A Proof of Theorem (1]

We first define some notations that will be used in our proof. Given an input x, we define the following
two random variables:

X =x+ e~ N(x,0%1), (11)
Y =x+5+e~N(x+60%0), (12)

where € ~ A(0,021) and ¢ is an adversarial perturbation that has the same size with x. The random
variables X and Y represent random inputs obtained by adding isotropic Gaussian noise to the input x
and its perturbed version x + &, respectively. Cohen et al. [12] applied the standard Neyman-Pearson
lemma [33] to the above two random variables, and obtained the following two lemmas:

Lemma 1 (Neyman-Pearson lemma for Gaussian with different means). Let X ~ N (x,0?1),
Y ~ N(x+6,0%I), and F : R? — {0, 1} be a random or deterministic function. Then, we have
the following:

(HDIFW = {w € R? : §Tw < B} for some B and Pr(F(X) = 1) > Pr(X € W), then

Pr(F(Y)=1)>Pr(Y e W).

2)IfW = {w € R? : §Tw > B} for some B and Pr(F(X) = 1) < Pr(X € W), then

Pr(F(Y)=1)<Pr(Y e W).

Lemma 2. Given an input X, a real number q € [0, 1], as well as regions A and B defined as follows:
A={w: " (w—x) <o |d],® (o)}, (13)
B={w:6"(w—x)>cd], e (1-q)}, (14)

we have the following:

Pr(X e A) =g, (15)
Pr(X € B) =g, (16)
)
PrY € 4) = p(a(g) - ) a7
Pr(Y € B) = ®(®'(q) + —”CETH?). (18)
Proof. Please refer to [12]. O

Next, we first generalize the Neyman-Pearson lemma to the case of multiple functions and then derive
the lemmas that will be used in our proof.
Lemma 3. Let X, Y be two random variables whose probability densities are respectively Pr(X =
w) and Pr(Y = w), wherew € R% Let Fy, Fy,--- , F; : RY — {0, 1} be t random or deterministic
functions. Let k' be an integer such that:
t
ZFi(l\w) < k' ,vw e R?, (19)

i=1

where F;(1|w) denotes the probability that F;(w) = 1. Then, we have the following:

— . — _ Xio Pr(F(X)=1)
(1) IfW ={w € ]Rii : Pr(Y = w)/Pr(X = w) < u} for some p > 0 and ==—7-~— >
Pr(X € W), then 2=t 20 000=0 > pry e W),

- . _ _ Sy PrFi(X)=1)
2)IfW ={w € R* : P(Y = w)/Pr(X = w) > p} for some i > 0 and ==-"7"2— <

Pr(X € W), then W < Pr(Y e W).

Proof. We first prove part (1). For convenience, we denote the complement of W as W €. Then, we
have the following:

PO =1 iy ©0)
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t
= W -Pr(Y = w)dw — / Pr(Y = w)dw 21
Rd

w
> i Fi(lw) _ > Fi(llw) _ _
S Pr(Y = w)dw + /W == Pr(Y = w)dw — /W Pr(Y —(vzvz);lw
ZE:I Fi(llw) -Pr(Y =w)dw — — 725:1 Fi(ljw) -Pr(Y = w)dw
[ 2 SO (Y = wya /W(1 ) (Y = w)d (23)
S| ZimElW) 5}'(”‘”) Pr(X = w)dw — / (1 - 2z FiIW) gi(llw)) Pr(X =w)dw]  (24)
we w
=pu-[ - w Pr(X = w)dw + /W W -Pr(X =w)dw — /W Pr(X = w)dw]
(25)
=n-| M Pr(X = w)dw — / Pr(X = w)dw] (26)
Rd k w
—u- [Zi:l Pr(Z(X) - 1) . Pr(X c W)] (27)
>0. (28)

We have Equation [24] from [23| due to the fact that Pr(Y = w)/Pr(X = w) < p,Vw € W,

Pr(Y =w)/Pr(X =w) > p,Vw € W€ and 1 — w > 0. Similarly, we can prove the
part (2). We omit the details for conciseness reason. O]

We apply the above lemma to random variables X and Y, and obtain the following lemma:

Lemmad. Let X ~ N(x,0%1), Y ~ N(x +6,021I), F1, Fy,--- , Fy : R? — {0,1} be t random
or deterministic functions, and k' be an integer such that:

¢
ZFZ-(HW) < k' ,Vw e R?, (29)
i=1
where F;(1|w) denote the probability that F;(w) = 1. Then, we have the following:

(DIFW = {w € R : §Tw < B}forsomeﬁandw

T PUBMIZY > pry e W),

> Pr(X € W), then

o . St Pr(Fi(X)=1)
(2)tIfW = {w € R? : §Tw > B} for some B and ==—"7"=—

SRS py e ),

< Pr(X € W), then

By leveraging Lemma[2] Lemma[3] and Lemmaf] we derive the following lemma:

Lemma 5. Suppose we have an arbitrary base multi-label classifier f, an integer k', an input X,
an arbitrary set denoted as O, two label probability bounds po and pg that satisfy po < po =

> ico Prii € fi (X)) < Do, as well as regions Ao and Bo defined as follows:

Ao = {w: 87 (w —x) < o o]}, @ (52)) (30)
Bo = {w: 67 (w —x) > oo, (1 - £2)} (1)
Then, we have:
Pr(X € Ap) < Lico Pr(jf Jw (X)) < Pr(X € Bo) (32)
PrY € Ag) < 20U SN < iy ¢ g, (33)
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Proof. We know Pr(X € Ap) = 1;:(,) based on Lemma [2} Moreover, based on the condition
Po < Y ico Pr(i € fr/(X)), we obtain the first inequality in quation Similarly, we can obtain
the second inequality in Equation[32] We define F;(w) = 1(i € fi (w)),Vi € O, where [ is indicator
function. Then, we have Pr(X € Ap) < Zieopr(,j,ef’“'(x)) = Z"eoprgfi(x)zl). Note that there
are k’ elements in fir (w),Vw € RY, therefore, we have >, Fi(1|lw) = >, 1(i € fi(w)) <
k',¥w € R%. Then, we can apply Lemma@] and we have the following:

2icoPrFi(Y) =1) Yo Pr(i € fwr(Y))

Pr(Y € Ap) < o = i , (34)
which is the first inequality in Equation Similarly, we can obtain the second inequality in
Equation [33] O

Based on Lemma[I]and Lemma[2] we derive the following lemma:

Lemma 6. Suppose we have an arbitrary base multi-label classifier f, an integer k', an input
x, an arbitrary label which is denoted as I, two label probability bounds p, and D, that satisfy

p < pi = Pr(l € fir(X)) <y, and regions A; and B, defined as follows:

Ar={w:6"(w—x) <], ® " (p)} (35)

By ={w: 0" (w—x)>0ld],® (1 -p)} (36)
Then, we have:

Pr(X e A) <Pr(l e fr(X)) <Pr(X € B)) 37)

Pr(Y e A)) <Pr(l e fi(Y)) <Pr(Y € B)) (38)

Proof. We know Pr(X € A;) = p; based on Lemma 2l Moreover, based on the condition p; <
Pr(l € fir(X)), we obtain the first inequality in Equation 37} Similarly, we can obtain the second
inequality in Equation We define F(w) = I(l € fr/(w)). Based on the first inequality in
Equation[37] we know Pr(X € A;) < Pr(l € fi (X)) = Pr(F(X) = 1). Then, we apply Lemmall]
and we have the following:

Pr(Y € A) <Pr(F(Y)=1)=Pr(l € fr(Y)), (39)
which is the first inequality in Equation The second inequality in Equation [38]can be obtained
similarly. O

Next, we formally show our proof for Theorem I}

Proof. We leverage the law of contraposition to prove our theorem. Roughly speaking, if we have a
statement: P — @, then, it’s contrapositive is: =) — —P, where — denotes negation. The law of
contraposition claims that a statement is true if, and only if, its contrapositive is true. We define the
predicate P as follows:

_ R d—et1 K _4,Pr., R
(D (p, ) — = Yoop(p! _
mas{B(@ " (pa,) — ), e T B(@ () - 7))

. 1 R k—e+1k‘/ _ ﬁA R
(! = — (=) + ) 40
>min{®(®7(p,,) + —), max — - (7 (— ) + )} (40)

We define the predicate @ as follows:

|L(x) Ngr(x+96)| > e. 41)

min
5101, <R
We will first prove the statement: P — (. To prove it, we consider its contrapositive, i.e., we prove
the following statement: =Q) — —P.

Deriving necessary condition: Suppose =@ is true, i.e., mins 5|, <r [L(x) N gr(x +6)| < e. On
the one hand, this means there exist at least d — e + 1 elements in L(x) do not appear in gx(x +J). For
convenience, we use U, C L(x) to denote those elements, a subset of L(x) with r elements where
r = d—e+1. On the other hand, there exist at least k — e+ 1 elements in {1,2, - - - , ¢} \ L(x) appear
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in gi(x +0). Weuse Vs C {1,2,--- , ¢} \ L(x) to denote them, a subset of {1,2,--- ,c} \ L(x)
with s = k — e + 1 elements. Formally, we have the following:
U, C L(x), U Ngp(x+6) =10 42)
AV, C{1,2,--- ,e} \ L(x),Vs C gp(x+9), 43)
In other words, there exist sets I/, and V, such that the adversarially perturbed label probability p;’s

for elements in V, are no smaller than these for the elements in U/,.. Formally, we have the following
necessary condition if |L(x) N gx(x + 0)| < e:

i Pr(i (Y)) < in Pr(j (Y 44

min max Pr(i € fi(Y)) < max min r(j € fir(Y)) (44)

Bounding max;cy, Pr(i € fiy(Y)) and minjcy, Pr(j € fi(Y)) for given U/, and V,: For

simplicity, we assume U, = {wy, ws, - - - , w, }. Without loss of generality, we assume p,,, > Dy, >

“++ > Dy, Similarly, we assume Vs = {21, 22, , 25} andp, > --- > D, > D, . For an arbitrary
element 7 € U,., we define the following region:

Ai = {w: 6" (w—x) <o |6, 27 (p:)} (45)

Then, we have the following for any i € U,.:
1191l

Pr(i € fir(Y)) > Pr(Y € A;) = (@ (p;) -

) (40)

We obtain the first inequality from Lemma 6] and the second equality from Lemma 2] Similarly, for
an arbitrary element 5 € V,, we define the following region:

Bj={w:6"(w—x)>0c|d],® (1 -p,)} 47)

Then, based on Lemma(6|and Lemma 2} we have the following:

. o 1)
Therefore, we have the following:
grelgicPr(z € fir(Y)) (49)
> @) — 122y = e a@ i) - 1)~ pamip,,) - L)
1EU, — g i€{wi,wa, - ,wy} - o g
(50
min Pr(j € fus (V) (51)
JEVs
. 1y, I6lley : Camy W6lley et 1011,
< min ®(®~(p;) + )= min  ®(@(p;)+ ) =22 (p.,) + —=) (52)
JEVs o j€{z1,22, 25} g g

Next, we consider all possible subsets of /. and V,. We denote I';, C U,., a subset of u elements in
U,., and denote A, C Vs, a subset of v elements in V. Then, we have the following:

Pr(z (Y)) > Pr(z (Y
max (i € fir(Y)) > nax max r(i € fi (Y)) (53)
in Pr(j (Y)) £ mi in Pr(j (Y 4
min Pr(j € fir(Y)) < min min Pr(j € /i (Y)) (54)
We define the following quantities:
pr,= Y _piandp, = Y P, (55)
i€Ty, JEA,

Given these quantities, we define the following region based on Equation 30}

Pr.

Ar, ={w: 8" (w —x) <o g, @7 (5)} (56)
Br, = (w67 (w—x) > 0 a7 (1 - P2} 57)
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Then, we have the following:

Zie[‘u PI'(Z € fkr’ (Y))

I (58)
>Pr(Y € Ar,) (59)
_ (-1 (P _ 19lls
=2(®7 (557 — =) (60)

We have Equation [59] from 58] based on Lemma [5] and we have Equation [60] from [59] based on
Lemma 2] Therefore, we have the following:

HEI%XPr(i € fir(Y)) (61)
ZZZEF” Pr(i € fk’ (Y)) (62)
u
g (B _ 191l
B e By - 63

We have Equation [62] from [61] because the maximum value is no smaller than the average value.
Similarly, we have the following:
K 151l

min Pr(j € fir(Y)) < - (@7 (2 )t (64)

Recall that we have p,,, > P, > > D
consideration, we have the following:

for U,. By taking all possible I',, with v elements into

Wy

k' 1P 61,

max Pr(i € fi(Y)) 2 max maxPr(i € fi(Y)) 2 p_max M};‘I’(‘If &) ——7)
(65)
In other words, we only need to consider I', = {wq,- -+ ,w,}, i.e., a subset of u elements in U,

whose label probability upper bounds are the largest, where ties are broken uniformly at random. The
reason is that &(d~ (p,: =) — ”5”2) increases as pr, increases. Combining with Equations @ we
have the following:

1611, K pry . |l9ll,

maxPr(i € fir (V) 2 max{®(® (puy) = = #),  _max e
(66)
Similarly, we have the following:
min PI‘(] c fk’( )) < min{(I)((I)_l(ﬁ )+ m) min ]i/ . (I)((I,— ( ) ||6||2)}
JEVs o 1 o ,Av:{zl,-n,zv} v k! o
(67)

Bounding min;;, max;cy, Pr(i € fir(Y)) and maxy, min;cp, Pr(j € fir(Y)): We have the
following:

min ?égicPr(z € fir(Y)) (63)
- dl K _1,br. 0]
> 1 L) — ”72 _— . 1 ) — 72
Hl}{nmaX{ze{wlI,gi}s,wT}@(q) (&) g )7Fu={rur111§7i'}'(' s wy b U Q)((I) ( k' ) g )}
(69)
- gl K _1, P 6]l
> ma ma O(d1 i—”—2, ma — L P(PTI(=) - 2
B X{ie{ae,ae+1}f~u,ak} ( (g) g ) Fu:{aev“'v)‘(le+u—1} u ( ( k/ ) g )}
(70)
- dl K L N I
= O(d1 — H72 2L =) - 2 1
max{®(®™ (pa,) — — )7“:{%1}1_%7};6%1} L 2@ (5 - ) (71)
_ 1y 8llpy dmeti B oy PRy [0l
—ma{ (B (p,,) — 1 2), Y e a@ () - D)) 72
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Algorithm 1: Computing the Certified Intersection Size

Input: f, x, L(x), R, k', k, n, 0, and «.
Output: Certified intersection size.

xt x% ... x" + RANDOMSAMPLE(x, o)
counts[i] « ;. I(i € f(x")),i=1,2,--- ,c
Pi,P; < PROBBOUNDESTIMATION(counts, ), € L(x),j € {1,2,---,¢c} \ L(x)

e < BINARYSEARCH(a, k', k, R, {pi|i € L(x)},{p;lj € {1,2,---,¢c} \ L(x)})
return e B

where T, = {ae,  ,Geru_1} We have Equation from [69 because
§ / u 5
maX{maXzE{un Wa, Wy} G ( i) — ! HQ) MaXp, ={wy, ,wu} o E - PP (plf ) — I ”2 )}
reaches the minimal value when U, contains r elements with smallest label probability lower bounds,
ie, U, ={ae,et1, " ,aq}, where r = d — e + 1. Similarly, we have the following:
I . 1 Iollyy s K - 161l
max min Pr(j € fir (Y)) < min{®(®™"(ps,) + ), min - P(P ( <)+ )} (73)
Vs JEVs . o v=1 v k'

where A, = {bs_y41, -+ ,bstands =k —e+ 1.

Applying the law of contraposition: Based on necessary condition in Equation if we have
|T N gr(x + 0)| < e, then, we must have the following:

_ 0llg, d—et1 K’ _q1,Pr. 1ol
(D (p, _ lisll, — . P(P(=) - 22 74
max{®(0 (p,,) — 12 12), max' - (@ (=2) - 22)) (74)
< ’
rr&lrngrel%{xPr(z € fi(Y)) (75)
< max min Pr(] € fi(Y)) (76)
Vs jJEV,
) k—et+1 [/ )
oo, )+ Bl win' & (@ (P 4 ) )
We apply the law of contraposition and we obtain the statement: if we have the following:
- Olly. dees1 k' S e )
P(d 1 W) — || 2 (P To—x2y 2
ma{ (B (pa,) — 1212), k' T @(a7}(E2) - 2
) —et1 K )
> min{®(®~ (5, )+w),kma§l—~q>(<bfl( L) 4 H ||2)}, (78)
s o v=1 0 k' o

Then, we must have |L(x) N gi(x + 6)| > e. From Equation|8] we know that Equation [78]is satisfied
for V' ||d]|, < R. Therefore, we reach our conclusion. O
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Figure 2: Comparing MultiGuard with with Jia et al. on MS-COCO (first row) and NUS-
WIDE (second row) dataset.
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Figure 3: Impact of £’ on the certified top-k precision@ R, certified top-% recall@ R, and
certified top-% f1-score@ R on MS-COCO (first row) and NUS-WIDE (second row) dataset.
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Figure 4: Impact of & on the certified top-% precision@ R, certified top-% recall@ R, and certified
top-k fl-score@ R on MS-COCO (first row) and NUS-WIDE (second row) dataset.
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Figure 6: Training the base multi-label classifier with vs. without noise on Pascal VOC (first
row), MS-COCO (second row) and NUS-WIDE (third row) datasets.
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