A Proof of Theorem 1

We first define some notations that will be used in our proof. Given an input x, we define the following two random variables:

$$\mathbf{X} = \mathbf{x} + \epsilon \sim \mathcal{N}(\mathbf{x}, \sigma^2 I),\tag{11}$$

$$\mathbf{Y} = \mathbf{x} + \delta + \epsilon \sim \mathcal{N}(\mathbf{x} + \delta, \sigma^2 I), \tag{12}$$

where $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$ and δ is an adversarial perturbation that has the same size with \mathbf{x} . The random variables \mathbf{X} and \mathbf{Y} represent random inputs obtained by adding isotropic Gaussian noise to the input \mathbf{x} and its perturbed version $\mathbf{x} + \delta$, respectively. Cohen et al. [12] applied the standard Neyman-Pearson lemma [33] to the above two random variables, and obtained the following two lemmas:

Lemma 1 (Neyman-Pearson lemma for Gaussian with different means). Let $\mathbf{X} \sim \mathcal{N}(\mathbf{x}, \sigma^2 I)$, $\mathbf{Y} \sim \mathcal{N}(\mathbf{x} + \delta, \sigma^2 I)$, and $F : \mathbb{R}^d \to \{0, 1\}$ be a random or deterministic function. Then, we have the following:

(1) If
$$W = \{ \mathbf{w} \in \mathbb{R}^d : \delta^T \mathbf{w} \leq \beta \}$$
 for some β and $Pr(F(\mathbf{X}) = 1) \geq Pr(\mathbf{X} \in W)$, then $Pr(F(\mathbf{Y}) = 1) \geq Pr(\mathbf{Y} \in W)$.

(2) If
$$W = \{ \mathbf{w} \in \mathbb{R}^d : \delta^T \mathbf{w} \geq \beta \}$$
 for some β and $Pr(F(\mathbf{X}) = 1) \leq Pr(\mathbf{X} \in W)$, then $Pr(F(\mathbf{Y}) = 1) \leq Pr(\mathbf{Y} \in W)$.

Lemma 2. Given an input \mathbf{x} , a real number $q \in [0,1]$, as well as regions \mathcal{A} and \mathcal{B} defined as follows:

$$\mathcal{A} = \{ \mathbf{w} : \delta^T(\mathbf{w} - \mathbf{x}) \le \sigma \|\delta\|_2 \Phi^{-1}(q) \}, \tag{13}$$

$$\mathcal{B} = \{ \mathbf{w} : \delta^T(\mathbf{w} - \mathbf{x}) \ge \sigma \|\delta\|_2 \Phi^{-1}(1 - q) \}, \tag{14}$$

we have the following:

$$Pr(\mathbf{X} \in \mathcal{A}) = q,\tag{15}$$

$$Pr(\mathbf{X} \in \mathcal{B}) = q,\tag{16}$$

$$Pr(\mathbf{Y} \in \mathcal{A}) = \Phi(\Phi^{-1}(q) - \frac{\|\delta\|_2}{\sigma}),\tag{17}$$

$$Pr(\mathbf{Y} \in \mathcal{B}) = \Phi(\Phi^{-1}(q) + \frac{\|\delta\|_2}{\sigma}). \tag{18}$$

Proof. Please refer to [12].

Next, we first generalize the Neyman-Pearson lemma to the case of multiple functions and then derive the lemmas that will be used in our proof.

Lemma 3. Let X, Y be two random variables whose probability densities are respectively $Pr(X = \mathbf{w})$ and $Pr(Y = \mathbf{w})$, where $\mathbf{w} \in \mathbb{R}^d$. Let $F_1, F_2, \dots, F_t : \mathbb{R}^d \to \{0, 1\}$ be t random or deterministic functions. Let k' be an integer such that:

$$\sum_{i=1}^{t} F_i(1|\mathbf{w}) \le k', \forall \mathbf{w} \in \mathbb{R}^d, \tag{19}$$

where $F_i(1|\mathbf{w})$ denotes the probability that $F_i(\mathbf{w}) = 1$. Then, we have the following:

(1) If
$$W = \{\mathbf{w} \in \mathbb{R}^d : Pr(\mathbf{Y} = \mathbf{w})/Pr(\mathbf{X} = \mathbf{w}) \le \mu\}$$
 for some $\mu > 0$ and $\frac{\sum_{i=1}^t Pr(F_i(\mathbf{X}) = 1)}{k'} \ge Pr(\mathbf{X} \in W)$, then $\frac{\sum_{i=1}^t Pr(F_i(\mathbf{Y}) = 1)}{k'} \ge Pr(\mathbf{Y} \in W)$.

(2) If
$$W = \{\mathbf{w} \in \mathbb{R}^d : \Pr(\mathbf{Y} = \mathbf{w}) / \Pr(\mathbf{X} = \mathbf{w}) \ge \mu\}$$
 for some $\mu > 0$ and $\frac{\sum_{i=1}^t \Pr(F_i(\mathbf{X}) = 1)}{k'} \le \Pr(\mathbf{X} \in W)$, then $\frac{\sum_{i=1}^t \Pr(F_i(\mathbf{Y}) = 1)}{k'} \le \Pr(\mathbf{Y} \in W)$.

Proof. We first prove part (1). For convenience, we denote the complement of W as W^c . Then, we have the following:

$$\frac{\sum_{i=1}^{t} \Pr(F_i(\mathbf{Y}) = 1)}{k'} - \Pr(\mathbf{Y} \in W)$$
(20)

$$= \int_{\mathbb{R}^d} \frac{\sum_{i=1}^t F_i(1|\mathbf{w})}{k'} \cdot \Pr(\mathbf{Y} = \mathbf{w}) d\mathbf{w} - \int_{W} \Pr(\mathbf{Y} = \mathbf{w}) d\mathbf{w}$$

$$= \int_{W_c} \frac{\sum_{i=1}^t F_i(1|\mathbf{w})}{k'} \cdot \Pr(\mathbf{Y} = \mathbf{w}) d\mathbf{w} + \int_{W} \frac{\sum_{i=1}^t F_i(1|\mathbf{w})}{k'} \cdot \Pr(\mathbf{Y} = \mathbf{w}) d\mathbf{w} - \int_{W} \Pr(\mathbf{Y} = \mathbf{w}) d\mathbf{w}$$
(21)

$$= \int_{W_c} \frac{\sum_{i=1}^t F_i(1|\mathbf{w})}{k'} \cdot \Pr(\mathbf{Y} = \mathbf{w}) d\mathbf{w} - \int_{W} \left(1 - \frac{\sum_{i=1}^t F_i(1|\mathbf{w})}{k'}\right) \cdot \Pr(\mathbf{Y} = \mathbf{w}) d\mathbf{w}$$
(23)

$$\geq \mu \cdot \left[\int_{W^c} \frac{\sum_{i=1}^t F_i(1|\mathbf{w})}{k'} \cdot \Pr(\mathbf{X} = \mathbf{w}) d\mathbf{w} - \int_{W} \left(1 - \frac{\sum_{i=1}^t F_i(1|\mathbf{w})}{k'}\right) \cdot \Pr(\mathbf{X} = \mathbf{w}) d\mathbf{w} \right]$$
(24)

$$= \mu \cdot \left[\int_{W^c} \frac{\sum_{i=1}^t F_i(1|\mathbf{w})}{k'} \cdot \Pr(\mathbf{X} = \mathbf{w}) d\mathbf{w} + \int_{W} \frac{\sum_{i=1}^t F_i(1|\mathbf{w})}{k'} \cdot \Pr(\mathbf{X} = \mathbf{w}) d\mathbf{w} - \int_{W} \Pr(\mathbf{X} = \mathbf{w}) d\mathbf{w} \right]$$
(25)

$$= \mu \cdot \left[\int_{\mathbb{R}^d} \frac{\sum_{i=1}^t F_i(1|\mathbf{w})}{k'} \cdot \Pr(\mathbf{X} = \mathbf{w}) d\mathbf{w} - \int_W \Pr(\mathbf{X} = \mathbf{w}) d\mathbf{w} \right]$$
 (26)

$$=\mu \cdot \left[\frac{\sum_{i=1}^{t} \Pr(F_i(\mathbf{X}) = 1)}{k'} - \Pr(\mathbf{X} \in W)\right]$$
(27)

$$\geq 0.$$
 (28)

We have Equation 24 from 23 due to the fact that $\Pr(\mathbf{Y} = \mathbf{w})/\Pr(\mathbf{X} = \mathbf{w}) \leq \mu, \forall \mathbf{w} \in W,$ $\Pr(\mathbf{Y} = \mathbf{w})/\Pr(\mathbf{X} = \mathbf{w}) > \mu, \forall \mathbf{w} \in W^c$, and $1 - \frac{\sum_{i=1}^t F_i(1|\mathbf{w})}{k'} \geq 0$. Similarly, we can prove the part (2). We omit the details for conciseness reason.

We apply the above lemma to random variables X and Y, and obtain the following lemma:

Lemma 4. Let $\mathbf{X} \sim \mathcal{N}(\mathbf{x}, \sigma^2 I)$, $\mathbf{Y} \sim \mathcal{N}(\mathbf{x} + \delta, \sigma^2 I)$, $F_1, F_2, \cdots, F_t : \mathbb{R}^d \to \{0, 1\}$ be t random or deterministic functions, and k' be an integer such that:

$$\sum_{i=1}^{t} F_i(1|\mathbf{w}) \le k', \forall \mathbf{w} \in \mathbb{R}^d, \tag{29}$$

where $F_i(1|\mathbf{w})$ denote the probability that $F_i(\mathbf{w}) = 1$. Then, we have the following:

(1) If
$$W = \{\mathbf{w} \in \mathbb{R}^d : \delta^T \mathbf{w} \leq \beta\}$$
 for some β and $\frac{\sum_{i=1}^t Pr(F_i(\mathbf{X})=1)}{k'} \geq Pr(\mathbf{X} \in W)$, then $\frac{\sum_{i=1}^t Pr(F_i(\mathbf{Y})=1)}{k'} \geq Pr(\mathbf{Y} \in W)$.

(2) If
$$W = \{ \mathbf{w} \in \mathbb{R}^d : \delta^T \mathbf{w} \geq \beta \}$$
 for some β and $\frac{\sum_{i=1}^t Pr(F_i(\mathbf{X})=1)}{k'} \leq Pr(\mathbf{X} \in W)$, then $\frac{\sum_{i=1}^t Pr(F_i(\mathbf{Y})=1)}{k'} \leq Pr(\mathbf{Y} \in W)$.

By leveraging Lemma 2, Lemma 3, and Lemma 4, we derive the following lemma:

Lemma 5. Suppose we have an arbitrary base multi-label classifier f, an integer k', an input \mathbf{x} , an arbitrary set denoted as O, two label probability bounds $\underline{p_O}$ and $\overline{p_O}$ that satisfy $\underline{p_O} \leq p_O = \sum_{i \in O} Pr(i \in f_{k'}(\mathbf{X})) \leq \overline{p_O}$, as well as regions \mathcal{A}_O and \mathcal{B}_O defined as follows:

$$\mathcal{A}_O = \{ \mathbf{w} : \delta^T(\mathbf{w} - \mathbf{x}) \le \sigma \|\delta\|_2 \Phi^{-1}(\frac{p_O}{\overline{l'}}) \}$$
(30)

$$\mathcal{B}_O = \{ \mathbf{w} : \delta^T(\mathbf{w} - \mathbf{x}) \ge \sigma \|\delta\|_2 \Phi^{-1} (1 - \frac{\overline{p}_O}{k'}) \}$$
(31)

Then, we have:

$$Pr(\mathbf{X} \in \mathcal{A}_O) \le \frac{\sum_{i \in O} Pr(i \in f_{k'}(\mathbf{X}))}{k'} \le Pr(\mathbf{X} \in \mathcal{B}_O)$$
 (32)

$$Pr(\mathbf{Y} \in \mathcal{A}_O) \le \frac{\sum_{i \in O} Pr(i \in f_{k'}(\mathbf{Y}))}{k'} \le Pr(\mathbf{Y} \in \mathcal{B}_O)$$
 (33)

Proof. We know $\Pr(\mathbf{X} \in \mathcal{A}_O) = \frac{p_O}{k'}$ based on Lemma 2. Moreover, based on the condition $\underline{p_O} \leq \sum_{i \in O} \Pr(i \in f_{k'}(\mathbf{X}))$, we obtain the first inequality in Equation 32. Similarly, we can obtain the second inequality in Equation 32. We define $F_i(\mathbf{w}) = \mathbb{I}(i \in f_{k'}(\mathbf{w})), \forall i \in O$, where \mathbb{I} is indicator function. Then, we have $\Pr(\mathbf{X} \in \mathcal{A}_O) \leq \frac{\sum_{i \in O} \Pr(i \in f_{k'}(\mathbf{X}))}{k'} = \frac{\sum_{i \in O} \Pr(F_i(\mathbf{X}) = 1)}{k'}$. Note that there are k' elements in $f_{k'}(\mathbf{w}), \forall \mathbf{w} \in \mathbb{R}^d$, therefore, we have $\sum_{i \in O} F_i(1|\mathbf{w}) = \sum_{i \in O} \mathbb{I}(i \in f_{k'}(\mathbf{w})) \leq k', \forall \mathbf{w} \in \mathbb{R}^d$. Then, we can apply Lemma 4 and we have the following:

$$\Pr(\mathbf{Y} \in \mathcal{A}_O) \le \frac{\sum_{i \in O} \Pr(F_i(\mathbf{Y}) = 1)}{k'} = \frac{\sum_{i \in O} \Pr(i \in f_{k'}(\mathbf{Y}))}{k'},\tag{34}$$

which is the first inequality in Equation 33. Similarly, we can obtain the second inequality in Equation 33. \Box

Based on Lemma 1 and Lemma 2, we derive the following lemma:

Lemma 6. Suppose we have an arbitrary base multi-label classifier f, an integer k', an input \mathbf{x} , an arbitrary label which is denoted as l, two label probability bounds $\underline{p_l}$ and $\overline{p_l}$ that satisfy $p_l \leq p_l = Pr(l \in f_{k'}(\mathbf{X})) \leq \overline{p_l}$, and regions \mathcal{A}_l and \mathcal{B}_l defined as follows:

$$\mathcal{A}_{l} = \{ \mathbf{w} : \delta^{T}(\mathbf{w} - \mathbf{x}) \le \sigma \|\delta\|_{2} \Phi^{-1}(p_{l}) \}$$
(35)

$$\mathcal{B}_l = \{ \mathbf{w} : \delta^T(\mathbf{w} - \mathbf{x}) \ge \sigma \|\delta\|_2 \Phi^{-1}(1 - \overline{p}_l) \}$$
(36)

Then, we have:

$$Pr(\mathbf{X} \in \mathcal{A}_l) \le Pr(l \in f_{k'}(\mathbf{X})) \le Pr(\mathbf{X} \in \mathcal{B}_l)$$
 (37)

$$Pr(\mathbf{Y} \in \mathcal{A}_l) \le Pr(l \in f_{k'}(\mathbf{Y})) \le Pr(\mathbf{Y} \in \mathcal{B}_l)$$
 (38)

Proof. We know $\Pr(\mathbf{X} \in \mathcal{A}_l) = \underline{p_l}$ based on Lemma 2. Moreover, based on the condition $\underline{p_l} \leq \Pr(l \in f_{k'}(\mathbf{X}))$, we obtain the first inequality in Equation 37. Similarly, we can obtain the second inequality in Equation 37. We define $F(\mathbf{w}) = \mathbb{I}(l \in f_{k'}(\mathbf{w}))$. Based on the first inequality in Equation 37, we know $\Pr(\mathbf{X} \in \mathcal{A}_l) \leq \Pr(l \in f_{k'}(\mathbf{X})) = \Pr(F(\mathbf{X}) = 1)$. Then, we apply Lemma 1 and we have the following:

$$Pr(\mathbf{Y} \in \mathcal{A}_l) \le Pr(F(\mathbf{Y}) = 1) = Pr(l \in f_{k'}(\mathbf{Y})), \tag{39}$$

which is the first inequality in Equation 38. The second inequality in Equation 38 can be obtained similarly. \Box

Next, we formally show our proof for Theorem 1.

Proof. We leverage the law of contraposition to prove our theorem. Roughly speaking, if we have a statement: $P \to Q$, then, it's contrapositive is: $\neg Q \to \neg P$, where \neg denotes negation. The law of contraposition claims that a statement is true if, and only if, its contrapositive is true. We define the predicate P as follows:

$$\max\{\Phi(\Phi^{-1}(\underline{p_{a_e}}) - \frac{R}{\sigma}), \max_{u=1}^{d-e+1} \frac{k'}{u} \cdot \Phi(\Phi^{-1}(\frac{\underline{p_{\Gamma_u}}}{k'}) - \frac{R}{\sigma})\}$$

$$> \min\{\Phi(\Phi^{-1}(\overline{p_{b_s}}) + \frac{R}{\sigma}), \max_{u=1}^{k-e+1} \frac{k'}{v} \cdot \Phi(\Phi^{-1}(\frac{\overline{p_{\Lambda_v}}}{k'}) + \frac{R}{\sigma})\}. \tag{40}$$

We define the predicate Q as follows:

$$\min_{\delta, \|\delta\|_2 \le R} |L(\mathbf{x}) \cap g_k(\mathbf{x} + \delta)| \ge e. \tag{41}$$

We will first prove the statement: $P \to Q$. To prove it, we consider its contrapositive, i.e., we prove the following statement: $\neg Q \to \neg P$.

Deriving necessary condition: Suppose $\neg Q$ is true, i.e., $\min_{\delta, \|\delta\|_2 \le R} |L(\mathbf{x}) \cap g_k(\mathbf{x} + \delta)| < e$. On the one hand, this means there exist at least d - e + 1 elements in $L(\mathbf{x})$ do not appear in $g_k(\mathbf{x} + \delta)$. For convenience, we use $\mathcal{U}_r \subseteq L(\mathbf{x})$ to denote those elements, a subset of $L(\mathbf{x})$ with r elements where r = d - e + 1. On the other hand, there exist at least k - e + 1 elements in $\{1, 2, \dots, c\} \setminus L(\mathbf{x})$ appear

in $g_k(\mathbf{x} + \delta)$. We use $\mathcal{V}_s \subseteq \{1, 2, \dots, c\} \setminus L(\mathbf{x})$ to denote them, a subset of $\{1, 2, \dots, c\} \setminus L(\mathbf{x})$ with s = k - e + 1 elements. Formally, we have the following:

$$\exists \, \mathcal{U}_r \subseteq L(\mathbf{x}), \mathcal{U}_r \cap q_k(\mathbf{x} + \delta) = \emptyset \tag{42}$$

$$\exists \mathcal{V}_s \subseteq \{1, 2, \cdots, c\} \setminus L(\mathbf{x}), \mathcal{V}_s \subseteq g_k(\mathbf{x} + \delta), \tag{43}$$

In other words, there exist sets \mathcal{U}_r and \mathcal{V}_s such that the adversarially perturbed label probability p_i^* 's for elements in \mathcal{V}_s are no smaller than these for the elements in \mathcal{U}_r . Formally, we have the following necessary condition if $|L(\mathbf{x}) \cap g_k(\mathbf{x} + \delta)| < e$:

$$\min_{\mathcal{U}_r} \max_{i \in \mathcal{U}_r} \Pr(i \in f_{k'}(\mathbf{Y})) \le \max_{\mathcal{V}_s} \min_{j \in \mathcal{V}_s} \Pr(j \in f_{k'}(\mathbf{Y}))$$
(44)

Bounding $\max_{i\in\mathcal{U}_r} \Pr(i\in f_{k'}(\mathbf{Y}))$ and $\min_{j\in\mathcal{V}_s} \Pr(j\in f_{k'}(\mathbf{Y}))$ for given \mathcal{U}_r and \mathcal{V}_s : For simplicity, we assume $\mathcal{U}_r = \{w_1, w_2, \cdots, w_r\}$. Without loss of generality, we assume $\underline{p_{w_1}} \geq \underline{p_{w_2}} \geq \cdots \geq \underline{p_{w_r}}$. Similarly, we assume $\mathcal{V}_s = \{z_1, z_2, \cdots, z_s\}$ and $\overline{p}_{z_s} \geq \cdots \geq \overline{p}_{z_2} \geq \overline{p}_{z_1}$. For an arbitrary element $i\in\mathcal{U}_r$, we define the following region:

$$\mathcal{A}_i = \{ \mathbf{w} : \delta^T(\mathbf{w} - \mathbf{x}) \le \sigma \|\delta\|_2 \Phi^{-1}(p_i) \}$$
(45)

Then, we have the following for any $i \in \mathcal{U}_r$:

$$\Pr(i \in f_{k'}(\mathbf{Y})) \ge \Pr(\mathbf{Y} \in \mathcal{A}_i) = \Phi(\Phi^{-1}(\underline{p_i}) - \frac{\|\delta\|_2}{\sigma})$$
(46)

We obtain the first inequality from Lemma 6, and the second equality from Lemma 2. Similarly, for an arbitrary element $j \in \mathcal{V}_s$, we define the following region:

$$\mathcal{B}_{i} = \{ \mathbf{w} : \delta^{T}(\mathbf{w} - \mathbf{x}) \ge \sigma \|\delta\|_{2} \Phi^{-1}(1 - \overline{p}_{i}) \}$$

$$\tag{47}$$

Then, based on Lemma 6 and Lemma 2, we have the following:

$$\Pr(j \in f_{k'}(\mathbf{Y})) \le \Pr(\mathbf{Y} \in \mathcal{B}_j) = \Phi(\Phi^{-1}(\overline{p}_j) + \frac{\|\delta\|_2}{\sigma})$$
(48)

Therefore, we have the following:

$$\max_{i \in \mathcal{U}_r} \Pr(i \in f_{k'}(\mathbf{Y})) \tag{49}$$

$$\geq \max_{i \in \mathcal{U}_r} \Phi(\Phi^{-1}(\underline{p_i}) - \frac{\|\delta\|_2}{\sigma}) = \max_{i \in \{w_1, w_2, \cdots, w_r\}} \Phi(\Phi^{-1}(\underline{p_i}) - \frac{\|\delta\|_2}{\sigma}) = \Phi(\Phi^{-1}(\underline{p_{w_1}}) - \frac{\|\delta\|_2}{\sigma})$$

$$(50)$$

$$\min_{j \in \mathcal{V}} \Pr(j \in f_{k'}(\mathbf{Y})) \tag{51}$$

$$\leq \min_{j \in \mathcal{V}_s} \Phi(\Phi^{-1}(\overline{p}_j) + \frac{\|\delta\|_2}{\sigma}) = \min_{j \in \{z_1, z_2, \cdots, z_s\}} \Phi(\Phi^{-1}(\overline{p}_j) + \frac{\|\delta\|_2}{\sigma}) = \Phi(\Phi^{-1}(\overline{p}_{z_1}) + \frac{\|\delta\|_2}{\sigma}) \quad (52)$$

Next, we consider all possible subsets of \mathcal{U}_r and \mathcal{V}_s . We denote $\Gamma_u \subseteq \mathcal{U}_r$, a subset of u elements in \mathcal{U}_r , and denote $\Lambda_v \subseteq \mathcal{V}_s$, a subset of v elements in \mathcal{V}_s . Then, we have the following:

$$\max_{i \in \mathcal{U}_r} \Pr(i \in f_{k'}(\mathbf{Y})) \ge \max_{\Gamma_u \subseteq \mathcal{U}_r} \max_{i \in \Gamma_u} \Pr(i \in f_{k'}(\mathbf{Y}))$$
(53)

$$\min_{j \in \mathcal{V}_s} \Pr(j \in f_{k'}(\mathbf{Y})) \le \min_{\Lambda_v \subseteq \mathcal{V}_s} \min_{j \in \Lambda_v} \Pr(j \in f_{k'}(\mathbf{Y}))$$
(54)

We define the following quantities:

$$\underline{p_{\Gamma_u}} = \sum_{i \in \Gamma_u} \underline{p_i} \text{ and } \overline{p}_{\Lambda_v} = \sum_{j \in \Lambda_v} \overline{p}_j$$
 (55)

Given these quantities, we define the following region based on Equation 30:

$$\mathcal{A}_{\Gamma_u} = \{ \mathbf{w} : \delta^T(\mathbf{w} - \mathbf{x}) \le \sigma \|\delta\|_2 \Phi^{-1}(\frac{p_{\Gamma_u}}{k'}) \}$$
 (56)

$$\mathcal{B}_{\Lambda_v} = \{ \mathbf{w} : \delta^T(\mathbf{w} - \mathbf{x}) \ge \sigma \|\delta\|_2 \Phi^{-1} (1 - \frac{\overline{p}_{\Lambda_v}}{k'}) \}$$
 (57)

Then, we have the following:

$$\frac{\sum_{i \in \Gamma_u} \Pr(i \in f_{k'}(\mathbf{Y}))}{k'} \tag{58}$$

$$\geq \Pr(\mathbf{Y} \in \mathcal{A}_{\Gamma_u})$$
 (59)

$$=\Phi(\Phi^{-1}(\frac{p_{\Gamma_u}}{k'}) - \frac{\|\delta\|_2}{\sigma}) \tag{60}$$

We have Equation 59 from 58 based on Lemma 5, and we have Equation 60 from 59 based on Lemma 2. Therefore, we have the following:

$$\max_{i \in \Gamma_u} \Pr(i \in f_{k'}(\mathbf{Y})) \tag{61}$$

$$\geq \frac{\sum_{i \in \Gamma_u} \Pr(i \in f_{k'}(\mathbf{Y}))}{u} \tag{62}$$

$$= \frac{k'}{u} \cdot \Phi\left(\Phi^{-1}\left(\frac{p_{\Gamma_u}}{k'}\right) - \frac{\|\delta\|_2}{\sigma}\right) \tag{63}$$

We have Equation 62 from 61 because the maximum value is no smaller than the average value. Similarly, we have the following:

$$\min_{j \in \Lambda_v} \Pr(j \in f_{k'}(\mathbf{Y})) \le \frac{k'}{v} \cdot \Phi(\Phi^{-1}(\frac{\overline{p}_{\Lambda_v}}{k'}) + \frac{\|\delta\|_2}{\sigma})$$
(64)

Recall that we have $\overline{p}_{w_1} \ge \overline{p}_{w_2} \ge \cdots \ge \overline{p}_{w_r}$ for \mathcal{U}_r . By taking all possible Γ_u with u elements into consideration, we have the following:

$$\max_{i \in \mathcal{U}_r} \Pr(i \in f_{k'}(\mathbf{Y})) \ge \max_{\Gamma_u \subseteq \mathcal{U}_r} \max_{i \in \Gamma_u} \Pr(i \in f_{k'}(\mathbf{Y})) \ge \max_{\Gamma_u = \{w_1, \dots, w_u\}} \frac{k'}{u} \cdot \Phi(\Phi^{-1}(\frac{p_{\Gamma_u}}{k'}) - \frac{\|\delta\|_2}{\sigma})$$
(65)

In other words, we only need to consider $\Gamma_u = \{w_1, \cdots, w_u\}$, i.e., a subset of u elements in \mathcal{U}_r whose label probability upper bounds are the largest, where ties are broken uniformly at random. The reason is that $\Phi(\Phi^{-1}(\frac{p_{\Gamma_u}}{k'}) - \frac{\|\delta\|_2}{\sigma})$ increases as $\underline{p_{\Gamma_u}}$ increases. Combining with Equations 49, we have the following:

$$\max_{i \in \mathcal{U}_r} \Pr(i \in f_{k'}(\mathbf{Y})) \ge \max \{ \Phi(\Phi^{-1}(\underline{p_{w_1}}) - \frac{\|\delta\|_2}{\sigma}), \max_{\Gamma_u = \{w_1, \dots, w_u\}} \frac{k'}{u} \cdot \Phi(\Phi^{-1}(\frac{\underline{p_{\Gamma_u}}}{k'}) - \frac{\|\delta\|_2}{\sigma}) \}$$
(66)

Similarly, we have the following:

$$\min_{j \in \mathcal{V}_s} \Pr(j \in f_{k'}(\mathbf{Y})) \le \min\{\Phi(\Phi^{-1}(\overline{p}_{z_1}) + \frac{\|\delta\|_2}{\sigma}), \min_{\Lambda_v = \{z_1, \dots, z_v\}} \frac{k'}{v} \cdot \Phi(\Phi^{-1}(\frac{\overline{p}_{\Lambda_v}}{k'}) + \frac{\|\delta\|_2}{\sigma})\} \tag{67}$$

Bounding $\min_{\mathcal{U}_r} \max_{i \in \mathcal{U}_r} \Pr(i \in f_{k'}(\mathbf{Y}))$ and $\max_{\mathcal{V}_s} \min_{j \in \mathcal{V}_s} \Pr(j \in f_{k'}(\mathbf{Y}))$: We have the following:

$$\min_{\mathcal{U}_r} \max_{i \in \mathcal{U}_r} \Pr(i \in f_{k'}(\mathbf{Y})) \tag{68}$$

$$\geq \min_{\mathcal{U}_r} \max \{ \max_{i \in \{w_1, w_2, \cdots, w_r\}} \Phi(\Phi^{-1}(\underline{p_i}) - \frac{\|\delta\|_2}{\sigma}), \max_{\Gamma_u = \{w_1, \cdots, w_u\}} \frac{k'}{u} \cdot \Phi(\Phi^{-1}(\frac{\underline{p_{\Gamma_u}}}{k'}) - \frac{\|\delta\|_2}{\sigma}) \}$$

$$\tag{69}$$

$$\geq \max\{\max_{i \in \{a_e, a_{e+1}, \dots, a_k\}} \Phi(\Phi^{-1}(\underline{p_i}) - \frac{\|\delta\|_2}{\sigma}), \max_{\Gamma_u = \{a_e, \dots, a_{e+u-1}\}} \frac{k'}{u} \cdot \Phi(\Phi^{-1}(\frac{\underline{p_{\Gamma_u}}}{k'}) - \frac{\|\delta\|_2}{\sigma})\}$$
(70)

$$= \max\{\Phi(\Phi^{-1}(\underline{p_{a_e}}) - \frac{\|\delta\|_2}{\sigma}), \max_{\Gamma_u = \{a_e, \dots, a_{e+u-1}\}} \frac{k'}{u} \cdot \Phi(\Phi^{-1}(\frac{\underline{p_{\Gamma_u}}}{k'}) - \frac{\|\delta\|_2}{\sigma})\}$$
(71)

$$= \max\{\Phi(\Phi^{-1}(\underline{p_{a_e}}) - \frac{\|\delta\|_2}{\sigma}), \max_{u=1}^{d-e+1} \frac{k'}{u} \cdot \Phi(\Phi^{-1}(\frac{\underline{p_{\Gamma_u}}}{k'}) - \frac{\|\delta\|_2}{\sigma})\}, \tag{72}$$

Algorithm 1: Computing the Certified Intersection Size

```
Input: f, \mathbf{x}, L(\mathbf{x}), R, k', k, n, \sigma, and \alpha. Output: Certified intersection size. \mathbf{x}^1, \mathbf{x}^2, \cdots, \mathbf{x}^n \leftarrow \text{RandomSample}(\mathbf{x}, \sigma) counts[i] \leftarrow \sum_{t=1}^n \mathbb{I}(i \in f(\mathbf{x}^t)), i = 1, 2, \cdots, c. \underline{p}_i, \overline{p}_j \leftarrow \text{ProbBoundEstimation}(\text{counts}, \alpha), i \in L(\mathbf{x}), j \in \{1, 2, \cdots, c\} \setminus L(\mathbf{x}) e \leftarrow \text{BinarySearch}(\sigma, k', k, R, \{\underline{p}_i | i \in L(\mathbf{x})\}, \{\overline{p}_j | j \in \{1, 2, \cdots, c\} \setminus L(\mathbf{x})\} return e
```

where $\Gamma_u = \{a_e, \cdots, a_{e+u-1}\}$. We have Equation 70 from 69 because $\max\{\max_{i \in \{w_1, w_2, \cdots, w_r\}} \Phi(\Phi^{-1}(\underline{p_i}) - \frac{\|\delta\|_2}{\sigma}), \max_{\Gamma_u = \{w_1, \cdots, w_u\}} \frac{k'}{u} \cdot \Phi(\Phi^{-1}(\frac{\underline{p_{\Gamma_u}}}{k'}) - \frac{\|\delta\|_2}{\sigma})\}$ reaches the minimal value when \mathcal{U}_r contains r elements with smallest label probability lower bounds, i.e., $\mathcal{U}_r = \{a_e, a_{e+1}, \cdots, a_d\}$, where r = d - e + 1. Similarly, we have the following:

$$\max_{\mathcal{V}_s} \min_{j \in \mathcal{V}_s} \Pr(j \in f_{k'}(\mathbf{Y})) \leq \min\{\Phi(\Phi^{-1}(\underline{p_{b_s}}) + \frac{\|\delta\|_2}{\sigma}), \min_{v=1}^s \frac{k'}{v} \cdot \Phi(\Phi^{-1}(\frac{\overline{p}_{\Lambda_v}}{k'}) + \frac{\|\delta\|_2}{\sigma})\}, \quad (73)$$

where $\Lambda_v = \{b_{s-v+1}, \cdots, b_s\}$ and s = k - e + 1.

Applying the law of contraposition: Based on necessary condition in Equation 44, if we have $|T \cap g_k(\mathbf{x} + \delta)| < e$, then, we must have the following:

$$\max\{\Phi(\Phi^{-1}(\underline{p_{a_e}}) - \frac{\|\delta\|_2}{\sigma}), \max_{u=1}^{d-e+1} \frac{k'}{u} \cdot \Phi(\Phi^{-1}(\frac{p_{\Gamma_u}}{k'}) - \frac{\|\delta\|_2}{\sigma})\}$$
 (74)

$$\leq \min_{\mathcal{U}_r} \max_{i \in \mathcal{U}_r} \Pr(i \in f_{k'}(\mathbf{Y})) \tag{75}$$

$$\leq \max_{\mathcal{V}_s} \min_{j \in \mathcal{V}_s} \Pr(j \in f_{k'}(\mathbf{Y})) \tag{76}$$

$$\leq \min\{\Phi(\Phi^{-1}(\overline{p}_{b_e}) + \frac{\|\delta\|_2}{\sigma}), \min_{v=1}^{k-e+1} \frac{k'}{v} \cdot \Phi(\Phi^{-1}(\frac{\overline{p}_{\Lambda_v}}{k'}) + \frac{\|\delta\|_2}{\sigma})\}, \tag{77}$$

We apply the law of contraposition and we obtain the statement: if we have the following:

$$\max\{\Phi(\Phi^{-1}(\underline{p_{a_e}}) - \frac{\|\delta\|_2}{\sigma}), \max_{u=1}^{d-e+1} \frac{k'}{u} \cdot \Phi(\Phi^{-1}(\frac{\underline{p_{\Gamma_u}}}{k'}) - \frac{\|\delta\|_2}{\sigma})\}$$

$$> \min\{\Phi(\Phi^{-1}(\overline{p_{b_s}}) + \frac{\|\delta\|_2}{\sigma}), \max_{v=1}^{k-e+1} \frac{k'}{v} \cdot \Phi(\Phi^{-1}(\frac{\overline{p_{\Lambda_v}}}{k'}) + \frac{\|\delta\|_2}{\sigma})\}, \tag{78}$$

Then, we must have $|L(\mathbf{x}) \cap g_k(\mathbf{x} + \delta)| \ge e$. From Equation 8, we know that Equation 78 is satisfied for $\forall \|\delta\|_2 \le R$. Therefore, we reach our conclusion.

Figure 2: Comparing MultiGuard with with Jia et al. [22] on MS-COCO (first row) and NUS-WIDE (second row) dataset.

Figure 3: Impact of k' on the certified top-k precision@R, certified top-k recall@R, and certified top-k f1-score@R on MS-COCO (first row) and NUS-WIDE (second row) dataset.

Figure 4: Impact of k on the certified top-k precision@R, certified top-k recall@R, and certified top-k f1-score@R on MS-COCO (first row) and NUS-WIDE (second row) dataset.

Figure 5: Impact of σ on the certified top-k precision@R, certified top-k recall@R, and certified top-k f1-score@R on MS-COCO (first row) and NUS-WIDE (second row) dataset.

Figure 6: Training the base multi-label classifier with vs. without noise on Pascal VOC (first row), MS-COCO (second row) and NUS-WIDE (third row) datasets.