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A Implementation Detailed

A.1 Details of MIMIC-CXR

A.1.1 Pre-training setup

Following (Wang et al., |2022)) we utilize the MIMIC-CXR, (Bigolin Lanfredi et al., [2022)) dataset for multi-
modal pre-training. This dataset is widely used in the medical multi-modal learning domain, with 227, 835
image-text pairs from 65,379 patients. Some related works also have imported additional features to image-
text pairs to augment the data. However, we only use the image-text pairs for pre-training to make the
results and conclusions more generalizable. The MIMIC-CXR dataset is open access, it can be obtained
through MIMIC-CXR Accessl

During the pre-training, local clients only have access to their highly heterogeneous datasets. To construct
the heterogeneous client datasets, following (Yan et al., [2023) we employ the Latent Dirichlet Allocation
(LDA) (Blei et all 2003)) to divide the MIMIC-CXR dataset into 5 partitions based on a selected sensitive
attribute. For implementation, we import the corresponding attribute information of given image-text pairs
from the MIMIC-CXR and divide local datasets based on disease category. The disease category is a multi-
label binary attribute and is transformed into a multi-class label. That’s because the words in the clinical
report are highly related to the disease category as illustrated in Fig |5l We set the heterogeneity degree in
the LDA algorithm to be 1 for main experiments. For analysis experiments, we also have run experiments
on client datasets allocated by LDA with a heterogeneity degree of 5.

Specifically, we select 5 commonly considered diseases [Bannur et al.| (2023): 'Edema’,’Pleural Effusion’,
"Consolidation’, "Pneumothorax’, and "Pneumonia’. We set the non-NaN value to 1 and then set NaN value
to 0 to construct a 5-way binary multi-label. Then we get 2°-category multi-class label and run LDA on
them.

Report Sample 1:

Previous mild pulmonary edema and possible concurrent pneumonia has all cleared. Heart is top-normal Label:
size, improved, and pleural effusions have resolved. Right hilar vessels are still enlarged, perhaps due to Edema
pulmonary arterial hypertension. Lateral view shows atherosclerotic coronary calcification in the left Pneumonia
circumflex.

Pleural Effusions
Report Sample 2:

Allowing for differences in technique and projection, there has been little interval change in the appearance
of the chest since the previous radiograph, with no new focal areas of consolidation to suggest the presence  Label:
of pneumonia. Multifocal linear areas of scarring appear unchanged, previously attributed to sarcoidosis.

Band-like opacity at periphery of left lung base has slightly worsened and is attributed to localize atelectasis. Pneumonia

Figure 5: Illustration of the strong connection between latent variable and the text modality.

We divide the MIMIC-CXR into 5 heterogeneous subgroups to construct 5 client datasets. Each divided
dataset consists of train splits and test splits based on the notation of the MIMIC-CXR. Our pre-trainings
are mainly conducted on 4 x A40 or 2 x A100. The batch size we have utilized ranged from 288 to 388. We
set the learning rate to 2 x 107 in main experiments, the number of communications to 25. For our method,
we set the uncertainty radius p = 0.1, ¢ = 5 in main experiments. For each communication, we randomly
sample 50 batches of data from the client datasets.

A.1.2 Downstream tasks

We evaluate the generalization ability of the pre-trained model through three downstream tasks: few-shot
classification, medical image segmentation, and image retrieval.

Few-shot classification. To assess the model’s effectiveness on general medical image tasks, we evaluate
it on multiple image classification benchmarks: (1) RSNA Pneumonia Detection (RSNA)Shih et al.| (2019)),
where the task is to predict whether an image shows pneumonia. (2) CovidxWang et al.| (2020]), which
includes three categories: COVID-19, non-COVID pneumonia, and normal. We fine-tune our pre-trained
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model with an additional linear layer on 1% and 10% of the training dataset and report classification accuracy
on these benchmarks.

Medical image segmentation. To explore the model’s transferability to fine-grained tasks, we conduct
experiments on medical image segmentation using the RSNA [Wang et al.[(2020) benchmark. Following|Wang
et al.| (2022), we convert RSNA object detection ground truths into segmentation masks. Similar to [Huang
et al.|[(2021), we employ a U-Net framework with our pre-trained image encoder as the frozen encoder, while
fine-tuning the decoder on 1% and 10% of the training data. The Dice score (%) is used for performance
evaluation.

Image retrieval. To verify whether the pre-trained models have captured the semantic alignment between
image and text in the pre-training data, we perform an image retrieval task. We test image retrieval
performance on the validation splits of the local clients. For each text in a batch of image-text pairs, we
calculate similarities with images in the batch, then rank these similarities and retrieve the top-1 and top-5
images. If the corresponding image of the text is in the selected set, it is correctly retrieved. We use top-1
and top-5 recall accuracy to evaluate performance.

A.2 Ophthalmology datasets
A.2.1 Pre-training setup.

We conduct vision-language multi-modal pre-training using retinal image datasets from different institutes.
These retinal datasets are from different institutions of low-income and high-income countries, and are highly
heterogeneous real-world scenes. Specifically, we utilize MESSIDOR, (Decenciere et al., |2014) from France
and BRSET (Nakayama et al., [2023) from Brazil as pre-training datasets, and assign them to two clients.
These datasets include tabular EHR records indicating Diabetic Retinopathy (DR) status and edema risk.
We transform tabular data into text captions in the format: "retinal image with {DR status} and {edema
risk}" to obtain text prompts. Similar to MIMIC dataset, our pre-trainings on ophthalmology datasets are
mainly conducted on 4 x A40 or 2 x A100. We set the batch size to 100, the number of communications
to 20, and the learning rate to 1 x 107° in the experiments. For our method, we set the uncertainty radius
p = 0.5, 4 =1 in main experiments. For each communication, we randomly sample 20 batches of data from
the client datasets.

A.2.2 Downstream tasks.

We evaluate the transferability of the models on few-shot classification tasks using the MBRSET (Nakayama,
et al.)) dataset. Unlike the pre-training datasets, MBRSET was collected in low-income areas using portable
devices, resulting in a significant distribution shift. We perform few-shot classification tasks on diabetic
retinopathy and edema status prediction tasks using this dataset. These are binary classification problems.
We fine-tune the model with an additional linear layer on 10%, 20% and 100% of the training data, and
report classification accuracies.
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B Additional Experiment Results

Federated pre-trained models still show a significant performance gap compared to central-
ized pre-trained models in multi-modal retrieval tasks. Table [f] shows the performance of models
pre-trained in decentralized, FedAvg, centralized federated learning strategies, using different backbone pre-
training methods. FedAvg has more effectively extract cross-modal alignment from federally utilizing local
datasets, and achieved much better transferability on downstream datasets and in-domain image-text re-
trieval tasks, compared to de-centralized pre-trained models. However, there are still performance gaps in
the retrieval tasks compared to the centralized pre-trained model. That might because each batch of data in
centralized pre-training scene has higher diversity, which encourages the contrastive-based model to capture
more robust alignment.

Table 6: Downstream task performance on different multi-modal pre-training backbone methods.

Strategy Backbone RSNA (cls.) Covid (cls.) RSNA (seg.) In-domain Image-Text Retrieval
1%  10% 1%  10% 1%  10% Rec.@1 Rec.@5 Wst.@Q1 Wst.Q5
Decentralized ConVIRT 81.5 82.3 76.5 85.6 64.6 70.7 15.5 51.1 13.6 46.0
FedAvg ConVIRT 83.1 83.3 78.0 88.5 69.6 71.5 28.8 72.1 25.3 66.7
Centralized ConVIRT 83.4 84.6 82.5 92.0 72.6 76.4 41.5 84.2 38.6 80.0
Decentralized GLoRIA 82.3 829 779 86.8 711 721 17.2 52.5 15.2 48.7
FedAvg GLoRIA 83.2 83.3 77.5 89.0 714 724 29.9 73.8 27.8 69.5
Centralized GLoRIA 84.0 84.7 82.2 91.8 73.6 T73.7 41.7 84.0 39.0 80.5
Decentralized MGCA 819 82.7 77.8 87.6 62.8 70.2 15.2 50.4 13.4 45.4
FedAvg MGCA 82.6 83.5 75.8 88.2 70.1 714 29.3 73.7 26.8 70.4
Centralized MGCA 84.0 84.5 79.5 89.5 70.7 72.5 39.9 83.5 36.9 80.3

Table 7: Detailed results of downstream task performances.

Strategy Backbone RSNA (cls.) Covid (cls.) RSNA (seg.)
1% 10% 1% 10% 1% 10%

FedEMA ConVIRT 82.8+0.32 83.1+£0.17 79.1+0.12 86.5+0.27 71.0+£1.55 73.6+1.08
FedAvg ConVIRT 83.0£0.49 83.3+0.36 78.0+0.43 88.5+0.51 69.5+1.72 71.8+0.84
FedDRA (Ours) ConVIRT 83.2+0.19 83.7+£0.12 80.9£0.16 90.3+0.17 71.5+£0.95 74.2£0.76
FedU GLoRIA 83.0£0.36 83.5+£0.22 787+044 89.4+0.26 71.1+£1.28 72.3+0.67
FedAvg GLoRIA 83.3+£0.45 834+£0.23 77.7+040 889+048 71.4+143 72.5+1.05
FedDRA (Ours) GLoRIA 83.6+0.37 84.1+0.19 79.3£0.33 89.8£0.29 71.9£1.31 72.9£0.80
FedLDAWA MGCA 82.3+£0.29 83.5+0.20 781+0.40 88.4+0.18 70.0+£1.66 72.2+1.45
FedAvg MGCA 82.5+£0.48 83.5+£0.28 75.8+£0.67 88.2+0.35 69.8+2.13 71.7+£1.47
FedDRA (Ours) MGCA 83.2+0.37 83.8£0.27 79.4+0.12 89.0£0.13 70.8£1.48 72.5£1.15

Extension to more VLP Methods. In our paper, we conducted comprehensive experiments on three types
of different vision-language pre-training methods including ConVIRT |Zhang et al.[ (2022), GLoRIA Huang
et al| (2021), and MGCA Wang et al,| (2022), because many previous works have shown the effectiveness
of these methods for medical vision-language pretraining by using the self-supervised contrastive learning
objective and the dual-encoder network structure. To further validate our method’s generalizability beyond
contrastive learning, we have incorporated Masked Record Modeling (MRM) [Zhou et al.| (2023) as an addi-
tional backbone with new experiments and results included in the revised manuscript. MRM is fundamentally
different from contrastive learning by employing a masked input modeling strategy as self-supervision. As
shown in Figure 2 of |Zhou et al.| (2023), during the pre-training stage, MRM requires the image encoder to
provide effective image representations to simultaneously support the restoration of masked image patches
and masked associated radiology report tokens.
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We adapt FedDRA by applying global constraints on the image encoder, and integrating the DRO framework
to dynamically adjust the update step sizes for each client. By using the MRM as the VLP approach, we
compared the results of our proposed FedDRA strategy with baselines FedAvg and FedMOON. As demon-
strated in|Zhou et al.| (2023) Appendix A, the MRM pre-training method is designed to learn representations
of radiographs specifically for disease diagnosis, it lacks a text decoder, making it unsuitable for image-text
retrieval tasks. Therefore, we evaluated the pre-trained model on few-shot classification and few-shot seg-
mentation downstream tasks. The experiment results are summarized in Table[0] As shown in the table, our
FedDRA strategy achieves higher performance on all these downstream evaluation tasks with two different
datasets. This demonstrates that FedDRA can be extended to a broader scope of pre-training methods
beyond contrastive learning-based approaches.

Figure 6: Segmentation downstream task results across multi-

ple runs.
76 Dice We have prQVided the Computational CF)St
of pre-training. As shown in the following
75 table, we report the number of model pa-
/ rameters and the training time per step,
4 which is averaged over an entire commu-
73 nication round. The experiments were
conducted on an Nvidia 4xA40 GPU
72 with a total batch size of 388, using
7 the ConVIRT pre-training backbone. Al-
though our method has a larger number
70 of model parameters, its training time is
6 not significantly higher than that of the
FedAvg FedEMA FedDRA round baseline methods.
68
1 2 3 4 5
Table 8: Computational cost of different federated pre-training strategies.
Metric FedAvg FedMOON FedX FedU FedEMA FedLDAWA FedMAE Ours [Ist 4+ 2nd]
Averaged Training Time (seconds per batch) 14.6 18.2 22.6 15.6 15.9 15.2 15.0 22.1
Number of Trainable Parameters (M) 172.6 172.6 1726 1726  190.4 172.6 226.1 190.4
Additional Module N N N N Y N Y Y
Using Global Copy During Local Training N Y Y Y Y N N Y

Table 9: Generalization to masked input modeling based pre-training backbone method.

Strategy =~ Backbone RSNA (cls.) 1% RSNA (cls.) 10% Covid (cls.) 1% Covid (cls.) 10% RSNA (seg.) 1% RSNA (seg.) 10%

FedAvg MRM 80.2 81.0 78.2 88.9 72.2 74.1
FedMOON MRM 80.6 81.3 78.0 88.5 72.3 73.8
Ours MRM 81.4 82.6 78.7 89.6 72.8 74.5

C Detailed Experiment Results

We have conducted multiple runs of pre-training for both our method and the baseline methods with five
total times using different random seeds. We computed the averaged performance and standard deviation
based on new results and the original ones. The final averaged performance and standard deviation are
presented in Table [7] The results show that our method consistently outperforms the baselines across all
tasks after running multiple-time experiments. The averaged performance of our method exceeds that of
the best-performing baseline by more than 0.5%, while also exhibiting a lower standard deviation in most
of settings, indicating a statistically significant improvement especially for the few-shot classification task
on both datasets with three different backbones. For the segmentation tasks, we observe a higher standard
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deviation due to the sensitivity of the dice score evaluation metric impacted by the pretrained image encoder,
which is also observed for other baseline methods. To better illustrate the significance of our method’s
performance gain, we have included a plot comparing dice scores of different methods on the segmentation
task across multiple runs, as shown in Figure @ We have compared the 10% few-shot image segmentation
results of models pre-trained with FedAvg, FedEMA, and our FedDRA strategy, using the ConVIRT [Zhang
et al.| (2022)) backbone.

Here we provide detailed results of ablation studies shown in Fig. [4] in the main text.

Table 10: Ablation studies on the number of clients.

Num. of Client RSNA (cls.) Covid (cls.) RSNA (seg.) In-domain Image-Text Retrieval
1% 10% 1% 10% 1% 10% Rec.@1 Rec.@5 Wst.@Q1 Wst.@Q5

82.1 83.2 784 885 61.8 71.0 23.1 62.9 19.2 57.8
83.2 83.7 81.0 90.3 71.7 74.1 30.2 73.2 27.0 68.9

I
Tt

Table 11: Ablation studies on uncertainty radius.

Uncertainty Radius RSNA (cls.) Covid (cls.) RSNA (seg.) In-domain Image-Text Retrieval
1%  10% 1% 10% 1% 10% Rec.@1 Rec.@5 Wst.@Q1 Wst.@Q5

p =0.01 82.7 83.2 79.6  89.1 71.0 728 30.4 73.5 26.6 68.4
p=0.1 83.2 83.7 81.0 90.3 717 74.1 30.2 73.2 27.0 68.9
p=1 83.3 84.0 81.3 90.8 72.1 741 28.9 72.5 26.2 67.8

Table 12: Ablation studies on global constraint degree.

Constraint Degree RSNA (cls.) Covid (cls.) RSNA (seg.) In-domain Image-Text Retrieval
1% 10% 1% 10% 1% 10% Rec.@1 Rec.@5 Disparity

n=1 82.8 834 79.8  89.6 70.5 728 29.1 72.5 3.2
=5 83.2 83.7 81.0 90.3 71.7 74.1 30.2 73.2 2.9
© =10 82.6 83.2 80.2  90.2 71.3 729 29.6 72.8 2.4

Here we provided detailed results for our empirical study in Sec.

Table 13: The comparison of retrieval acc. on each client denoted as {C;}?_;, of centralized, FedAvg, and
averaged acc. of decentralized pre-trained models using the ConVIRT backbone. We report the local models
of decentralized pre-training strategy as Decentralized;.

Strategy Recall@1 (ACC) Recall@5 (ACC)
Cl C2 C3 C4 C5 Avg. C1 C2 C3 C4 C5 Avg.
Centralized 43.6 38.6 40.1 43.1 419 444 86.6 80.0 826 85.0 86.8 84.2
FedAvg 304 253 269 28.8 327 288 764 66.7 698 73.8 739 721

Decentralized; 17.7 14.7 154 182 14.1 16.0 570 496 51.3 54.6 55.1 535
Decentralized, 15.3 11.6 139 15.0 13.8 139 548 419 46.2 479 456 47.3
Decentralizeds 17.4 13.1 14.1 15.1 154 15.0 504 44.2 464 49.7 525 48.6
Decentralized, 16.5 14.3 14.1 154 17.4 155 57.0 457 475 524 57.6 520
Decentralizeds 21.7 14.3 14.2 156 19.5 17.1 579 484 50.2 524 61.7 54.1

Local.avg. 177 136 143 158 16.0 155 55.4 46.0 483 514 51.1 511
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Table 14: The performance of the server model after 25 commu. turns and the averaged performance of
corresponding local models after 25 and 26 commu. turns, on each client denoted as {C;}?_;. We utilize the
ConVIRT as the backbone. We report the models after local update on client datasets of FedAvg pre-training
strategy as Local,.

Strategy com. turn Recall@1 (ACC) Recall@5 (ACC)
C1 C2 C3 C4 C5 C1 C2 C3 C4 C5
FedAvg 25 304 253 26.9 288 327 764  66.7 69.8 73.8 73.9
Localy 25 31.8 23.4 26.0 26.2 33.7 73.4 64.1 67.2 71.4 71.8
Local; 25 277 225 23.8  25.1 2717 734 63.1 64.6 69.2  68.6
Locals 25 28.6 244 243 273 289 733 649 675 70.3 718
Locals 25 30.6  22.6 239 254 264 726 640 663 689 67.6
Localy 25 273 244 255  26.5 28.9 73.3 658  69.0 712 69.2
1-5 Avg. 25 29.20 23.5) 24.7] 26.1] 29.1) 732 644 66.9] 70.2] 69.84
Localg 26 29.9 23.2 25.2 26.7 33.1 73.4 64.1 67.2 71.4 71.8
Local; 26 28.7  23.1 24.0 259 274 745 634 64.1 69.7 679
Locals 26 30.9 23.9 25.4 27.7 29.9 72.4 65.6 67.4 71.6 71.1
Locals 26 30.1 227 234 245 27.1 73.1 63.5 653 675 673
Localy 26 27.0 248 255  26.6 29.6 73.6 66.0 69.2 712 69.5
1-5 Avg. 26 29.30 23.5) 24.7] 26.3] 29.4| 733 644] 66.3] 70.1] 69.4]

Table 15: The accuracy of the test set of each client. We show the performance of FedAvg pre-trained
baseline and its retrained models on different client datasets. We report the models after local update on
client datasets of FedAvg pre-training strategy as Local;.

position model com. Recall@l (ACC) Recall@5 (ACC)
CoO C1 C2 C3 C4 Avg. CO C1 C2 C3 C4 Avg.

- server 25 304 253 269 288 327 288 764 66.7 698 738 739 721
- server 50 323 260 270 271 302 285 776 679 694 721 717 TL7|

— shallow Localy 25 304 250 253 284 286 275 738 672 684 720 73.0 70.9)
— shallow Local; 25 343 264 273 297 30.2 2941t 783 698 723 751 774 T74.67
— shallow Localy 25 33.7 264 273 29.7 302 294t 7v73 674 707 742 705 7207
— shallow Locals 25 277 189 193 256 249 25.0f 724 642 648 705 711 68.64
— shallow Localy 25 26.2 189 193 227 227 220, 693 56.8 589 633 645 62.6]

23



Published in Transactions on Machine Learning Research (06/2025)

Table 16: The accuracy of the model on each client. We show the acc. of centralized and Fed Avg pre-trained
baselines and de-centralized pre-trained models shown as Local; retrained on the union of training splits of
client datasets. We fine-tune shallow layers of the de-centralized pre-trained model with the union dataset.

strategy model Recall@1 (ACC) Recall@5 (ACC)

Cl C2 €C3 C4 C5 Avg. C1 C€C2 C3 C4 C5 Avg.
Global server  43.6 38.6 40.1 43.1 419 415 86.6 80.0 82.6 85.0 86.8 84.2
FedAvg server 304 253 269 288 327 288 764 66.7 69.8 738 739 721

Decentralized Local; 28.7 22.6 23.5 223 246 24.4 70.9 60.8 63.3 62.4 634 64.2
Decentralized Local, 174 199 182 176 177 181 527 56.1 55.1 54.0 53.5 54.3
Decentralized Localg 20.9 20.7 26.0 21.0 223 222 589 581 653 582 59.0 59.9
Decentralized Localy 20.9 20.1 20.7 25.6 21.1 21.7 59.1 56.9 57.8 64.7 587 59.4
Decentralized Localy 21.8 19.5 22.0 20.9 31.5 23.2 60.7 57.0 59.8 60.2 741 624

Decentralized Local; 17.7 14.7 154 18.2 14.1 16.0 57.0 49.6 51.3 54.6 55.1 53.5
Decentralized Local, 15.3 11.6 13.9 15.0 13.8 13.9 54.8 41.9 46.2 479 456 47.3
Decentralized Localy 17.4 13.1 14.1 15.1 154 15.0 50.4 44.2 46.4 49.7 52,5 486
Decentralized Local, 16.5 14.3 14.1 154 174 155 570 457 475 524 576 52.0
Decentralized Locals 21.7 14.3 14.2 15.6 19.5 17.1 579 484 50.2 524 61.7 54.1
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D Theoretical Analysis

D.1 Derivation of Proposition 1

To begin, we will establish the following lemma.

Lemma 1. Let {(24.4,2.:) Y%, be a mini-batch of unit-norm embeddings (||za.ill2 = ||2p.ill2 = 1) with batch

size bz and temperature T > 0. Denote the average squared Fuclidean distance

2 1 bz
D™ = EZ”Z“’i_Zb’”%'
i=1

Then the InfoNCE (contrastive) loss

bz . ' |
Ler(za, 2) = iZ{—log exp(SIm(Zaﬂva,z)/T) }7

bz Z?il exp(sim(za,i, 26,5)/7)
with sim(u,v) = u'v, satisfies
—2
D
Len(za,20) < log(bz) + —.
2T
Proof. For unit vectors, ||zq,; — 2,13 = 2 — 2 sim(2q,4, 25,1), S0 SIM(2a,;, 26,1) = 1 — 2d?, where d? := ||z, —
2,4ll3 € [0, 2.
Fix i. Because all cosine similarities are at most 1,
bz
Zexp(sim(za7i,zb7j)/7') < bzellT.
j=1

Hence the i-th term of the loss obeys

exp((l — %df)/T)

Zj exp(sim;; /7)

2
)

< log(bz) + d

—1 .
8 2T

Averaging over the batch and noting - >, d? = D’ gives the desired bound. O

Using this lemma, we will complete the proof of Proposition 1. In this paper, without loss of generalizability,
we assume R (-) to be the contrastive loss.

Proof. We begin by expressing the generalization error Ry ( f) on the target domain Dy as the expected
contrastive loss:

Re(f) = By [Lon(Fu(@), fo(0)] (3)

where L¢y, is the contrastive loss defined as:

bz

Lo (zay 20) = 1 Z [— log ZbeZXp (sim (Za,i, 2b,)/T) ] 7 @

bz i=1 j=1€XP (sim(za,, 25,5)/7)

. . ZT-Z i . .
with sim(zq 4, 25) = W\IZ:H and bz being the batch size.

By Lemma 1, we have an upper bound on the contrastive loss:

Lew (20, ) < log(bz) +aD”, (5)
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—2 . . .
where D is the average squared Euclidean distance between z,; and 2 ;:

) 1 bz
=4 > N2ai — 2.il3,
i=1

and o = 2i
T

Applying this to our generalization error:
Rr(f) < log(b2) + aBqy o, |1 fu(@) = FoWl3] -
Then, we have:
@) = fo@l < (1fo@) = fu@)lz + fi () = fu (@)]2
@) = Fa@le + 1£o.0) — o @2 + 1o 0) — Fow)l2)
<5 (1Fula) = fu @) + 1 For (@) = fu, @)
H foi (@) = fo. W)+ [for(v) = Fo. W) + 1o (y) — f¢(y)\§) ;

where the last inequality follows from the fact that for any real numbers aq,...,a,,

Define the error terms:
(2) = | fu (@) - fuu (@),
oo () = |Fu(@) = fo @),
(W) = o)~ Fo W),
) =
) =

cfdufw

efdn

|foi () = fo. (05,
|fo (@) = fo, ().

Then inequality becomes:

Fol@) = FsB <5 (e5, 5, @) +ep, g, @)+ Cilwy) +ep, p W) +eg, 7, )

Taking expectation over (z,y) ~ Dy and using Dy = 2{1 w;D;, we have:

Ey~or [|fu(@) = fsw)3] = szm,w 1@ = Fsw)l]

N
S 5 Z Wy E(xay)ND'i [eﬁp,fwi (I) + efwwfwi (I)

i=1

+Ci(w,y) +ep, 5, (W) €, 7, (y)] :

Define C; = E(; yy~p, [Ci(z,y)]. Then,
N

Eay~r [|fo(@) = fo@lE] <53 wi (Bano, [ef, 5, (@) + €5, 5, ()]
i=1

VE, -, [e foga W) Fef 7 (y)} + oz-) .
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Substituting into the generalization error bound, we obtain:

N
Rr(f) <log(bz) + « Z w; (5EINDi [efwvfwi (x) + Foiifon (:E)]
i=1

+5Byp, (e, g, W)+ €5, 1, )] +5C0). (12)

Letting «; = 5a, we have:
N
R (f) < Y wici (Bawo, [e5, 5, @)+ €7,y @)] + Byon, [ef, 1 W)+, 5, ()] + i) +log(b). (13)
i=1

Since log(bz) is independent of f, it can be considered a constant. Thus, we can express the generalization
erTor as:

N
RT(f) = Zwiai (wa,fw,v, + Efw,-,fw,v, + Efd),fm + eﬁpi,f(/),- + Ci) :
=1

This completes the proof of Proposition 1. O
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