Second, the SVD on
Rl

t = U l
tΣ

l
t(V

l
t)

⊺ (∈ Rm×n) by Eq.(17) is calculated. Here, we employ the property of U l
t and V l

t
being orthogonal to each other to get the two orthogonal submatrices of Rl

t, which is corresponding
to the original subspaces SKG and SRG, respectively. Third, the k-rank approximation (Rl

t)k of Rl
t

by Eq. (18) is calculated with as little loss of information as possible. As the dimensions m and n of
Rl

t may be very large, this step can avoid subsequently very complicated matrix operations. In this
paper, let ϵlt be a hyperparameter of the model shown in Table 4 in Appendix C, which is a feasible
empirical value. Based on the (Rl

t)k, the space Sl of significant representation for task t at layer l
can be derived by Eq. (16), i.e., Bl

t = blt = {ul
t,1,u

l
t,2, ...,u

l
t,j , ...,u

l
t,k}(t = 1).

Sl = span(blt = {ul
t,1,u

l
t,2, ...,u

l
t,j , ...,u

l
t,k}), ul

t,j ∈ U l
t ∈ (Rl

t)k, j ∈ [1, k] (16)

Calculating Bl
t(t ∈ [2, T]). For clarity, we first introduce following definitions.

Definition 3 (The SVD of Rl
t). Based on Singular Value Decomposition (SVD) (Deisenroth et al.,

2020), the SVD of Rl
t for task t is defined as:

Rl
t = U l

tΣ
l
t(V

l
t)

⊺,Rl
t ∈ Rm×n, l ∈ [1, L] (17)

where U l
t and V l

t are left and right singular value matrices which are orthogonal to each other, and Σl
t

contains the singular values along its main diagonal. If the rank of matrix Rl
t is r (r ≤ min(m,n)),

Rl
t can be expressed as Rl

t =
∑r

i=1 σiuiv
⊺
i , where ui ∈ U l

t and vi ∈ V l
t are left and right singular

vectors and σi ∈ diag(Σl
t) are singular values.

Definition 4 (The k-rank approximation of Rl
t for task t.) With the matrix approximation (Hadsell

et al., 2006), the k-rank approximation of Rl
t is defined as:

||(Rl
t)k||2F ≥ ϵlt||Rl

t||2F , l ∈ [1, L] (18)
where || · ||F is the Frobenius norm of the matrix and ϵlt ∈ (0, 1] is a feasible empirical threshold.

The calculations of Bl
t (t ∈ [2, T]) are performed as follows. First, the layer-wise representation

matrix {Rl
t}Ll=1 is constructed using dataset Dt after learning task t only. Second, the orthogonal

projection R̂l
t of Rl

t for task t is calculated as follows:

R̂l
t = Rl

t −Rl
tB

l
t−1(B

l
t−1)

⊺ = Rl
t −Rl

t,Proj (19)

Third, the SVD on R̂l
t is calculated by Eq. (17) and the k new orthogonal bases for the minimum

value of k are selected for satisfying the following inequality:

||Rl
t,Proj ||2F + ||(R̂l

t)k||2F ≥ ϵlt||Rl
t||2F (20)

where the ϵlt is a superparameter of the model shown in Table 4.

Forth, based on the calculated (R̂l
t)k by Eq. (20), the layer-wise bases blt = {ûl

t,1, û
l
t,2, ..., û

l
t,k}

(l ∈ [1, L]) of task t is obtained and stored to KB of STIL. As the common bases Bl
t of both Bl

t−1

and blt must be updated to ensure the newly added bases are unique and orthogonal to the existing
bases Bl

t−1, the new bases blt is added to Bl
t−1 as follows for next iteration:

Bl
t = {Bl

t−1, b
l
t}, l ∈ [1, L] (21)

C.3 Algorithm 3 STIL. See Figure 1(a) for the calculation procedure of Algorithm 3 STIL, and the
STIL source code is available at https://github.com/STILalg/STIL.

19

Under review as a conference paper at ICLR 2024

Algorithm 3 STIL
Input: The training dataset D = {Dt}Tt=1; the original model modelori and learning model modelCL

of STIL; Output: The learned model modelCL after learning all tasks;

1: for each task t ∈ [1, T] do
2: Generating the validation dataset D′

t of Dt online by Online Validation Dataset Generator
of STIL;

3: if t == 1 then
4: Training modelCL on Dt by using the cross-entropy loss function without imposing any

constraint on weight updates of the model;
5: else
6: Calculating the layer-wise OIWS: W l

t of task t by W l
t = W l

t−1 −W l
t−1B

l
t−1(B

l
t−1)

⊺ in
modelCL

7: {Tl
sim}L−1

l=1 ← Calculating the layer-wise similar/dissimilar tasks between task t and
previously learnt t−1 tasks by Algorithm 1 LWSimilarity embedded in Similar/Dissimilar
Tasks Detector of STIL;

8: if {Tl
sim}L−1

l=1 == ∅ then
9: Setting cross entropy Ldis calculated as the loss function of modelCL;

10: else
11: Setting Lsim calculated by Eq. (9) as the loss function of modelCL for preparing

knowledge transfer (KT);
12: end if
13: Training modelCL on Dt with Similar/Dissimilar Tasks Processor of STIL, where the

learning takes the gradients of task t in the directions orthogonal to SKG of the previous t-1
tasks by Eq. (6) to avoid CF, and performs weight updates of the model by Eq. (7);

14: end if
15: Calculating the layer-wise common bases {Bl

t} between task t and previously learned t-1
tasks by Algorithm 2 basesComputing for next new task learning;

16: end for
17: return modelCL;

Table 5: The efficiency and memory comparisons of STIL and state-of-the-art KT baselines.

Datasets
OWM GPM CAT TRGP CUBER STIL(Ours)

T(S) M(G) T(S) M(G) T(S) M(G) T(S) M(G) T(S) M(G) T(S) M(G)

PMNIST 18.15 5.12 10.17 1.29 15.32 3.92 13.22 1.36 16.68 1.52 10.67 0.80

CIFAR100 24.85 15.63 2.51 1.59 3.28 4.22 2.82 1.91 2.91 2.11 2.02 1.12

CIFAR100 Sup – – 1.59 1.53 2.41 4.22 1.62 1.61 1.87 1.92 1.31 1.24

MiniImageNet – – 3.52 1.91 3.54 4.41 4.72 2.97 5.53 3.53 2.43 1.86

5-Datasets – – 14.74 8.49 12.54 4.22 15.73 11.58 26.64 13.11 7.10 6.89

F-EMNIST-1 – – 1.08 1.06 2.16 3.62 1.37 1.93 1.56 2.14 1.16 1.17

F-EMNIST-2 – – 3.06 1.25 19.46 3.11 3.76 2.25 4.09 2.56 1.38 1.39

F-CelebA-1 – – 0.14 0.82 0.18 3.25 0.20 1.40 0.37 1.63 0.17 0.87

F-CelebA-2 – – 0.17 0.87 0.74 3.78 0.48 1.53 0.67 1.71 0.19 0.95

(EMNIST, F-EMNIST-1) – – 1.26 1.73 8.68 4.24 2.16 2.71 3.35 3.26 1.64 1.67

(CIFAR 100, CelebA-1) – – 1.30 0.82 9.26 3.17 2.35 2.03 3.69 2.71 1.78 0.89

Average 21.56 10.38 3.59 1.94 7.05 3.83 4.40 2.84 6.12 3.29 2.70 1.71

T(S)–Time (Second); M(G)–Memory (GB);
“–” indicates that the source codes are not provided by the baselines leading to no experimental results.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 Efficiency and Memory Performance Comparisons

To verify the efficiency of the proposed STIL in time and memory required for the model training,
we conducted the efficiency comparison experiments in terms of the time spent per epoch, and the
amount of memory used by the baselines. Note that the few methods can tackle both CF and KT, e.g.,

20

Under review as a conference paper at ICLR 2024

CAT, TRGP and CUBER, and all the OG-based methods, OWM, GPM, TRGP and CUBER, follow
the same basic processing framework. The experimental results are shown in Table 5.

It is worth noting that although the proposed STIL method added the OIWS and KT processing
mechanisms for its end compared with GPM, its time and space performances are better than GPM
on some datasets, which is due to the optimizations by STIL made in its implementation. GPM loads
in all its stored information during its computation, while our STIL loads only the information needed
for computation on demand. In addition, during model training, STIL added the processing of early
stop of model convergence, that is, once the convergence of model training/learning is determined,
the training is immediately ended, unlike GPM, which always needs to be iteratively completed.

D.2 ACC and BWT Performances of STIL of Task-wise vs. Layer-wise on Five Datasets

As the tasks in different datasets may have similarities, we should carry out forward KT to assist
task t learning if a new task t is similar to some of the previously learned t-1 tasks. Moreover, we
know that layer-wise similarity may select different tasks for different layers, which provides a more
fine-grained characterization of task similarity in terms of layer-level features of the model. To show
the efficacy of Layer-wise task similarity comparison, we conducted the experiments for ACC and
BWT performances with the standard deviation values over 5 different runs of the proposed STIL of
Task-wise vs. Layer-wise on five datasets. As shown in Table 6, the Layer-wise STIL (i.e., STIL) can
achieve an average ACC/BWT gain of 1.23%/0.01 over the Task-wise STIL on all five datasets, which
further confirms that the similarity comparison of Layer-wise tasks is superior to that of Task-wise
tasks in terms of improving ACC/BWT performances.

Table 6: ACC and BWT performances of STIL of Task-wise vs. Layer-wise on five datasets.

Datasets
PMNIST CIFAR 100 CIFAR 100 Sup MiniImageNet 5-Datasets

10 Tasks 10 Tasks 20 Tasks 20 Tasks 5 Tasks

Methods ACC(%) BWT ACC(%) BWT ACC(%) BWT ACC(%) BWT ACC(%) BWT

Task-wise STIL 95.98 ± 0.04 -0.03 ± 0.01 73.98 ± 0.14 -0.01 ± 0.01 59.36 ± 0.02 -0.01 ± 0.01 63.99 ± 0.36 -0.02 ± 0.01 92.33 ± 0.07 -0.02 ± 0.01

Layer-wise STIL 97.15 ± 0.03 -0.02 ± 0.01 75.28 ± 0.13 0.21 ± 0.00 60.78 ± 0.01 -0.01 ± 0.00 65.11 ± 0.31 -0.01± 0.01 93.46 ± 0.06 -0.01 ± 0.01

Gain of Layer-wise 1.17 ± 0.01 0.01 ± 0.00 1.30 ± 0.01 0.01 ± 0.01 1.42 ± 0.01 0.00 ± 0.01 1.12 ± 0.05 0.01 ± 0.00 1.13 ± 0.01 0.01 ± 0.00

D.3 The Accuracy Evolution of Task t of STIL and Baselines on a Variety of Datasets

To show the BWT and/or knowledge transfer (KT) performance of the proposed STIL and 5 strong
TIL baselines of various categories, we randomly selected a task on different datasets to carry out its
accuracy (denoted by Acc (%), the average ACC result of 5 different runs) evolution experiments
of the task. The experimental results are shown in Tables 7-10 and Figures 2-5 demonstrate the
following:

(1) Compared with the baselines, the proposed STIL has stronger resistance to forgetting than that
of the baselines while maintaining high accuracy, which is due to the proposed OIWS-based TCL
strategy of STIL (see Tables 7-10 and Figures 2-5).

(2) More interestingly, benefited from the KT with its Lsim shown in Eq. (8), the proposed STIL has
the trend of increasing accuracy instead of decreasing accuracy in terms of a task t as the number of
learning tasks increases (see Tables 7-10 or Figures 4 - 5). It is worth noting that this phenomenon
also appears in baselines CAT and TRGP with KT ability (see Table 10/Figure 5), which further
proves the necessity and importance of KT in CL as noted in (Ke et al., 2020).

In a word, the above experimental results not only show the effectiveness of the proposed STIL in
resisting forgetting and performing KT, but also verify the superiority of STIL over the baselines in
ACC, BWT, and KT performances.

21

Under review as a conference paper at ICLR 2024

Table 7: ACC evolution of task 5 on PMNIST.

Dataset PMNIST

Learnt Tasks 5 6 7 8 9 10

Method Acc Acc Acc Acc Acc Acc

LwF 95.8 94.1 92.2 88.8 85.1 83.7

GPM 97.0 96.4 95.8 94.8 94.1 92.5

SupSup 91.7 91.7 91.7 91.7 91.7 91.7

CAT 93.3 93.3 93.3 93.3 93.3 93.3

TRGP 97.2 97.1 97.1 97.1 96.8 96.9

STIL(Ours) 96.8 96.7 96.5 96.3 96.1 96.0

Table 8: ACC evolution of task 1 on 5-Datasets.

Dataset 5-Datasets

Learnt Tasks 1 2 3 4 5

Method Acc Acc Acc Acc Acc

LwF 76.4 72.2 70.9 70.3 68.9

GPM 76.1 75.7 72.5 72.6 72.4

SupSup 72.3 71.3 71.3 71.3 71.3

CAT 59.8 58.7 57.2 57.2 57.2

TRGP 75.8 75.8 75.9 75.8 75.8

STIL(Ours) 82.2 81.5 79.8 79.7 79.5

Table 9: ACC evolution of task 1 on dataset CIFAR 100.

Dataset CIFAR 100

Learnt Tasks 1 2 3 4 5 6 7 8 9 10

Method Acc Acc Acc Acc Acc Acc Acc Acc Acc Acc

LwF 75.3 71.8 71.4 69.7 68.4 67.6 64.1 63.4 59.3 59.4

GPM 77.6 77.2 77.5 75.4 75.3 75.7 76.1 76.3 75.8 75.7

SupSup 61.1 61.1 61.1 61.1 61.1 61.1 61.1 61.1 61.1 61.1

CAT 60.2 60.1 60.2 60.1 60.1 60.3 60.1 60.2 60.1 60.1

TRGP 75.8 75.1 75.1 74.7 75.5 75.6 75.9 75.5 75.4 75.3

STIL(Ours) 78.2 76.7 77.6 78.4 78.2 80.1 77.4 78.1 79.3 79.2

Table 10: ACC evolution of task 6 on dataset CIFAR 100 Sup.

Dataset CIFAR 100 Sup

Learnt Tasks 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Method Acc Acc Acc Acc Acc Acc Acc Acc Acc Acc Acc Acc Acc Acc Acc

LwF 59.8 59.6 60.2 57.2 57.2 55.8 56.5 56.2 53.8 54.8 55.8 55.2 55.2 53.6 52.6

GPM 62.2 61.2 61.4 62.6 61.2 59.8 60.2 59.2 60.3 60.4 58.4 59.6 58.8 58.4 58.6

SupSup 53.8 50.8 50.8 50.8 50.8 50.8 50.8 50.8 50.8 50.8 50.8 50.8 50.8 50.8 50.8

CAT 51.2 47.5 47.5 47.5 47.5 47.5 47.5 47.5 47.5 50.2 50.2 50.2 50.2 50.2 50.2

TRGP 62.6 62.1 62.4 62.2 61.6 61.6 60.2 61.2 60.4 60.2 60.4 61.2 61.8 61.6 61.2

STIL(Ours) 62.8 63.2 62.6 61.6 61.8 61.6 62.6 62.7 61.6 62.4 61.6 61.2 62.3 62.6 62.4

22

Under review as a conference paper at ICLR 2024

5 6 7 8 9 10

The number of learned tasks

80

82

84

86

88

90

92

94

96

98

100

A
cc
ur
ac
y(
%
)

LwF
GPM
SupSup
CAT
TRGP
STIL

Figure 2: The diagram of the data in Table 7.

1 2 3 4 5

The number of learned tasks

52

56

60

64

68

72

76

80

84

88

92

96

100

A
cc
ur
ac
y(
%
)

LwF
GPM
SupSup
CAT
TRGP
STIL

Figure 3: The diagram of the data in Table 8.

1 2 3 4 5 6 7 8 9 10

The number of learned tasks

52

56

60

64

68

72

76

80

84

88

92

96

A
cc
ur
ac
y(
%
)

LwF
GPM
SupSup
CAT
TRGP
STIL

Figure 4: The diagram of the data in Table 9.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

The number of learned tasks

40

44

48

52

56

60

64

68

72

76

80

A
cc
ur
ac
y(
%
)

LwF
GPM
SupSup
CAT
TRGP
STIL

Figure 5: The diagram of the data in Table 10.

23

Under review as a conference paper at ICLR 2024

D.4 The KT Performance of STIL and Baselines on Mixed Tasks Datasets

Table 11: The KT performances of our STIL and 5 strong baselines with/without KT mechanisms
over 5 different runs on two mixed tasks datasets.

Dataset (EMNIST, F-EMNIST-1) (20 Tasks) (CIFAR 100, F-CelebA-1) (20 Tasks) Average

Methods ACC(%) FWT(%) BWT(%) ACC(%) FWT(%) BWT(%) ACC(%) FWT(%) BWT(%)

ONE 77.44 None None 64.50 None None 70.97 None None

GPM 73.69 ± 0.32 -3.65 0.38 64.28 ± 0.28 0.13 -0.37 68.99 -1.89 0.01

HAT 70.70± 0.18 -6.26 0.00 56.82± 0.13 -7.68 0.00 63.76 -6.77 0.00

CAT 74.61± 0.19 -0.45 -2.19 61.94± 0.16 -2.56 0.00 68.28 -1.51 -1.10

TRGP 75.53± 0.28 0.12 -1.36 61.92± 0.21 -1.17 -1.55 68.73 -0.48 -1.46

CUBER 77.23± 0.28 0.53 -0.73 64.85± 0.31 1.09 -0.73 71.04 0.81 -0.73

STIL(Ours) 78.01± 0.23 0.16 0.43 65.46± 0.14 1.23 0.33 71.74 0.70 0.38
1 ONE – building a model for each task independently using a separate neural network, which has no knowledge transfer and no forgetting involved

(denoted as None). The backbone 3-Layer FCN is used in all baselines on the two mixed tasks datasets. The blue results mean the best prior results.

The experimental results shown in Table 11 demonstrates that the performance of STIL’s ACC, FWT
and BWT are superior to those of five strong baselines on two mixed data sets, which fully verifies
the effectiveness of STIL’s forgetting elimination and KT mechanism.

D.5 The Number of Learnable Tasks of STIL and OG-based OWM

Figure 6 shows the number of learnable tasks of STIL and OG-based OWM, respectively.

Figure 6: Accuracy changes as the number of learned tasks increasing for OWM and STIL.

−4 −2 0 2 4

f1

−4 −2 0 2 4

f2

−4 −2 0 2 4

f3

Figure 7: The schematic diagram of the difference between Euclidean distance and Wasserstein
distance. The figure shows three distributions f1(red), f2(green) and f3(blue). Each pair has the
same distance in the Euclidean space. But in the Wasserstein space, f1 and f2 are closer as the
shapes/geometries of f1 and f2 are more similar overall.

24

Under review as a conference paper at ICLR 2024

Under review as a conference paper at ICLR 2024

ONE ACC Performance on 5-Datasets

T1 T2 T3 T4 T5 ACC (%)

79.86 99.43 99.41 94.83 94.37 93.58

STIL ACC Performance on 5-Datasets

79.10

79.10 99.30

79.10 99.30 99.30

79.10 99.30 99.30 94.57 ACC (%) BWT (%)

79.10 99.30 99.30 94.52 95.10 93.46 -0.01

ONE ACC Performance on 5-Datasets

T1 T2 T3 T4 T5 ACC (%)

79.86 99.43 99.41 94.83 94.37 93.58

CUBER ACC Performance on 5-Datasets

79.10

79.10 99.30

79.10 99.30 98.12

79.10 99.30 98.12 92.15 ACC (%) BWT (%)

79.10 99.30 98.12 92.60 90.64 91.95 0.03

4. The proposed method seems only can be used to Task-incremental learning. How about class-
incremental learning?

Response: We believe that the proposed method STIL can be applied to class-incremental learning
(CIL) in those CIL methods that use a task-incremental learning method to fully overcome forgetting
and a task label prediction to identify the correct task for each test sample.

Questions:
Two additional questions regarding the detailed techniques:

1. The definition of f(slashed zero, t): 1) the function f(slashed zero, t) is defined as “when learning t,
it does not use the knowledge of any task”. Does the “any task” mean any prior tasks? 2) How do the
authors calculate the accuracy of f(slashed zero, t) as shown in Eq.(4).

Response: 1) “any task” means any prior similar task. 2) For the f(∅, t) calculation in Eq.(4), we
built a separate model for the task using a duplicated network with randomized initial parameters
and no training, which clearly has no knowledge transfer and no forgetting involved. Please refer to
footnote 3 in this paper.

2. When discussing task similarities in Section 4.2, the authors consider top-k (i.e. k = 2) prior tasks.
Will the k values affect the performance for different datasets?

Response: Our experimental results show that k = 2 is good for all datasets. That is why we used
the same k = 2 in all our experiments.

5

Figure 8: The ACC performance of the proposed STIL and CUBER from Table 1 on 5-Datasets.

25

	Theorems 1-4 and Proofs
	Network Architectures, hyperparameters, Training Details, and Datasets
	Algorithms
	Additional Experimental Results

