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A Implementation Detailed

A.1 Details of MIMIC-CXR

A.1.1 Pre-training setup

Following (Wang et al., 2022) we utilize the MIMIC-CXR (Bigolin Lanfredi et al., 2022) dataset for multi-
modal pre-training. This dataset is widely used in the medical multi-modal learning domain, with 227, 835
image-text pairs from 65, 379 patients. Some related works also have imported additional features to image-
text pairs to augment the data. However, we only use the image-text pairs for pre-training to make the
results and conclusions more generalizable. The MIMIC-CXR dataset is open access, it can be obtained
through MIMIC-CXR Access.

During the pre-training, local clients only have access to their highly heterogeneous datasets. To construct
the heterogeneous client datasets, following (Yan et al., 2023) we employ the Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) to divide the MIMIC-CXR dataset into 5 partitions based on a selected sensitive
attribute. For implementation, we import the corresponding attribute information of given image-text pairs
from the MIMIC-CXR and divide local datasets based on disease category. The disease category is a multi-
label binary attribute and is transformed into a multi-class label. That’s because the words in the clinical
report are highly related to the disease category as illustrated in Fig 5. We set the heterogeneity degree in
the LDA algorithm to be 1 for main experiments. For analysis experiments, we also have run experiments
on client datasets allocated by LDA with a heterogeneity degree of 5.

Specifically, we select 5 commonly considered diseases Bannur et al. (2023): ’Edema’,’Pleural Effusion’,
’Consolidation’, ’Pneumothorax’, and ’Pneumonia’. We set the non-NaN value to 1 and then set NaN value
to 0 to construct a 5-way binary multi-label. Then we get 25-category multi-class label and run LDA on
them.

Figure 5: Illustration of the strong connection between latent variable and the text modality.

We divide the MIMIC-CXR into 5 heterogeneous subgroups to construct 5 client datasets. Each divided
dataset consists of train splits and test splits based on the notation of the MIMIC-CXR. Our pre-trainings
are mainly conducted on 4 ×A40 or 2 ×A100. The batch size we have utilized ranged from 288 to 388. We
set the learning rate to 2×10−5 in main experiments, the number of communications to 25. For our method,
we set the uncertainty radius ρ = 0.1, µ = 5 in main experiments. For each communication, we randomly
sample 50 batches of data from the client datasets.

A.1.2 Downstream tasks

We evaluate the generalization ability of the pre-trained model through three downstream tasks: few-shot
classification, medical image segmentation, and image retrieval.

Few-shot classification. To assess the model’s effectiveness on general medical image tasks, we evaluate
it on multiple image classification benchmarks: (1) RSNA Pneumonia Detection (RSNA)Shih et al. (2019),
where the task is to predict whether an image shows pneumonia. (2) CovidxWang et al. (2020), which
includes three categories: COVID-19, non-COVID pneumonia, and normal. We fine-tune our pre-trained
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model with an additional linear layer on 1% and 10% of the training dataset and report classification accuracy
on these benchmarks.

Medical image segmentation. To explore the model’s transferability to fine-grained tasks, we conduct
experiments on medical image segmentation using the RSNA Wang et al. (2020) benchmark. Following Wang
et al. (2022), we convert RSNA object detection ground truths into segmentation masks. Similar to Huang
et al. (2021), we employ a U-Net framework with our pre-trained image encoder as the frozen encoder, while
fine-tuning the decoder on 1% and 10% of the training data. The Dice score (%) is used for performance
evaluation.

Image retrieval. To verify whether the pre-trained models have captured the semantic alignment between
image and text in the pre-training data, we perform an image retrieval task. We test image retrieval
performance on the validation splits of the local clients. For each text in a batch of image-text pairs, we
calculate similarities with images in the batch, then rank these similarities and retrieve the top-1 and top-5
images. If the corresponding image of the text is in the selected set, it is correctly retrieved. We use top-1
and top-5 recall accuracy to evaluate performance.

A.2 Ophthalmology datasets

A.2.1 Pre-training setup.

We conduct vision-language multi-modal pre-training using retinal image datasets from different institutes.
These retinal datasets are from different institutions of low-income and high-income countries, and are highly
heterogeneous real-world scenes. Specifically, we utilize MESSIDOR (Decencière et al., 2014) from France
and BRSET (Nakayama et al., 2023) from Brazil as pre-training datasets, and assign them to two clients.
These datasets include tabular EHR records indicating Diabetic Retinopathy (DR) status and edema risk.
We transform tabular data into text captions in the format: "retinal image with {DR status} and {edema
risk}" to obtain text prompts. Similar to MIMIC dataset, our pre-trainings on ophthalmology datasets are
mainly conducted on 4 × A40 or 2 × A100. We set the batch size to 100, the number of communications
to 20, and the learning rate to 1 × 10−5 in the experiments. For our method, we set the uncertainty radius
ρ = 0.5, µ = 1 in main experiments. For each communication, we randomly sample 20 batches of data from
the client datasets.

A.2.2 Downstream tasks.

We evaluate the transferability of the models on few-shot classification tasks using the MBRSET (Nakayama
et al.) dataset. Unlike the pre-training datasets, MBRSET was collected in low-income areas using portable
devices, resulting in a significant distribution shift. We perform few-shot classification tasks on diabetic
retinopathy and edema status prediction tasks using this dataset. These are binary classification problems.
We fine-tune the model with an additional linear layer on 10%, 20% and 100% of the training data, and
report classification accuracies.
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B Additional Experiment Results

Federated pre-trained models still show a significant performance gap compared to central-
ized pre-trained models in multi-modal retrieval tasks. Table 6 shows the performance of models
pre-trained in decentralized, FedAvg, centralized federated learning strategies, using different backbone pre-
training methods. FedAvg has more effectively extract cross-modal alignment from federally utilizing local
datasets, and achieved much better transferability on downstream datasets and in-domain image-text re-
trieval tasks, compared to de-centralized pre-trained models. However, there are still performance gaps in
the retrieval tasks compared to the centralized pre-trained model. That might because each batch of data in
centralized pre-training scene has higher diversity, which encourages the contrastive-based model to capture
more robust alignment.

Table 6: Downstream task performance on different multi-modal pre-training backbone methods.

Strategy Backbone RSNA (cls.) Covid (cls.) RSNA (seg.) In-domain Image-Text Retrieval
1% 10% 1% 10% 1% 10% Rec.@1 Rec.@5 Wst.@1 Wst.@5

Decentralized ConVIRT 81.5 82.3 76.5 85.6 64.6 70.7 15.5 51.1 13.6 46.0
FedAvg ConVIRT 83.1 83.3 78.0 88.5 69.6 71.5 28.8 72.1 25.3 66.7
Centralized ConVIRT 83.4 84.6 82.5 92.0 72.6 76.4 41.5 84.2 38.6 80.0
Decentralized GLoRIA 82.3 82.9 77.9 86.8 71.1 72.1 17.2 52.5 15.2 48.7
FedAvg GLoRIA 83.2 83.3 77.5 89.0 71.4 72.4 29.9 73.8 27.8 69.5
Centralized GLoRIA 84.0 84.7 82.2 91.8 73.6 73.7 41.7 84.0 39.0 80.5
Decentralized MGCA 81.9 82.7 77.8 87.6 62.8 70.2 15.2 50.4 13.4 45.4
FedAvg MGCA 82.6 83.5 75.8 88.2 70.1 71.4 29.3 73.7 26.8 70.4
Centralized MGCA 84.0 84.5 79.5 89.5 70.7 72.5 39.9 83.5 36.9 80.3

Table 7: Detailed results of downstream task performances.

Strategy Backbone RSNA (cls.) Covid (cls.) RSNA (seg.)
1% 10% 1% 10% 1% 10%

FedEMA ConVIRT 82.8 ± 0.32 83.1 ± 0.17 79.1 ± 0.12 86.5 ± 0.27 71.0 ± 1.55 73.6 ± 1.08
FedAvg ConVIRT 83.0 ± 0.49 83.3 ± 0.36 78.0 ± 0.43 88.5 ± 0.51 69.5 ± 1.72 71.8 ± 0.84
FedDRA (Ours) ConVIRT 83.2±0.19 83.7±0.12 80.9±0.16 90.3±0.17 71.5±0.95 74.2±0.76
FedU GLoRIA 83.0 ± 0.36 83.5 ± 0.22 78.7 ± 0.44 89.4 ± 0.26 71.1 ± 1.28 72.3 ± 0.67
FedAvg GLoRIA 83.3 ± 0.45 83.4 ± 0.23 77.7 ± 0.40 88.9 ± 0.48 71.4 ± 1.43 72.5 ± 1.05
FedDRA (Ours) GLoRIA 83.6±0.37 84.1±0.19 79.3±0.33 89.8±0.29 71.9±1.31 72.9±0.80
FedLDAWA MGCA 82.3 ± 0.29 83.5 ± 0.20 78.1 ± 0.40 88.4 ± 0.18 70.0 ± 1.66 72.2 ± 1.45
FedAvg MGCA 82.5 ± 0.48 83.5 ± 0.28 75.8 ± 0.67 88.2 ± 0.35 69.8 ± 2.13 71.7 ± 1.47
FedDRA (Ours) MGCA 83.2±0.37 83.8±0.27 79.4±0.12 89.0±0.13 70.8±1.48 72.5±1.15

Extension to more VLP Methods. In our paper, we conducted comprehensive experiments on three types
of different vision-language pre-training methods including ConVIRT Zhang et al. (2022), GLoRIA Huang
et al. (2021), and MGCA Wang et al. (2022), because many previous works have shown the effectiveness
of these methods for medical vision-language pretraining by using the self-supervised contrastive learning
objective and the dual-encoder network structure. To further validate our method’s generalizability beyond
contrastive learning, we have incorporated Masked Record Modeling (MRM) Zhou et al. (2023) as an addi-
tional backbone with new experiments and results included in the revised manuscript. MRM is fundamentally
different from contrastive learning by employing a masked input modeling strategy as self-supervision. As
shown in Figure 2 of Zhou et al. (2023), during the pre-training stage, MRM requires the image encoder to
provide effective image representations to simultaneously support the restoration of masked image patches
and masked associated radiology report tokens.
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We adapt FedDRA by applying global constraints on the image encoder, and integrating the DRO framework
to dynamically adjust the update step sizes for each client. By using the MRM as the VLP approach, we
compared the results of our proposed FedDRA strategy with baselines FedAvg and FedMOON. As demon-
strated in Zhou et al. (2023) Appendix A, the MRM pre-training method is designed to learn representations
of radiographs specifically for disease diagnosis, it lacks a text decoder, making it unsuitable for image-text
retrieval tasks. Therefore, we evaluated the pre-trained model on few-shot classification and few-shot seg-
mentation downstream tasks. The experiment results are summarized in Table 9. As shown in the table, our
FedDRA strategy achieves higher performance on all these downstream evaluation tasks with two different
datasets. This demonstrates that FedDRA can be extended to a broader scope of pre-training methods
beyond contrastive learning-based approaches.

Figure 6: Segmentation downstream task results across multi-
ple runs.

We have provided the computational cost
of pre-training. As shown in the following
table, we report the number of model pa-
rameters and the training time per step,
which is averaged over an entire commu-
nication round. The experiments were
conducted on an Nvidia 4×A40 GPU
with a total batch size of 388, using
the ConVIRT pre-training backbone. Al-
though our method has a larger number
of model parameters, its training time is
not significantly higher than that of the
baseline methods.

Table 8: Computational cost of different federated pre-training strategies.

Metric FedAvg FedMOON FedX FedU FedEMA FedLDAWA FedMAE Ours [1st + 2nd]
Averaged Training Time (seconds per batch) 14.6 18.2 22.6 15.6 15.9 15.2 15.0 22.1
Number of Trainable Parameters (M) 172.6 172.6 172.6 172.6 190.4 172.6 226.1 190.4
Additional Module N N N N Y N Y Y
Using Global Copy During Local Training N Y Y Y Y N N Y

Table 9: Generalization to masked input modeling based pre-training backbone method.

Strategy Backbone RSNA (cls.) 1% RSNA (cls.) 10% Covid (cls.) 1% Covid (cls.) 10% RSNA (seg.) 1% RSNA (seg.) 10%
FedAvg MRM 80.2 81.0 78.2 88.9 72.2 74.1
FedMOON MRM 80.6 81.3 78.0 88.5 72.3 73.8
Ours MRM 81.4 82.6 78.7 89.6 72.8 74.5

C Detailed Experiment Results

We have conducted multiple runs of pre-training for both our method and the baseline methods with five
total times using different random seeds. We computed the averaged performance and standard deviation
based on new results and the original ones. The final averaged performance and standard deviation are
presented in Table 7. The results show that our method consistently outperforms the baselines across all
tasks after running multiple-time experiments. The averaged performance of our method exceeds that of
the best-performing baseline by more than 0.5%, while also exhibiting a lower standard deviation in most
of settings, indicating a statistically significant improvement especially for the few-shot classification task
on both datasets with three different backbones. For the segmentation tasks, we observe a higher standard

21



Published in Transactions on Machine Learning Research (06/2025)

deviation due to the sensitivity of the dice score evaluation metric impacted by the pretrained image encoder,
which is also observed for other baseline methods. To better illustrate the significance of our method’s
performance gain, we have included a plot comparing dice scores of different methods on the segmentation
task across multiple runs, as shown in Figure 6. We have compared the 10% few-shot image segmentation
results of models pre-trained with FedAvg, FedEMA, and our FedDRA strategy, using the ConVIRT Zhang
et al. (2022) backbone.

Here we provide detailed results of ablation studies shown in Fig. 4 in the main text.

Table 10: Ablation studies on the number of clients.

Num. of Client RSNA (cls.) Covid (cls.) RSNA (seg.) In-domain Image-Text Retrieval
1% 10% 1% 10% 1% 10% Rec.@1 Rec.@5 Wst.@1 Wst.@5

n=2 82.1 83.2 78.4 88.5 61.8 71.0 23.1 62.9 19.2 57.8
n=5 83.2 83.7 81.0 90.3 71.7 74.1 30.2 73.2 27.0 68.9

Table 11: Ablation studies on uncertainty radius.

Uncertainty Radius RSNA (cls.) Covid (cls.) RSNA (seg.) In-domain Image-Text Retrieval
1% 10% 1% 10% 1% 10% Rec.@1 Rec.@5 Wst.@1 Wst.@5

ρ =0.01 82.7 83.2 79.6 89.1 71.0 72.8 30.4 73.5 26.6 68.4
ρ =0.1 83.2 83.7 81.0 90.3 71.7 74.1 30.2 73.2 27.0 68.9
ρ =1 83.3 84.0 81.3 90.8 72.1 74.1 28.9 72.5 26.2 67.8

Table 12: Ablation studies on global constraint degree.

Constraint Degree RSNA (cls.) Covid (cls.) RSNA (seg.) In-domain Image-Text Retrieval
1% 10% 1% 10% 1% 10% Rec.@1 Rec.@5 Disparity

µ =1 82.8 83.4 79.8 89.6 70.5 72.8 29.1 72.5 3.2
µ =5 83.2 83.7 81.0 90.3 71.7 74.1 30.2 73.2 2.9
µ =10 82.6 83.2 80.2 90.2 71.3 72.9 29.6 72.8 2.4

Here we provided detailed results for our empirical study in Sec. 5.2.

Table 13: The comparison of retrieval acc. on each client denoted as {Ci}5
i=1, of centralized, FedAvg, and

averaged acc. of decentralized pre-trained models using the ConVIRT backbone. We report the local models
of decentralized pre-training strategy as Decentralizedi.

Strategy Recall@1 (ACC) Recall@5 (ACC)
C1 C2 C3 C4 C5 Avg. C1 C2 C3 C4 C5 Avg.

Centralized 43.6 38.6 40.1 43.1 41.9 44.4 86.6 80.0 82.6 85.0 86.8 84.2
FedAvg 30.4 25.3 26.9 28.8 32.7 28.8 76.4 66.7 69.8 73.8 73.9 72.1
Decentralized1 17.7 14.7 15.4 18.2 14.1 16.0 57.0 49.6 51.3 54.6 55.1 53.5
Decentralized2 15.3 11.6 13.9 15.0 13.8 13.9 54.8 41.9 46.2 47.9 45.6 47.3
Decentralized3 17.4 13.1 14.1 15.1 15.4 15.0 50.4 44.2 46.4 49.7 52.5 48.6
Decentralized4 16.5 14.3 14.1 15.4 17.4 15.5 57.0 45.7 47.5 52.4 57.6 52.0
Decentralized5 21.7 14.3 14.2 15.6 19.5 17.1 57.9 48.4 50.2 52.4 61.7 54.1
Local.avg. 17.7 13.6 14.3 15.8 16.0 15.5 55.4 46.0 48.3 51.4 51.1 51.1
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Table 14: The performance of the server model after 25 commu. turns and the averaged performance of
corresponding local models after 25 and 26 commu. turns, on each client denoted as {Ci}5

i=1. We utilize the
ConVIRT as the backbone. We report the models after local update on client datasets of FedAvg pre-training
strategy as Locali.

Strategy com. turn Recall@1 (ACC) Recall@5 (ACC)
C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

FedAvg 25 30.4 25.3 26.9 28.8 32.7 76.4 66.7 69.8 73.8 73.9
Local0 25 31.8 23.4 26.0 26.2 33.7 73.4 64.1 67.2 71.4 71.8
Local1 25 27.7 22.5 23.8 25.1 27.7 73.4 63.1 64.6 69.2 68.6
Local2 25 28.6 24.4 24.3 27.3 28.9 73.3 64.9 67.5 70.3 71.8
Local3 25 30.6 22.6 23.9 25.4 26.4 72.6 64.0 66.3 68.9 67.6
Local4 25 27.3 24.4 25.5 26.5 28.9 73.3 65.8 69.0 71.2 69.2
1-5 Avg. 25 29.2↓ 23.5↓ 24.7↓ 26.1↓ 29.1↓ 73.2↓ 64.4↓ 66.9↓ 70.2↓ 69.8↓
Local0 26 29.9 23.2 25.2 26.7 33.1 73.4 64.1 67.2 71.4 71.8
Local1 26 28.7 23.1 24.0 25.9 27.4 74.5 63.4 64.1 69.7 67.9
Local2 26 30.9 23.9 25.4 27.7 29.9 72.4 65.6 67.4 71.6 71.1
Local3 26 30.1 22.7 23.4 24.5 27.1 73.1 63.5 65.3 67.5 67.3
Local4 26 27.0 24.8 25.5 26.6 29.6 73.6 66.0 69.2 71.2 69.5
1-5 Avg. 26 29.3↓ 23.5↓ 24.7↓ 26.3↓ 29.4↓ 73.3↓ 64.4↓ 66.3↓ 70.1↓ 69.4↓

Table 15: The accuracy of the test set of each client. We show the performance of FedAvg pre-trained
baseline and its retrained models on different client datasets. We report the models after local update on
client datasets of FedAvg pre-training strategy as Locali.

position model com. Recall@1 (ACC) Recall@5 (ACC)
C0 C1 C2 C3 C4 Avg. C0 C1 C2 C3 C4 Avg.

- server 25 30.4 25.3 26.9 28.8 32.7 28.8 76.4 66.7 69.8 73.8 73.9 72.1
- server 50 32.3 26.0 27.0 27.1 30.2 28.5↓ 77.6 67.9 69.4 72.1 71.7 71.7↓
→ shallow Local0 25 30.4 25.0 25.3 28.4 28.6 27.5↓ 73.8 67.2 68.4 72.0 73.0 70.9↓
→ shallow Local1 25 34.3 26.4 27.3 29.7 30.2 29.4↑ 78.3 69.8 72.3 75.1 77.4 74.6↑
→ shallow Local2 25 33.7 26.4 27.3 29.7 30.2 29.4↑ 77.3 67.4 70.7 74.2 70.5 72.0↑
→ shallow Local3 25 27.7 18.9 19.3 25.6 24.9 25.0↓ 72.4 64.2 64.8 70.5 71.1 68.6↓
→ shallow Local4 25 26.2 18.9 19.3 22.7 22.7 22.0↓ 69.3 56.8 58.9 63.3 64.5 62.6↓
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Table 16: The accuracy of the model on each client. We show the acc. of centralized and FedAvg pre-trained
baselines and de-centralized pre-trained models shown as Locali retrained on the union of training splits of
client datasets. We fine-tune shallow layers of the de-centralized pre-trained model with the union dataset.

strategy model Recall@1 (ACC) Recall@5 (ACC)
C1 C2 C3 C4 C5 Avg. C1 C2 C3 C4 C5 Avg.

Global server 43.6 38.6 40.1 43.1 41.9 41.5 86.6 80.0 82.6 85.0 86.8 84.2
FedAvg server 30.4 25.3 26.9 28.8 32.7 28.8 76.4 66.7 69.8 73.8 73.9 72.1
Decentralized Local1 28.7 22.6 23.5 22.3 24.6 24.4 70.9 60.8 63.3 62.4 63.4 64.2
Decentralized Local2 17.4 19.9 18.2 17.6 17.7 18.1 52.7 56.1 55.1 54.0 53.5 54.3
Decentralized Local3 20.9 20.7 26.0 21.0 22.3 22.2 58.9 58.1 65.3 58.2 59.0 59.9
Decentralized Local4 20.9 20.1 20.7 25.6 21.1 21.7 59.1 56.9 57.8 64.7 58.7 59.4
Decentralized Local5 21.8 19.5 22.0 20.9 31.5 23.2 60.7 57.0 59.8 60.2 74.1 62.4
Decentralized Local1 17.7 14.7 15.4 18.2 14.1 16.0 57.0 49.6 51.3 54.6 55.1 53.5
Decentralized Local2 15.3 11.6 13.9 15.0 13.8 13.9 54.8 41.9 46.2 47.9 45.6 47.3
Decentralized Local3 17.4 13.1 14.1 15.1 15.4 15.0 50.4 44.2 46.4 49.7 52.5 48.6
Decentralized Local4 16.5 14.3 14.1 15.4 17.4 15.5 57.0 45.7 47.5 52.4 57.6 52.0
Decentralized Local5 21.7 14.3 14.2 15.6 19.5 17.1 57.9 48.4 50.2 52.4 61.7 54.1
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D Theoretical Analysis

D.1 Derivation of Proposition 1

To begin, we will establish the following lemma.
Lemma 1. Let {(za,i, zb,i)}bz

i=1 be a mini-batch of unit-norm embeddings (∥za,i∥2 = ∥zb,i∥2 = 1) with batch
size bz and temperature τ > 0. Denote the average squared Euclidean distance

D
2 = 1

bz

bz∑
i=1

∥za,i − zb,i∥2
2.

Then the InfoNCE (contrastive) loss

LCL(za, zb) = 1
bz

bz∑
i=1

[
− log

exp
(
sim(za,i, zb,i)/τ

)∑bz
j=1 exp

(
sim(za,i, zb,j)/τ

)]
,

with sim(u, v) = u⊤v, satisfies

LCL(za, zb) ≤ log(bz) + D
2

2τ .

Proof. For unit vectors, ∥za,i − zb,i∥2
2 = 2 − 2 sim(za,i, zb,i), so sim(za,i, zb,i) = 1 − 1

2d
2
i , where d2

i := ∥za,i −
zb,i∥2

2 ∈ [0, 2].

Fix i. Because all cosine similarities are at most 1,

bz∑
j=1

exp
(
sim(za,i, zb,j)/τ

)
≤ bz e1/τ .

Hence the i-th term of the loss obeys

− log
exp

(
(1 − 1

2d
2
i )/τ

)∑
j exp(simij /τ) ≤ log(bz) + d2

i

2τ .

Averaging over the batch and noting 1
bz

∑
i d

2
i = D

2 gives the desired bound.

Using this lemma, we will complete the proof of Proposition 1. In this paper, without loss of generalizability,
we assume RT (·) to be the contrastive loss.

Proof. We begin by expressing the generalization error RT (f̂) on the target domain DT as the expected
contrastive loss:

RT (f̂) = E(x,y)∼DT

[
LCL(f̂ψ(x), f̂ϕ(y))

]
, (3)

where LCL is the contrastive loss defined as:

LCL(za, zb) = 1
bz

bz∑
i=1

[
− log exp (sim(za,i, zb,i)/τ)∑bz

j=1 exp (sim(za,i, zb,j)/τ)

]
, (4)

with sim(za,i, zb,i) = z⊤
a,izb,i

∥za,i∥∥zb,i∥ and bz being the batch size.

By Lemma 1, we have an upper bound on the contrastive loss:

LCL(za, zb) ≤ log(bz) + αD
2
, (5)
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where D2 is the average squared Euclidean distance between za,i and zb,i:

D
2 = 1

bz

bz∑
i=1

∥za,i − zb,i∥2
2, (6)

and α = 1
2τ .

Applying this to our generalization error:

RT (f̂) ≤ log(bz) + αE(x,y)∼DT

[
∥f̂ψ(x) − f̂ϕ(y)∥2

2

]
. (7)

Then, we have:

|f̂ψ(x) − f̂ϕ(y)|22 ≤
(

|f̂ψ(x) − f̂ψi(x)|2 + |f̂ψi(x) − fψi(x)|2

+|fψi(x) − fϕi(y)|2 + |fϕi(y) − f̂ϕi(y)|2 + |f̂ϕi(y) − f̂ϕ(y)|2
)2

≤ 5
(

|f̂ψ(x) − f̂ψi(x)|22 + |f̂ψi(x) − fψi(x)|22

+|fψi(x) − fϕi(y)|22 + |fϕi(y) − f̂ϕi(y)|22 + |f̂ϕi(y) − f̂ϕ(y)|22
)
, (8)

where the last inequality follows from the fact that for any real numbers a1, . . . , an, n∑
j=1

aj

2

≤ n

n∑
j=1

a2
j .

Define the error terms:

ϵf̂ψ,f̂ψi
(x) = |f̂ψ(x) − f̂ψi(x)|22,

ϵf̂ψi ,fψi
(x) = |f̂ψi(x) − fψi(x)|22,

ϵf̂ϕ,f̂ϕi
(y) = |f̂ϕ(y) − f̂ϕi(y)|22,

ϵf̂ϕi ,fϕi
(y) = |f̂ϕi(y) − fϕi(y)|22,

Ci(x, y) = |fψi(x) − fϕi(y)|22.

Then inequality (8) becomes:

|f̂ψ(x) − f̂ϕ(y)|22 ≤ 5
(
ϵf̂ψ,f̂ψi

(x) + ϵf̂ψi ,fψi
(x) + Ci(x, y) + ϵf̂ϕi ,fϕi

(y) + ϵf̂ϕ,f̂ϕi
(y)

)
. (9)

Taking expectation over (x, y) ∼ DT and using DT =
∑N
i=1 wiDi, we have:

E(x,y)∼DT

[
|f̂ψ(x) − f̂ϕ(y)|22

]
=

N∑
i=1

wi E(x,y)∼Di

[
|f̂ψ(x) − f̂ϕ(y)|22

]
≤ 5

N∑
i=1

wi E(x,y)∼Di

[
ϵf̂ψ,f̂ψi

(x) + ϵf̂ψi ,fψi
(x)

+Ci(x, y) + ϵf̂ϕi ,fϕi
(y) + ϵf̂ϕ,f̂ϕi

(y)
]
. (10)

Define Ci = E(x,y)∼Di [Ci(x, y)]. Then,

E(x,y)∼DT

[
|f̂ψ(x) − f̂ϕ(y)|22

]
≤ 5

N∑
i=1

wi

(
Ex∼Di

[
ϵf̂ψ,f̂ψi

(x) + ϵf̂ψi ,fψi
(x)

]
+Ey∼Di

[
ϵf̂ϕi ,fϕi

(y) + ϵf̂ϕ,f̂ϕi
(y)

]
+ Ci

)
. (11)
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Substituting (11) into the generalization error bound, we obtain:

RT (f̂) ≤ log(bz) + α

N∑
i=1

wi

(
5Ex∼Di

[
ϵf̂ψ,f̂ψi

(x) + ϵf̂ψi ,fψi
(x)

]
+5Ey∼Di

[
ϵf̂ϕi ,fϕi

(y) + ϵf̂ϕ,f̂ϕi
(y)

]
+ 5Ci

)
. (12)

Letting αi = 5α, we have:

RT (f̂) ≤
N∑
i=1

wiαi

(
Ex∼Di

[
ϵf̂ψ,f̂ψi

(x) + ϵf̂ψi ,fψi
(x)

]
+ Ey∼Di

[
ϵf̂ϕi ,fϕi

(y) + ϵf̂ϕ,f̂ϕi
(y)

]
+ Ci

)
+log(bz). (13)

Since log(bz) is independent of f̂ , it can be considered a constant. Thus, we can express the generalization
error as:

RT (f̂) ≤
N∑
i=1

wiαi

(
ϵf̂ψ,f̂ψi

+ ϵf̂ψi ,fψi
+ ϵf̂ϕ,f̂ϕi

+ ϵf̂ϕi ,fϕi
+ Ci

)
.

This completes the proof of Proposition 1.
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