
Published in Transactions on Machine Learning Research (09/2025)

Appendix: Enhancing Plaque Segmentation in CCTA with
Prompt-based Diffusion Data Augmentation

Yizhe Ruan1,2, Xuangeng Chu1, Ziteng Cui1, Yusuke Kurose1,2, Junichi Iho3,
Yoji Tokunaga3, Makoto Horie3, Yusaku Hayashi3, Keisuke Nishizawa3,
Yasushi Koyama3,2, Tatsuya Harada1,2
1The University of Tokyo
2RIKEN Center for Advanced Intelligence Project
3Sakurabashi Watanabe Advanced Healthcare Hospital
ruanyizhe@mi.t.u-tokyo.ac.jp

Reviewed on OpenReview: https://openreview.net/forum?id=hbTYt8PX9n

1 Training Details

We adopt a three-stage training procedure, similar to the setup in DiffTumor Chen et al. (2024), but extended
with our PromptLesion conditioning. Each stage has a distinct network and set of hyperparameters:

1.1 Step 1: VQGAN Autoencoder

• Objective: Learn a compact latent representation of 3D volumes and reconstruct them with high
fidelity.

• Network Architecture: A 3D convolutional encoder and decoder, plus a vector quantization
module (codebook size = 16384; codebook dim = 8). We also employ one 3D discriminator and one
2D slice-based discriminator.

• Training Set:We use AbdomenAtlas-8K Qu et al. (2023) dataset for training. Cropped volumetric
patches of size 96 × 96 × 96, covering both healthy and lesion regions. We randomly sample patches
from each volumetric scan.

• Hyperparameters:

– Epochs: 1000
– Batch size: 4
– Learning rate: 3 × 10−4

– Optimizer: Adam with β1 = 0.9, β2 = 0.999
– Loss Terms: ℓ1 for reconstruction, codebook commitment loss, adversarial losses (3D/2D dis-

criminators), and perceptual loss.

1.2 Step 2: PromptLesion Model

• Objective: Synthesize diverse lesions within the latent space. We train a 3D diffusion model,
conditioning on healthy background, lesion masks, and prompt embeddings.

• Diffusion Forward Process: Gradually add Gaussian noise to the latent representation z0 over
T = 400 timesteps.

• Network Architecture: A 3D U-Net with interleaved self-attention layers. We integrate the
lesion-type prompt either via a learnable embedding or a lightweight transformer, alongside the
latent healthy region and the binary mask.
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• Hyperparameters:
– Train Steps: 60000
– Batch size: 4
– Learning rate: 1 × 10−4

– Optimizer: Adam with β1 = 0.9, β2 = 0.999
– Noise Schedule: linear
– Loss Function: Mean-squared error between predicted noise and true noise at each timestep

(denoising diffusion objective).

• Inference Details: For lesion synthesis, we start from a healthy latent region, then perform reverse
diffusion for 400 steps. The prompt embedding selects the lesion type to be generated (e.g., calcified
plaque, non-calcified plaque, or tumors in different organs) while the mask inputs decide the position
of the lesion.

1.3 Step 3: Segmentation Model

• Objective: Use both real and synthetic lesion data to train a 3D segmentation network.

• Training Data Construction:
– Real data: Retain original CT volumes with expert annotations.
– Synthetic data: Convert each latent sample from Step 2 back to voxel space via the pretrained

decoder. The diffusion mask serves as the lesion label. We mix real and synthetic samples with
a 1:1 ratio in most experiments.

• Early Stop:
– Early stopping (segmentation only): stop if validation Dice shows no improvement for 25

consecutive epochs; keep the best-Dice checkpoint for testing.

• Network Architecture: We adopt nnU-Net or a 3D U-Net backbone for volumetric segmentation.

• Hyperparameters:
– Epochs: 500
– Batch size: 12
– Learning rate: 2 × 10−4

– Optimizer: Adam with β1 = 0.9, β2 = 0.999
– Loss Function: Dice + cross-entropy combined.

2 Transformer-based Prompt Encoder Architecture

The MaskTransformer uses L = 3 encoder blocks, hidden size dmodel = 64, and H = 4 self-attention heads.
Table 1 shows the detailed parameter for the 3-layer MaskTransformer.

3 Prompt Injection into U-Net

During decoding we first obtain a multi-channel mask embedding e = MaskTransformer(m) ∈
RB×C×1×1×1or a one-hot vector o ∈ RB×C×1×1×1. A lightweight PromptGenBlock upsamples e or o to
the current feature-map resolution and produces a prompt tensor p ∈ RB×C×D×H×W . We concatenate this
prompt with the decoder feature map f before the first residual block at each resolution level:

f ′ = concat(f , p) ∈ RB×2C×D×H×W .

The concatenated tensor passes through two time-conditioned ResNet blocks, a 1 × 1 × 1 convolution for
channel mixing, and finally merges with the corresponding skip feature from the encoder (Figure 4, Step 2).
We perform this injection at three decoder resolutions ( 1

4 , 1
8 , 1

16 ).
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Table 1: Layer shapes and parameter counts for the 3-layer MaskTransformer (243 input).

Layer Output shape Kernel / Stride Params (k)
3-D Patch Emb. B × 64 × 3 × 3 × 3 83/83 3
Flatten → Tokens B × 27 × 64 — —

Transformer Encoder (L=3, H=4, FF=256)
Block 1 27 × B × 64 — 43
Block 2 27 × B × 64 — 43
Block 3 27 × B × 64 — 43
Global AvgPool B × 64 — 0
MLP Head (LN+FC) B × 64 — 4
Total — — 136

4 Computational Cost

Table 2 summarises the hardware and runtime of each stage. All models were trained on a single Tesla
V100-SXM2-32GB. The VQGAN pre-training is the most time-consuming step (168 h), while the diffusion
baselines require roughly four days each. At inference, PromptLesion achieves ≈ 3.1 volumes min−1 for 963

patches with 400 sampling time steps, comparable to Med-DDPM and only slightly slower than DiffTumor.

Table 2: Computational Details

Model GPUs Train time Vol/min
VQGAN 1 x Tesla V100-SXM2-32GB 168 h -
PromptLesion 1 x Tesla V100-SXM2-32GB 96 h 3.1
DiffTumor 1 x Tesla V100-SXM2-32GB 96 h 4.0
Med-DDPM 1 x Tesla V100-SXM2-32GB 96 h 3.3

5 Perceptual Metrics (3-D FID)

We compute a lesion-focused 3D FID using the same Frechet distance formula as in Sun et al. (2022),
but with two key adaptations: (1) we first crop each volume to the lesion’s 3D bounding box (plus a 16-
voxel margin) to remove background, (2) we mask-pool original inputs so that only voxels inside the lesion
contribute.

Table 3 lists the resulting FID↓ scores. DiffTumor, which is trained independently for every organ, achieves
the best (lowest) value on every modality—exactly what one would expect given its training objective.
PromptLesion comes second overall, ahead of Med-DDPM, which is consistent with its stronger generative
prior but the absence of FID-specific fine-tuning. Note that, despite these FID rankings, PromptLesion
still yields the highest segmentation Dice in our main results, reaffirming that lesion-FID and downstream
task performance are only loosely correlated on high-contrast medical CT; we therefore report FID for
completeness while using Dice to judge practical utility.

6 Synthetic Image Examples

We provide examples of synthetic lesions generated by the diffusion model on CCTA data for calcified and
non-calcified plaques, as well as on CT scans for tumors in the liver, kidneys, and pancreas. The model
inserts these lesions into anatomically consistent positions by conditioning on healthy patches, ensuring that
the generated region blends naturally with the surrounding structures.
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Table 3: 3-D FID ↓ metric

Method Calcified Non-calcified Liver Kidney Pancreas Average
DiffTumor 4.3 5.5 5.2 5.3 4.8 5.0
Med-DDPM 4.5 6.8 5.9 5.0 6.7 5.8
PromptLesion 5.5 5.9 4.8 5.2 6.2 5.5
PromptLesion† 5.3 5.8 5.0 5.3 5.2 5.3

Figure 1 illustrates examples of calcified plaque (left block) and non-calcified plaque (right block) generation
in CCTA slices, while Figure 2 demonstrates synthetic tumors in the kidney, liver, and pancreas. In each
block of columns, the top row shows a healthy CT/CCTA patch, the second row shows the corresponding
ground-truth label, the third row is the diffusion-based synthetic patch containing the newly introduced
lesion, and the bottom row shows the synthetic lesion mask. Each color-coded column represents a different
lesion type or organ region (e.g., calcified plaque versus non-calcified plaque in CCTA, or various organ
tumors in CT).

For non-calcified plaque synthesis specifically (right block of Figure 1), the grayscale intensities of the gen-
erated lesion can appear quite similar to the surrounding vessel tissue, making it challenging to discern
by visual inspection alone. Nonetheless, our PromptLesion-based diffusion successfully inserts subtle non-
calcified plaques into the healthy context by the prompt. When we use these synthetic volumes (along with
the associated lesion masks) to train segmentation networks, they help alleviate class imbalance and enable
better detection of rare or visually subtle lesions.

Figure 1: Synthetic images for CCTA datasets: In mask images, black refers to background, red denotes
coronary artery wall, green indicates calcified plaque, and purple is non-calcified plaque.

4



Published in Transactions on Machine Learning Research (09/2025)

Figure 2: Synthetic images for tumour datasets: In mask images, red is the background, purple refers to
organ, and black is the target tumour.

7 Pipeline

Figures 3–5 illustrate our end-to-end workflow:

• Step 1 (Figure 3). A VQGAN auto-encoder compresses the input volume into a discrete latent
codebook.

• Step 2 (Figure 4). The PromptLesion diffusion model synthesises class-specific lesions in latent
space, guided by either one-hot or transformer-based prompts.

• Step 3 (Figure 5). Synthetic lesions are decoded back to voxel space and mixed with real scans
to train the segmentation network.

Together, these stages form the data-generation–to-segmentation loop used in all experiments.

Figure 3: Overview for Step 1 (VQGAN autoencoder)
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Figure 4: Overview for Step 2 (PromptLesion)

Figure 5: Overview for Step 3 (Segmentation)
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