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Figure 3: Sample images used during training within the SullyChen (Chen, 2017) dataset. The
clean image and its perturbed variants using all base perturbations are shown. The intensity level
of the images is 0.5, half of the max intensity.

A Datasets and Experiment Setup

Base Perturbations. The description of the base perturbations is given in Sec. 3.1. As
an example, in Fig. 3 we show the clean image and the perturbed images from all base
perturbations. The perturbation intensity is 0.5, half of the maximum intensity.

Driving datasets and perturbed datasets. We use four driving datasets in our experi-
ments: Honda (Ramanishka et al., 2018), Waymo (Sun et al., 2020), A2D2 (Geyer et al.,
2020), and SullyChen (Chen, 2017). Theses datasets have been widely adopted for developing
machine learning models for driving-related tasks (Xu et al., 2019; Shi et al., 2020; Yi et al.,
2021; Shen et al., 2021). Based on these four datasets, we generate test datasets that contain
more than 5M images in six categories. Four of them are gradient-free, named Clean, Single,
Combined, Unseen, and are produced according to Shen to ensure fair comparisons. We also
present details for two gradient-based datasets, FGSM and PGD, which are used to test our
approach’s adversarial transferability in Appendix G.

• Clean: the original driving datasets Honda, Waymo, A2D2, and SullyChen.
• Single: images with a single perturbation applied at five intensity levels from Shen

over the 15 perturbations introduced in Sec. 3.1. This results in 75 test cases in
total.

• Combined: images with multiple perturbations at the intensity levels drawn from
Shen. There are six combined test cases in total.

• Unseen: images perturbed with simulated effects, including fog, snow, rain, frost,
motion blur, zoom blur, and compression, from ImageNet-C (Hendrycks and Diet-
terich, 2019). Each effect is perturbed at five intensity levels for a total of 35 unseen
test cases.

• FGSM: adversarial images generated using FGSM (Goodfellow et al., 2014) with
either the Nvidia model or ResNet-50 trained only on clean data. FGSM generates
adversarial examples in a single step by maximizing the gradient of the loss function
with respect to the images. We generate test cases within the bound L1 norm at
five step sizes ✏ = 0.01, 0.025, 0.05, 0.075 and 0.1.

• PGD: adversarial images generated using PGD (Madry et al., 2017) with either
the Nvidia model or ResNet-50 trained only on clean data. PGD extends FGSM
by taking iterative steps to produce an adversarial example at the cost of more
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Figure 4: Sample images with perturbations for the six test categories. A column represents a single
image that is either clean or perturbed by one of the five perturbation categories. Single images are
perturbed by only one of the perturbations outlined in Sec. 3.1 Unseen images contain corruptions
from ImageNet-C (Hendrycks and Dietterich, 2019). Combined images have multiple perturbations
overlaid, for example, the second column image has G, noise, and blur as the most prominent
perturbations. FGSM and PGD adversarial examples are also shown at increasing intensities. The
visual differences are not salient due to the preservation of gradient-based adversarial attack potency.

computation. Again, we generate test cases at five intensity levels with the same
max bounds as of FGSM.

Sample images for each test category are given in Fig. 4. For Single and Unseen, perturbed
images were selected with intensities from 0.5 to 1.0 to highlight the perturbation.

Network architectures. We test on two backbones, the Nvidia model (Bojarski et al.,
2016) and ResNet-50 (He et al., 2016). We empirically split the Nvidia model where the
encoder is the first seven layers and the regression head is the last two layers; for ResNet-50,
the encoder is the first 49 layers and the regression head is the last fully-connected layer.
The decoder is a five-layer network with ReLU activations between each layer and a Sigmoid
activation for the final layer.

Performance metrics, computing platforms, and training parameters. We evaluate
our approach using mean accuracy (MA) and mean absolute error (MAE). MA is defined
as

P
⌧ acc⌧2T /|T | where acc⌧ = count(|ap � at| < ⌧)/n, where n denotes the number of

test cases, T = {1.5, 3.0, 7.5, 15.0, 30.0, 75.0}, and ap and at are the predicted angle and
true angle, respectively. Note that we do not use the AMAI/MMAI metrics, which are
derived from MA scores, from Shen et al. (2021) since AMAI/MMAI only show performance
improvement while the actual MA scores are more comprehensive. All experiments are
conducted using Intel Core i7-11700k CPU with 32G RAM and Nvidia RTX 3080 GPU. We
use the Adam optimizer (Kingma and Ba, 2014), batch size 124, and learning rate 10�4 for
training. All models are trained for 500 epochs.

B Maximum and Minimum Intensity

We examine the effects of using different ranges of intensities for the perturbations. The
original range of intensities for AutoJoin is [cmin = 0, cmax = 1). We perform two sets
of experiments: 1) we change cmax to be one of {0.9, 1.1, 1.2, 1.3, 1.4, 1.5} while leaving
cmin = 0; and 2) we change cmin to be one of {0.1, 0.2, 0.3, 0.4, 0.5} while leaving cmax = 1.
For the first experiment set, we change cmax to be primarily greater than one to see if
learning on more intense perturbations allows for better performance. We also change cmax

13



Under review as a conference paper at ICLR 2024

Table 7: Comparison results on the SullyChen dataset with the Nvidia model using a different
range of intensities. The first results set show using a different maximum intensity value,
leaving the minimum value at zero. The second results set show using a different minimum
value, leaving the maximum value as one. For both sets, the original range of AutoJoin
achieves the best overall performance.

Clean Single Combined Unseen
MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE

Max 0.9 88.66 3.09 84.64 4.46 67.77 10.11 81.01 5.35
Max 1.1 88.90 3.03 85.50 4.14 67.20 10.44 81.82 5.24
Max 1.2 87.77 3.29 84.47 4.32 67.88 9.88 80.83 5.43
Max 1.3 87.92 3.30 84.70 4.33 67.87 9.94 81.22 5.33
Max 1.4 88.07 3.24 84.95 4.29 67.44 10.15 81.16 5.37
Max 1.5 87.74 3.24 84.56 4.29 65.57 10.85 80.98 5.39
Min 0.1 88.60 3.10 85.33 4.14 67.78 10.01 80.97 5.50
Min 0.2 87.14 3.46 83.95 4.54 66.57 10.49 80.05 5.74
Min 0.3 87.14 3.31 84.27 4.32 66.35 10.60 80.49 5.44
Min 0.4 87.41 3.23 84.18 4.34 66.18 10.65 80.50 5.50
Min 0.5 87.56 3.33 84.20 4.41 65.58 10.87 80.14 5.62
AutoJoin 89.46 2.86 86.90 3.53 64.67 11.21 81.86 5.12

to 0.9 to see if the model does not have to learn on the full range defined by Shen et al.
(2021) and still achieves good performance. For the second experiment set, we increase the
minimum to see if it is sufficient to learn on images with either no perturbation or a low
intensity perturbation to achieve good performance.

Table 7 shows the full set of results for SullyChen using the Nvidia architecture. When
changing cmax, the value of 1.1 achieves the most similar performance compared to the
original range of AutoJoin; however, it still performs worse than the original range overall.
When looking at changing cmin, the value of 0.1 results in the closest performance to the
original range; however, it also fails to outperform the original range. Looking at both sets
of results, changing either cmin or cmax tends to result in the same magnitude of worse
performance for the Clean and Single test categories. However, they differ in that changing
cmin results in worse performance overall in Unseen for both MA and MAE. These results
show a potential vulnerability of the original range as they all outperform the original range
in Combined with cmax being equal to 1.2 showing the best performance in that category.
The results for changing the maximum value show that it is not necessarily the case that
learning on more intense perturbations will lead to overall better performance. This could
be because the perturbations become intense enough that information necessary for steering
angle prediction is lost. The results for changing the minimum value show that it is important
for the model to learn on images with no perturbation or a low intensity perturbation given
that a minimum of 0.1 achieves the best performance within the set. Overall, however, the
original range of AutoJoin achieves the best prediction performance.

The results for A2D2, shown in Table 8, are more inconsistent than SullyChen given that
the original range is outperformed in four columns instead of just two. The original range
is outperformed by changing cmax to 1.3 for the Clean MA and Unseen MA columns and
changing cmax to 1.4 for Combined. Table 8 does show, similar to Table 7, that learning
on more intense perturbations will necessarily lead to better performance when the test
intensities are left unchanged. These results also show it is important to learn on images
without a perturbation/low intensity perturbation given that the original range outperforms
all of the experiments when changing the minimum value. When examining both Table 7
and Table 8, the only times the new ranges outperform the original range of AutoJoin is
when cmax is increased. However, for both SullyChen and A2D2, the original range achieves
the best overall performance.
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Table 8: Comparison results on the A2D2 dataset with the Nvidia model using a different
range of intensities. The first results set show using a different maximum intensity value,
leaving the minimum value at zero. The second results set show using a different minimum
value, leaving the maximum value as one. For both sets, the original range of AutoJoin
achieves the best overall performance.

Clean Single Combined Unseen
MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE

Max 0.9 83.82 7.16 82.13 7.65 74.06 9.79 79.04 8.79
Max 1.1 83.95 7.17 82.78 7.54 78.51 8.87 79.59 8.63
Max 1.2 84.50 7.12 83.34 7.45 79.28 8.50 80.28 8.62
Max 1.3 84.90 7.01 83.60 7.38 79.37 8.65 80.63 8.38
Max 1.4 84.53 7.06 83.48 7.36 79.63 8.41 80.59 8.26
Max 1.5 84.65 6.86 83.39 7.26 79.50 8.57 80.37 8.30
Min 0.1 83.74 7.04 82.22 7.61 73.89 10.84 79.32 8.71
Min 0.2 84.29 7.17 83.19 7.50 77.70 9.28 79.91 8.69
Min 0.3 84.16 7.35 83.12 7.61 77.16 9.16 79.77 8.82
Min 0.4 83.80 7.33 82.82 7.60 77.00 9.20 79.17 8.98
Min 0.5 84.06 7.41 82.93 7.72 75.89 10.17 79.33 9.09
AutoJoin 84.70 6.79 83.70 7.07 79.12 8.58 80.31 8.23

Table 9: Results on the SullyChen dataset with the Nvidia backbone and including the feedback
loop. The weight coefficients are presented in the order of terms of Eq. 2. Given the overall decreased
performance, we exclude the feedback loop from AutoJoin.

Clean Single Combined Unseen
MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE

(10,1,1) 86.93 3.56 83.60 4.66 64.10 11.10 78.88 6.25
(1,10,1) 89.11 3.07 85.60 4.15 68.23 9.70 81.58 5.27
(1,1,10) 81.34 5.08 78.77 6.04 64.36 11.21 76.31 6.71
AutoJoin (1,10) 89.46 2.86 86.90 3.53 64.67 11.21 81.86 5.12

C Feedback Loop

This section contains results and discussion for the SullyChen, A2D2, Honda, and Waymo
datasets. Adding the denoised images results in adding a third term to Eq. 1:

L = �1`2 (x
0
i,xi) + �2`1 (api ,ati) + �3`1(ap0

i
,ati), (2)

where �3 is the weight of the new term and ap0
i

is the predicted steering angle on the
reconstruction x0

i.

Looking at Table 9, emphasizing the reconstruction regression loss causes significant perfor-
mance loss compared to AutoJoin with 8.12% MA/2.22 MAE and 8.13% MA/2.51 MAE
decreases on Clean and Single, respectively. This suggests the data contained within the
reconstructions is detrimental to the overall performance/robust capabilities of the regression
model. Emphasizing reconstruction loss results in worse performance than AutoJoin, which
is expected as AutoJoin emphasizes regression loss for the SullyChen dataset. Emphasizing
the regression loss results in improvements in Combined (3.56% MA and 1.51 MAE) at
the cost of detriment to performance in all other categories. Overall, there is a decrease in
performance when adding the feedback loop.

In Table 10, a similar trend to Table 9 is seen where the weight tuple (1,10,1) is the best
performing of the three weight tuples, while the tuple (1,1,10) offers the worst performance.
This reiterates that emphasizing the reconstruction regressions had detrimental effects, which
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Table 10: Comparison results on the A2D2 dataset with the Nvidia model using different
subsets of the original set of perturbations. The weight coefficients are presented in the
order: reconstruction loss, regression loss, reconstruction regression loss. AutoJoin’s original
set of weights outperforms all three weight coefficient tuples.

Clean Single Combined Unseen
MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE

(10,1,1) 83.98 7.07 82.81 7.44 78.63 8.75 79.26 8.95
(1,10,1) 84.18 7.05 83.09 7.38 77.80 8.81 79.72 8.57
(1,1,10) 83.01 7.42 81.89 7.78 77.21 8.97 79.67 8.39
AutoJoin (1,10) 84.70 6.79 83.70 7.07 79.12 8.58 80.31 8.23

Table 11: Comparison results on the Honda dataset with the ResNet-50 model using different
subsets of the original set of perturbations. The weight coefficients are presented in the order:
reconstruction loss, regression loss, reconstruction regression loss. Adding the feedback loop
for the Honda dataset, results in significant performance loss for all three weight tuples.
Because of this, the original weights of AutoJoin achieve the best performance.

Clean Single Combined Unseen
MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE

(10,1,1) 79.58 6.53 77.19 8.13 65.19 18.21 77.15 8.84
(1,10,1) 85.70 3.53 83.23 4.67 61.41 20.68 81.13 5.72
(1,1,10) 51.30 14.98 49.19 16.79 42.71 22.15 49.15 17.15
AutoJoin (1,10) 96.46 1.12 94.58 1.98 70.70 14.56 91.92 2.89

is potentially due to information loss within the reconstructions. However, A2D2 is less
affected by adding an additional loss term compared to SullyChen. This is seen as the
differences in ranges of performance between the weight coefficients are much greater for
SullyChen than for A2D2. For example, the range of performance on Clean for SullyChen is
7.77% MA/2.01 MAE while for A2D2, it is just 1.17% MA/0.37 MAE. Overall, the original
weights of AutoJoin provide for the best performance.

Table 11) shows the results for Honda with ResNet-50. The results show that adding the
feedback loop for Honda results in significant performance loss, even when emphasizing
regression loss. For example, the greatest differences between the three experiment weight
tuples and AutoJoin’s original weight tuple are 8.12% MA and 2.22 MAE for SullyChen
and 1.91% MA and 0.71 MAE for A2D2. However, the least differences between the three
weight tuples and AutoJoin’s original weight tuple for Honda is 9.29% MA and 2.41 MAE.
Emphasizing the reconstruction regression loss results in significant performance losses of
45.16% MA and 13.86 MAE in Clean, which is a 47% decrease for MA and a 93% decrease for
MAE; Single, Combined, and Unseen also have significant performance losses. Emphasizing
regression loss also results in significant performance loss such as 11.35% MA and 2.69 MAE
decreases in Single; these equates to a 14% MA decrease and 57% MAE decrease. These
significant performance losses are part of our reasoning to exclude the feedback loop as a
main component of AutoJoin. AutoJoin performs better on Honda without the feedback
loop.

Table 12 shows the results for adding the feedback loop to Waymo on ResNet-50. Waymo
uses a weight tuple of (10,1) in AutoJoin for better performance, while the other datasets
use (1,10). This suggests that learning on the underlying distribution of the data and the
reconstructions provide significant benefit over emphasizing regression loss. However, when
adding the feedback loop, emphasizing the regression loss results in better performance than
emphasizing the reconstruction loss; however, both are outperformed by AutoJoin. The
performance trend for Waymo is significantly different from the other datasets as emphasizing
the reconstruction regression loss results in SOTA performance. AutoJoin-Fuse’s results
are shown for further comparison since it is the SOTA within the main text. This is an
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Table 12: Comparison results on the Waymo dataset with the ResNet-50 model using different
subsets of the original set of perturbations. The weight coefficients are presented in the
order: reconstruction loss, regression loss, reconstruction regression loss. Emphasizing the
reconstruction regression loss term results in SOTA performance.

Clean Single Combined Unseen
MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE

(10,1,1) 63.14 19.15 63.38 19.11 57.98 23.15 61.61 20.41
(1,10,1) 63.35 18.89 63.22 19.37 56.32 35.88 62.32 21.31
(1,1,10) 67.70 18.00 66.68 18.28 67.70 18.00 67.70 18.00
AutoJoin (10,1) 64.91 18.02 63.84 19.30 58.74 26.42 64.17 19.10
Fuse (10,1) 65.07 17.60 64.34 18.49 63.48 20.82 65.01 18.17

Table 13: Comparison results on the SullyChen dataset with the Nvidia model looking at the
cases where it is not guaranteed the Full Set of perturbations is seen by the model, not using
Random Intensities, or both. The distinct intensities come from Shen. Using the original
AutoJoin setup results in the best overall performance across all subsets of perturbations.

Clean Single Combined Unseen
MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE

w/o FS 87.74 3.32 84.54 4.34 66.27 10.32 80.62 5.50
w/o RI 88.07 3.42 84.76 4.42 67.72 10.12 80.92 5.65
w/o FS+RI 86.43 3.54 83.19 4.62 61.97 13.01 78.51 6.23
AutoJoin 89.46 2.86 86.90 3.53 64.67 11.21 81.86 5.12

intriguing development because of the negative performance impacts that the feedback loop
has on the other datasets. This result is further evidence towards the idea the learning
underlying distributions of Waymo leads to better performance. Overall, emphasizing the
reconstruction regression results in SOTA performance.

D Full Set of Perturbations Not Guaranteed and No Random
Intensities

From Table 5, AutoJoin without the denoising autoencoder (DAE) already outperforms the
work by Shen et al. (2021). Outside of adding the DAE, the main changes from their work
to our work is that we ensure that all 15 perturbations are seen during learning and that
the intensities are sampled from a range instead of using distinct intensities. Thus, we want
to examine if these changes have an effect on performance and can account for the reason
that AutoJoin without the DAE outperforms the Shen model. We break down this set of
experiments into three sets of cases: 1) not guaranteeing the full set of 15 perturbations are
seen by the model, 2) not using random intensities, or 3) both. The original methodology
of AutoJoin is left the same except for the changes of each case. The third case brings the
methodology of AutoJoin closest to that of the work by Shen et al. (2021) although they are
not the same entirely.

The first case is accomplished by not discretizing the single channel perturbations as described
in Sec. 3.1. Whether to lighten or darken the R, G, B, H, S, and V channels of the images
is decided stochastically. This means there is potential the model does not see all 15
perturbations, although highly unlikely; however, it is highly likely that the model does
not see them with the same frequency as with the original methodology of AutoJoin. The
second case is done by using the five distinct intensities from the work by Shen et al. (2021),
which are {0.02, 0.2, 0.5, 0.65, 1.0}. The intensity for a perturbation is still sampled from
within this set of values, but it is inherently not as wide of a distribution space compared to
the methodology described in Sec. 3.1. The third case combines the changes in procedure
outlined above.
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Table 14: Comparison results on the A2D2 dataset with the Nvidia model looking at the
cases where it is not guaranteed the Full Set of perturbations is seen by the model, not
using Random Intensities, or both. Using the original AutoJoin setup results in the best
overall performance across all subsets of perturbations.

Clean Single Combined Unseen
MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE

w/o FS 83.93 7.24 82.77 7.52 78.60 8.90 78.45 9.78
w/o RI 83.90 6.95 82.68 7.35 78.20 8.72 78.38 9.20
w/o FS+RI 83.90 7.10 82.85 7.42 78.45 8.63 79.01 9.05
AutoJoin 84.70 6.79 83.70 7.07 79.12 8.58 80.31 8.23

Table 15: Comparison results on the Honda dataset with the ResNet-50 model looking at the
cases where it is not guaranteed the Full Set of perturbations is seen by the model, not using
Random Intensities, or both. The model without FS results in the best overall performance
of the model, which is different from the SullyChen, A2D2, and Waymo datasets.

Clean Single Combined Unseen
MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE

w/o FS 96.78 1.05 95.17 1.82 75.16 12.34 91.69 3.27
w/o RI 96.53 1.08 94.92 1.86 68.63 17.14 91.53 3.18
w/o FS+RI 96.72 1.06 95.20 1.80 65.49 24.44 90.97 3.91
AutoJoin 96.46 1.12 94.58 1.98 70.70 14.56 91.92 2.89

Looking at the effects the three cases have on SullyChen and A2D2 using the Nvidia model,
the results show that ensuring all 15 perturbations are seen during learning and sampling
the intensities does improve overall performance when predicting steering angles and these
changes are significant to the training of the model. This gives more credence to why
AutoJoin without the DAE is able to outperform Shen.

The effects of the three cases differs between the two datasets. Table 13 shows that using both
is able to significantly impact performance on all categories by decreasing performance by an
average of 3.20% MA and 1.17 MAE across all test categories for SullyChen. Using distinct
intensities allows for significantly better performance on Combined (the model without FS
also achieves better performance in this category), but fails to outperform in Clean, Single,
and Unseen categories. For A2D2, the overall effect is much less severe as the differences
between the three effects and AutoJoin’s methodology are in closer proximity with roughly a
difference of 1.0% MA and 0.5 MAE. However, the original setup still results in the overall
best steering angle prediction performance.

Table 15 shows the results for Honda with ResNet-50. Unlike SullyChen and A2D2, all
three cases actually outperform AutoJoin for both Clean and Single. AutoJoin is even
outperformed in Combined when not ensuring the full set. Not ensuring the full set has
potential for more variability of when perturbations are learned by the model, which can
increase the perturbation distribution space allowing for better generalization. However,
when not ensuring the full set and using distinct intensities, there is a loss of generalization
as AutoJoin outperforms this case in Combined and Unseen. The Shen model outperforms
AutoJoin in Clean and Combined MAE. Shen still outperforms the case of not ensuring
the full set on Clean, but the Shen model is outperformed on Combined MAE. AutoJoin
achieves the best performance in Unseen amongst all the three cases; however, overall the
model without the full set provides for the best performance.

The idea that ensuring all 15 perturbations are seen during learning and sampling the
perturbation intensities does improve the overall performance of the model returns with
Waymo on ResNet-50. Table 16 shows these results. AutoJoin outperforms all three cases
in Clean, Single MA, and Unseen. It is outperformed by the all three cases in Single MAE
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Table 16: Comparison results on the Waymo dataset with the ResNet-50 model looking at
the cases where it is not guaranteed the Full Set of perturbations is seen by the model, not
using Random Intensities, or both. Using all of them results in the best overall performance
across all subsets of perturbations.

Clean Single Combined Unseen
MA (%) MAE MA (%) MAE MA (%) MAE MA (%) MAE

W/o FS 63.95 18.40 63.40 18.85 61.04 21.46 63.40 19.15
W/o RI 64.12 18.57 63.76 19.14 54.80 32.87 62.27 21.52
W/o FS+RI 63.96 18.51 63.70 18.76 56.25 26.81 62.79 19.81
AutoJoin 64.91 18.02 63.84 19.30 58.74 26.42 64.17 19.10

Table 17: Comparison results on the A2D2 dataset with the Nvidia model using different
subsets of the original set of perturbations. “No BND” means that blur, noise, and distort
are not used within the perturbation set. The single perturbation column is removed for a
fair comparison. Using all of them results in the best overall performance across all subsets
of perturbations.

Clean Combined Unseen
MA (%) MAE MA (%) MAE MA (%) MAE

No RGB 84.46 6.61 77.08 9.51 79.67 8.65
No HSV 84.50 6.70 76.51 9.41 78.01 9.36
No BND 83.72 7.21 68.88 12.09 78.49 9.13
RGB 83.82 7.20 67.49 12.40 76.93 9.87
HSV 83.19 7.26 67.91 12.65 78.00 9.31
Only RGB+Noise 83.92 6.91 73.56 10.03 78.44 8.96
Only HSV+Noise 84.39 6.87 70.96 11.47 79.53 8.61
No Blur,Distort 82.53 7.49 74.99 9.53 77.40 9.57
All 84.70 6.79 79.12 8.58 80.31 8.23

and is outperformed by the model without FS in Combined; however, it outperforms the
other two cases in Combined. Looking at the results for Honda and Waymo, it appears that
not ensuring all 15 perturbations are seen during training provides for the best performance
for Combined; however still fails to outperform AutoJoin in Unseen. These two categories
are different from Clean and Single as the model never learns on them during training. The
model without FS is able to generalize better for Combined than Unseen given the results.

E Perturbation Study

This section contains more results and discussion for the other datasets of A2D2, Honda,
and Waymo for the experiments where different subsets of perturbations are used.

The trends for A2D2 using the Nvidia model are different compared to SullyChen. The results
are given in Table 17. While A2D2 is similar to SullyChen in that the best performance comes
from using all of the perturbations, the model with no BND perturbations performs the worst
on Combined implying that some combination of these perturbations is important for model
generalizability for Combined. This idea is aided by the other scenarios where performance
on Combined is improved when Gaussian noise is added back to the set of perturbations seen
by the model. The closest in overall performance to using all perturbations is not using RGB
perturbations within the training set. For Unseen, there are no clear patterns within the
performances amongst the various subsets with the worst performing subset being not using
blur and distort perturbations at 77.40% MA and 9.57 MAE. The other trend that is similar
to SullyChen, however, is that Combined contains the most volatility in the performance;
the range from the worst performing subset to the best performing subset is 68.88% MA and
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Table 18: Comparison results on the Honda dataset with the ResNet-50 model using different
subsets of the original set of perturbations. “No BND” means that blur, noise, and distort
are not used within the perturbation set. The single perturbation column is removed for a
fair comparison. Using all perturbations is overall the best performing model despite being
outperformed in the Clean and Combined categories.

Clean Combined Unseen
MA (%) MAE MA (%) MAE MA (%) MAE

No RGB 96.78 1.02 66.37 21.67 91.72 3.26
No HSV 96.48 1.07 74.96 13.19 88.25 5.67
No BND 96.08 1.27 63.88 18.97 90.58 3.55
RGB 95.75 1.38 44.90 32.36 83.53 7.32
HSV 95.94 1.31 53.99 29.83 83.53 7.59
Only RGB+Noise 96.39 1.13 69.21 14.48 87.13 5.70
Only HSV+Noise 96.47 1.12 69.08 14.72 91.77 2.93
No Blur,Distort 96.33 1.17 67.74 14.73 91.16 3.15
All 96.46 1.12 70.70 14.56 91.92 2.89

Table 19: Comparison results on the Waymo dataset with the ResNet-50 model using different
subsets of the original set of perturbations. “No BND” means that blur, noise, and distort
are not used within the perturbation set. The single perturbation column is removed for a
fair comparison. Using all of them results in the best overall performance across all subsets
of perturbations.

Clean Combined Unseen
MA (%) MAE MA (%) MAE MA (%) MAE

No RGB 64.63 18.20 60.38 24.79 63.63 19.72
No HSV 63.94 18.46 61.18 20.89 63.09 20.02
No BND 64.56 18.06 50.21 43.28 63.06 20.13
RGB 64.64 18.12 49.32 36.31 62.27 20.25
HSV 65.00 18.37 52.03 34.21 63.85 19.52
Only RGB+Noise 63.95 18.40 52.84 31.01 60.70 23.43
Only HSV+Noise 64.48 17.97 59.97 24.39 63.65 19.37
No Blur,Distort 64.04 18.06 57.29 28.48 62.89 19.91
All 64.91 18.02 58.74 26.42 64.17 19.10

12.09 MAE to 79.12% MA and 8.58 MAE. Using all perturbations during learning results in
the best performance.

Table 18 shows the results for Honda on ResNet-50. Using all perturbations is outperformed
several cases in Clean and Combined. Not using RGB perturbations achieves the best
performance in Clean and not using HSV perturbations achieves the best performance in
Combined (by a significant margin of 4.26% MA/1.37 MAE). Even with the clean performance
increases, the Shen model is still the best in Clean. Well-defined patterns are still not clear
in the results. Not using RGB perturbations performs worse than using all perturbations in
Combined. Not using HSV perturbations significantly improves performance in Combined
at a 4.26% MA and 1.37 MAE improvement; however, results in a significant decrease in
performance in Unseen with 3.67% MA and 2.78 MAE detriments. The range of performance
for Combined is the largest compared to the other categories. This is similar to SullyChen
and A2D2, showing further evidence of the volatility within Combined. The closest in
performance to using all perturbations is not using HSV perturbations; this case results in a
net gain of 0.61% MA and a net loss of 1.36 MAE when compared to using all. Given that
MAE, for Honda, are small values and lie within a tighter range than MA, the net loss of
1.36 MAE means that using all perturbations is actually the best performing model overall.
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Table 20: Table comparing the efficiency of different techniques in terms of time (in seconds)
per each epoch on the ResNet-50 model. AutoJoin is the most efficient out of all the
techniques.

Honda Waymo
Standard 90 97
AugMix 118 128
Shen 759 818
AutoJoin 109 118

Table 21: Table comparing the efficiency of different techniques in terms of time (in seconds)
per each epoch on the Nvidia model. AutoJoin is the most efficient out of all the techniques.

SullyChen A2D2
Standard 2 4
AugMix 10 22
Shen 9 16
AutoJoin 5 9

Table 19 shows the results for Waymo with ResNet-50. Using all perturbations results
in the best overall performance for the model, although not using HSV perturbations
outperforms using all in Combined for both MA and MAE. Combined has the widest range in
performances amongst the subsets confirming that Combined, in general, is the most volatile
in performance across all the datasets used. Not using RGB perturbations, not using HSV
perturbations, and only using HSV perturbations and Gaussian noise outperform using all
perturbations in Combined; however, this does not translate over to Clean and Unseen. Only
using RGB and Gaussian noise perturbations results in the overall worst performance across
the three categories, but any further patterns can not be well-defined from this as using RGB
perturbations and/or Gaussian noise in other cases results in relatively good performance.
Overall, using all perturbations results in the best performing prediction model.

F Times For Experiments

We present Tables 20 and 21 with times for various experiments. Table 20 shows time
(in seconds) per epoch for Standard, AugMix, Shen, and AutoJoin The experiments are
on AutoJoin, Shen, AugMix, and Standard with both the ResNet-50 and Nvidia models.
Standard is given to show baseline efficiency when not performing any robustness training.
From the table, AutoJoin is the most efficient compared to the other techniques. AugMix is
close in efficiency as it is within at most 10 seconds of our technique’s time. Shen’s efficiency
is significantly worse compared to both AutoJoin and AugMix as it is many times slower
than both techniques. Note that for both tables, Shen’s time does not reflect a selection
process that occurs in-between training that results in additional training time.

Table 21 shows the times for Standard, AugMix, Shen, and AutoJoin using the Nvidia
model. Standard is given to provide a baseline efficiency when not performing any robustness
training. AutoJoin still achieves the best efficiency out of the techniques; however, Shen
is more efficient than AugMix, which is not the case in Table 20. This suggests that with
smaller datasets, Shen’s technique is able to maintain efficiency and as the datasets starts
growing, Shen’s efficiency significantly decreases.

G Gradient-based Adversarial Transferability

Although AutoJoin is a gradient-free technique with the focus on gradient-free attacks, we
curiously test it on gradient-based adversarial examples. Dataset details and sample images
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Table 22: Results on gradient-based adversarial examples using the A2D2 dataset and the Nvidia
backbone. Each column represents a dataset generated at a certain intensity of FGSM/PGD (higher
values mean higher intensities). All results are in MA (%). AutoJoin achieves the least adversarial
transferability among all techniques tested under all intensities of FGSM (Goodfellow et al., 2014)
and PGD (Madry et al., 2017).

FGSM
0.01 0.025 0.05 0.075 0.1

Standard 73.91 65.42 57.70 53.27 50.12
AdvBN 76.34 76.14 75.50 74.25 72.75
AugMix 77.66 76.69 73.61 69.74 66.38
AugMax 77.04 76.94 76.18 75.10 73.91
MaxUp 78.71 78.47 78.10 77.42 76.71
Shen 80.10 79.83 79.02 77.94 76.98
AutoJoin 84.11 83.83 83.13 82.02 81.14

PGD
0.01 0.025 0.05 0.075 0.1
73.87 65.60 57.93 53.43 51.07
76.35 76.17 75.62 74.46 72.91
77.65 76.75 73.74 69.75 66.40
77.04 76.93 76.23 75.10 73.91
78.71 78.47 78.09 77.39 76.72
80.09 79.79 79.02 77.93 76.94
84.14 83.84 83.15 81.97 81.09

are given in Appendix A The evaluation results using the A2D2 dataset and the Nvidia
backbone are shown in Table 22. AutoJoin surprisingly demonstrates superb ability in
defending adversarial transferability against gradient-based attacks by outperforming every
other approaches by large margins at all intensity levels of FGSM and PGD.
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