A First-order Taylor expansion

A.1 Action expansion update proof

Transposing the scalar inner product, £aTVaQ9 (s,), in the first-order Taylor expansion in the main
text (Eq.[I0) gives,

D05, 1) = Be, | (35,1 + €1 Vasiols, 1)) Vi (Qolsus) + (Va1)

s? l’l"d:|
(25)

As Vg is a linear operator, and the action noise, §,, does not depend on the policy parameters, 6,
AT&9(57 /'l‘a) =E |:(59 (Sv iu’a) + EZVa(Se(S’ Ma)) (VgQg (Sv iu’a) + v?),aQe (S7 Hd)fd) '57 l"’a:|
(26)

where V; 9Qo(s,) is a matrix of second derivatives. The expectation of £, is zero, so the terms
linear in &, are zero, leading to,

Anf(s, 1) =00(5, 11)VoQu(s, 1,) + Be, | (61 Vado(s. 11,)) (V3 aQols. m)ET) Is,] @7
Swapping the order of the terms in the expectation (which is valid, as <£aTVa69(s, ua)) is a scalar),

Anb(s. 1) = do(s, 1) VoQa (s, 1) + Be, | (V3 aQo(s. 1)€0) (&1 Vado(s, 1)) s | 28)
We can then move the terms independent of £, out of the expectation

Anb(s, p,) = do(s, 1,)VoQa(s, 1) + V3 aQuls, 1) Ee, €67 | Vadols,) 29)
Finally, we know E {Eaéﬂ = 3.,

AT&G(Sﬂ /J’a) = p’a)veQe (57 I‘La) + Vg,aQG (S7 Na)zavad@ (S, ll’a) (30)

If we assume the action covariance is isotropic, 3, = A,I, we get the (1st-order) Taylor TD-update
for the action expansion,

Ara(s, py) = 80 (s,) VoQo(s, 1) + XaV3 2 Qo (s, pt,) Vado(s, p1,) (31)
A.2 State expansion update proof

Applying the first-order Taylor expansion to Eq. (I6), then following the approach from the previous
section,

Anb(py,a) = Ee, [(80(18) + €] Vado(p1,2)) Vo (Qluasr2) + (VaQ(ry2))" &) o2

(32)
= B, [(00(112) + €7 Vo, 2)) (VoQo(p2) + V3,.Qo (1, 2),) l1a
(33)
= 0p(15,2) Vo Qo (g, @) + B, {(Vg,sQe(Nya)Es) (ESTVS(;e(Hya)) ‘l‘l’s?a:| (34)
= 0(10s) VoQo(h,,2) + V3 . Qolh,,2) Ee, [£.6] | Vada(p,,) (35)
Finally, we know E {5553} -3,
Arb(pg, a) = do(p, 2)VoQolhty,) + V3 (Qo(hty, 2)E Vo (pay, a) (36)

If we assume the state covariance is isotropic, 3 = AI, we get the (1st-order) Taylor TD-update for
the state expansion,

AT&Q(“S? a) = dp (.u'sv a)v9Q9 (“w a) +)‘Svg,SQf)(:u’s’ a)v559 (H‘s? a) (37)

14

B Proof of stable learning for Taylor TD with linear function approximation
(with a fixed policy)

The Taylor TD update for the action expansion can be written as (an equivalent proof can be derived
for the state expansion):

ATae(s7 Na) = 69 (S, l’l’a)veQ@ (S7 I’l’a) + Aava#ﬂQQ (Sa l’l’a)vaé@ (57 l'l‘a) (38)

This update is composed of two quantities, the standard TD update (i.e., first term in the sum) plus
the extra term induced by the Taylor expansion (i.e., second term in the sum). For the purposes of
this proof, we consider linear function approximation,

Qo(s,) = 0"x Qu(s',a’) = 0"x' (39)
where,
x = ¢(s, p,) € RY x' = ¢(s',a) e RN (40)

and where x and x’ are feature-vectors of length N. We can re-write each of the two terms in the
Taylor TD update in terms of this linear function approximation. The first term, corresponding to a
standard TD-update can be written,

5o(s,2)VeQo(s,a) = (r +v07x" — 7x)x

=rx —x(x —yx)76. (41)

The second term, which is the new term introduced by Taylor-TD methods, can be written,
V5.aQ0(s,2)Vads(s,a) = Vga (x760) (Var +7Va(x70) — Va(x"0))
= (Vax)" (Var +7(Vax')f — (Vax)0)

= (Vax)" Var +7(Vax)" Vax'0 — (Vax)" Vax¥
= (VaX)" Var = (Vax)" (Vax —7Vax) 0 (42)
Here, Vax € RA*N is a matrix, while V,r € R4 is a vector.

Putting the two terms together Eq. [#1] & [42] and factorising the terms multiplying 6;, we can write the
expected next weight vector as:

E 01| 0: = 0, + nA0 = (T —n(A + \A))0, +nu (43)
where:
u=E {rx + (Vax)" Var} (44)
A =E[x(x —x)"] e RN (45)
A=E [(Vax)T (Vax — ’yVax')} € RN*N (46)

Since only A and A multiplies 0, these two quantities exclusively are important for guaranteeing
stable learning. If A is positive definite and Ais positive-semi-definite, then (A +)\aA) is positive-
definite, and for sufficiently small 7, the magnitude of the eigenvalues of I — 1(A +)\aA) are all
smaller than 1, in which case the system is stable. Crucially, the term A is the same as traditional
TD-learning so [11]] provides a proof that A is always positive definite [see also[12]. Thus, all we

have to prove is that A is positive semi-definite. In order to prove that Ais positive semi-definite, we
require an (very reasonable) assumption, that the timestep At is small. Specifically, if we take,
s’ = At f(s,a) +s 47)

Then the V,x’ terms must be small. Specifically, applying the chain rule, the full derivative is
(expressed here for 1d case, V,x' = %ia, for simplicity),
ox' 02’ 0d’ 0s' = 0x' s’ 0x' (83@’ da’ 5)96’) 0s’

9 95 a | 05 0a da \od' ds | 05) da

da ~ dd’ 9s' da + s’ da Ha (48)

15

This is proportional to At, as

%‘Z — A ((;a 9) (49)
The key test for positive semi-definiteness is that for all vectors b,
0 <bTAb. (50)
Substituting the definition of A from Eq. (@6),
0 < bTE[(Vax)TVax]b — bl E[(Vax)T Vax']b. (51)
Putting the b’s inside the expectation,
0 < E[(Vaxb)" (Vaxb)] = vE[(Vaxb)" (Vax'b)] (52)

Now, (Vaxb) € R4 is a length- A row-vector, and the terms inside the expectations are inner
products of two length A vectors. We can write these vector inner products as sums,
A
0< Y El(Va,xb)" (Va,xb)] = ¥E[(Va,xb) " (V,x'D)] (53)

i=1
where a; is a particular element of the action-vector, a, so V,,x € RY isa length-N vector, and
Vi, X

Vi, X

Vax = (54)

Va' AX
Critically, the overall inequality in Eq. (52) holds if a similar inequality holds for every term in the
sum in Eq. (33),
0 < E[(Va,xb)" (Va,xb)] = vE[(Va,xb)" (Va,x'b)] (55)
As V,,xb and V,,x'b are scalars, we can write,
0 < E[(Vaq,xb)*] = 7E[(Va,xb)(Va,x'b)] (56)

There are now two cases. If 0 = E[(V,,xb)?], we must have that 0 = (V,,xb) always (except at
a set of measure zero). Thus, the second term must also be zero (except at a set of measure zero),
i.e. 0 = E[(Vq4,xb)(V,,x'b)] and the inequality holds. Alternatively, if E[(V,,xb)?] is non-zero,
it must be positive, in that case, the second term can also be non-zero, but it scales with At, so we
can always choose a A¢, small enough to ensure that the Eq. (56) holds, in which case A is positive
semi-definite.

C Using the chain rule to expand the gradient of Taylor TD

A (learned) differentiable model of the transitions and rewards is needed to compute the gradient terms
Vado(s,a) and Vsdp(s, a) in Taylor TD. This is because the TD target, 09 = (s, a) + 7Qy(s',a’),
comprises the reward and the Q-value at the next time step, both of which depend on s and a. The
full gradients for the action expansion can be written:

Or(s,a) B 0Qo (s, ar) " (I9§/<(Q)Q9(§’7a/)+aa’ 6@9(@’7;1/)) 7

Vady(s,a) = da da 7 oa 08’ 08’ oa’

where 7 denotes a (differentiable) reward function, § denotes the predicted next state, while %—i
denotes the gradient term computed by differentiating through a differentiable model of the transitions.
An analogous gradient can be written for Vsdy(s, a) (i.e., state expansion). However, we do not have
to explicitly implement these expressions, as we use autodiff in PyTorch to find gradients of dg(s, a)
wrt a and s directly, by re-writing the Taylor TD updates in terms of a simple loss (see Appendix [D).

16

D Computing the updates as the gradient of a loss

Here we report how to easily implement the Taylor TD-update (i.e. Eq. as a loss to be passed to
an optimizer (e.g. PyTorch optimizer).

L5 = — stopgrady {8o (s, 11,)} Qo (s, 1)
stopgrady{ Vade (K, 1a) } - VaQo(Hs; 1)
*stopgrady {[| (Vado (s, 1)) [[VaQo (s, 12,) 1}
stopgrady{ (Vg (ps, 12,))} - VsQo (s, 12,)
*stopgrady{ || (V0o (g, 1)) [VsQa (s,) |1}

"stopgrad,{}" denotes the optimizer should not differentiate the quantity inside the curly brackets
relative to the parameters 6 (i.e. equivalent to ".detach()" in PyTorch).

E Model learning

Taylor TD-learning requires a differentiable model of the transitions. We learned this model according
to maximum-likelihood based on observed transitions sampled from a reply buffer,

L£model — 5 (8" | s, a); (s,a,s') ~B (58)
where B denotes a reply buffer from which (observed) transitions can be sampled. In TaTD3, the
model of the transitions consists of an ensemble of 8 models. These models return a Gaussian
distribution over the next state, with zero correlations, and with mean and variance given by applying
a neural network to the previous state-action pair. Conversely, the model of the rewards consists of

a neural network trained with mean-square error on the observed rewards sampled from the reply
buffer.

F Variance reduction

Here we describe in more details how we computed the variance of Taylor TD and standard TD-
learning updates on the 6 continuous control benchmark tasks (i.e. Section4.T). Based on a policy,
a value function and a set of randomly sampled states from a memory buffer, we computed the
Taylor and the standard (sample-based) TD batch updates across all sampled states (under the policy).
Note, we ensured the exact same (random) states were used to compute the Taylor and the standard
(sample-based) TD batch updates. The update for each state takes the form of a gradient evaluation
of the value function relative to the TD objective. Next, we computed the variance of these gradient
terms across all states and summed them up since the variance of each parameter update contributes
to the variance of the value function relative to the TD objective. We repeated this process for 10
different seeds and plotted the mean update variance and standard error for both Taylor and the
standard TD updates (i.e. Fig[T).

G Variance reduction across training

In this section we test how the variance of Taylor TD and standard TD-learning updates changes
across training. In particular, we want to assess how the variance advantage of Taylor TD updates
(over standard TD updates) changes across 3 different points in training: at the start of training (i.e.,
for an untrained critic and an untrained model of the transitions), early in training (i.e., after 5000
training steps) and finally late in training (i.e., after 50000 training steps).

In Fig.[] we can see that across all training points, Taylor TD updates provide lower variance updates
compared to standard TD updates.

H Toy example

We provide a toy example to investigate the settings in which using a Taylor expansion of an expected
update may provide the largest benefits relative to sample-based estimates of the same expected

17

No Training Early Training Late Training

0.0006 I 1.4 I I
40
1.2
° 0.0005
o
8 1.0
s .. 0.0004 30
>0
28 0.8
$% 00003 I
> 0.6 20
§ 0.0002
s I 0.4 z
10
0.0001 02
0.0000 0.0 0
Taylor TD TD-learning Taylor TD TD-learning Taylor TD TD-learning

Figure 4: Mean update variance (and standard error) between Taylor TD and standard (sample-based)
TD-learning (batch) updates, computed across 3 time points in training: No Training (i.e., for an
untrained critic), Early training (i.e., after 5000 training steps) and finally late in training (i.e., after
50000 training steps) . All results are based on 10 runs with corresponding error bars on the Half-
Cheetah-v2 environment.

update. To do so, we train a function approximation parameterised by 6 (e.g. a critic) to approximate
the expected outputs of an underlying target function (e.g. TD targets). Starting from a single
expected target value, we can formulate the following objective (for multiple targets, we can just sum
the objectives):

76) = 3 Be, (o + &) — ol +) 59)

where &, is sampled form a Gaussian distribution with E [£,] = 0, E [ﬁxﬁ:{ } = A\I. Hence, the task

requires the function approximation gy () to approximate the expected outputs of the target function
y(), based on a set of randomly perturbed inputs (i.e. x + &,). We do this by comparing two different
approaches. The first approach involves sampling different outputs of y (based on different input
perturbations &,) and training () to match those outputs. We denote this approach as "Sample-based
targets". This approach aims to mimic standard TD-learning, where TD-targets are sampled at each
time step to train the critic (i.e. providing sample-based estimates). The second approach aims to
mimic Taylor TD, applying a first-order Taylor expansion to the objective in Eq[59]

1
Inue,(0) = 5 B, [(y+ €19y — o — €7 Vai)?] (60)

For clarity we used the notation gy = Jg(z) and y = y(x). The terms that are linear in &, cancels
and after summing up equal terms, we get:

1 . N N
Jag, (0) = i(y - y9)2 + %)\X(ny - nyg)T(ny — Vo) (61)
We can then take the gradient of this approximation relative to the function approximation weights to
get the weight update for the Taylor approach:
Vo J(0) ~ 9o Voo (62)

+)\xvﬁ(vmggvmgﬁ)

=y Voo

~ MVo(Vay Vais)
Note, this update is reminiscent of of double backpropagation settings in the supervised learning
literature [49,150]. The toy example allows us to compare the Taylor expansion with the sample-based
estimation under different conditions (i.e. dimension size of the data points as well as number of
data points). In particular, we compare the two approaches for inputs of different dimensions (from

1 to 100 dimensional inputs) and across two data regimes, a low data regime (i.e. only 15 training
samples are used to train the function approximation) and a high data regime (i.e. over 100 samples

18

Low data regime High data regime

0.20 4
0.15 4

0.15 +

0.10
0.10

0.05 —/ 0.05 s\s

0.00

T T T T 1 T T T T 1

Prediction error

0.00 4

0 20 40 60 80 100 0 20 40 60 80 100
Input dim Input dim
= Taylor expansion Sample-based targets

Figure 5: Average performance of the Taylor expansion approach relative to sample-based estimates
on unseen input examples across several input dimensions (x-axis) and two data regimes (5 runs, 95%
c.i.).

are used to train the function approximation). Performance are then assessed based on a novel set of
inputs (i.e. 50), sampled from the same underlying distribution as the training data. Fig.[5|show that
the benefits of the Taylor approach over sample-based estimates increase as the dimension of the data
points grows in size (e.g. RL tasks involving high dimensional action and state spaces). In particular,
these benefits are even larger in the presence of a low data regime, such as RL settings in which for
any given state-action pair we can only sample a few transitions from the environment.

I Code

All the code is available at https://github. com/maximerobeyns/taylortd

J Baseline algorithms

Plotted performance of MBPO [18] was directly taken from the official algorithm repository on
GitHub at https://github.com/jannerm/mbpo. Plotted performance of SAC [2] was also ob-
tained taken from the official algorithm repository on GitHub at https://github.com/haarnoja/
sac. Plotted performances of both MAGE and Dyna-TD3 [19] were obtained by re-running these
algorithms on the benchmark environments, taking the implementations from the official algorithms’
repository available at https://github. com/nnaisense/MAGE.

K Ablations

K.1 State expansion ablation

Here, we ask whether the Taylor state expansion brings any benefit to performance, on top of
the Taylor action expansion. To do so, we compare the TaTD3 algorithms with and without state
expansion on two standard benchmark tasks (i.e. analogous to setting A; = 0 in the update Eq. [I8).
Fig. (6) shows that including the state expansion is beneficial to both environments.

K.2 Cosine similarity ablation

Here, we ask whether taking the cosine similarity of state and action gradient terms benefit the
performance of TaTD3. To do so, we compare the standard TaTD3 algorithms (trained with the loss
in Eq.[I8) with a version of TaTD3 trained with a loss without cosine similarity,

Lo = 6(“’s7 Ha)QQ(u’sv ll’a) + A an9(Hs7 Ha) ' Va5(,us, iu’a) + As VSQG(/—I/S7 y’a) ! VS(S(u’sv /(1'6;1%)

Namely, this loss optimizes the dot-product for state and action gradient terms instead of the cosine
similarity. We assess this comparison on two standard benchmark tasks (i.e. see Fig.[7). In Fig.[7] we
can see the cosine similarity does improve performance on both tasks.

19

https://github.com/maximerobeyns/taylortd
https://github.com/jannerm/mbpo
https://github.com/haarnoja/sac
https://github.com/haarnoja/sac
https://github.com/nnaisense/MAGE

HalfCheetah-v2 Walker2d-v2
12000

10000 - 5000
S 8000 - 4000 +
®
ué’ 6000 3000
2 4000 - 2000 1
2000 4 1000 +
0 -
0 T T 1 T T 1
0 50k 100k 150k 0 50k 100k 150k
Steps Steps
= TaTD3 = ActionOnly-TaTD3

Figure 6: Performance in terms of average returns for TaTD3 (with both state and action expansions)
compared to a version of TaTD3 that uses the action expansion only, on two benchmark continuous
control tasks. Including the state expansion in TaTD3 seem to improve performance on both tasks (5
runs, 95% c.i.).

HalfCheetah-v2 Walker2d-v2
12000
10000 5000 1
c 4
5 8000 4000
o
% 6000 3000
2 4000 20001
1000 +
2000
0+
0 T T T 1 T T 1
0 50k 100k 150k 0 50k 100k 150k
Steps Steps
== TaTD3 = NoCosine-TaTD3

Figure 7: Performance in terms of average returns for TaTD3 compared to a version of TaTD3 that
computes the dot product of state and action gradient terms, instead of cosine similarity (5 runs, 95%
c.i.).

L. Computing

All experiments were run on a cluster of GPUs, including NVIDIA GeForce RTX 2080, 3090 and
NDVIDIA A100. Here, we report the difference in computing time between standard TD-learning,
Taylor TD and the two strongest baselines (i.e., MAGE and MBPO) based on the same GPU for each
comparison. We do so for a low dimensional (Pendulum), a "'medium’ dimensional (Walker2d) and a
high dimensional (Humanoid) environment to span a broad range of settings. For MBPO, we report
the average running time across all training epochs using the horizon lengthening schedule outlined
in the original paper [18].

H Environment TD-learning time Taylor TD time MAGE time MBPO time n. time steps H

Pendulum 24s 38s 36s 52s 200
Walker2d 50s 68s 63s 133s 1000
Humanoid 94s 117s 127s 235s 1000

MAGE has about the same runtime as our method (TaTD3), while MBPO is a lot slower than our
method.

M Hyperparameters settings

Below, we reported the hyperparameter settings for TaTD3 (and sample-based Expected-TD3),

20

Pendulum-v1

HalfCheetah-v2

Walker2d-v2

Steps

10000

150000

150000

Model ensemble size

8

8

8

Model architecture (MLP)

4 h-layers of size 512

4 h-layers of size 512

4 h-layers of size 512

Reward model architecture (MLP)

3 h-layers of size 256

3 h-layers of size 256

3 h-layers of size 256

Actor-critic architecture (MLP)

2 h-layers of size 400

2 h-layers of size 400

2 h-layers of size 400

Dyna steps per environment step 10 10 10
Model horizon 1 1 1
Aa 0.25 0.25 0.25
As le-5 le-5 le-5
Hopper-v2 Ant-v2 Humanoid-v2
Steps 10000 150000 150000
Model ensemble size 8 8 8

Model architecture (MLP)

4 h-layers of size 512

4 h-layers of size 512

4 h-layers of size 512

Reward model architecture (MLP)

3 h-layers of size 256

3 h-layers of size 512

3 h-layers of size 512

Actor-critic architecture (MLP)

2 h-layers of size 400

4 h-layers of size 400

4 h-layers of size 400

Dyna steps per environment step 10 10 10
Model horizon 1 1 1
Aa 0.06 0.06 0.25
As le-5 le-5 le-5

Note, "h-layers" stands for hidden layers and the size is in terms of number of units.

We found we could achieve good performance for TaTD3 across all tested environments without
needing to fine tune the value of)\, and A to each environment (i.e., A, = 0.06 and Ay = 0.00005).
These parameters were founded by running a grid search over potential values of these parameters
based on a single environment (i.e., Pendulum), then using the best values for all other environments.
Nevertheless, we reached top performance in HalfCheetah, Walker2d and Humanoid by using a larger
Aa (i.e., A\, = 0.25). This finding suggests these 3 environments benefit from learning a broader
distribution of Q-values over the actions, we believe for better exploration. Additionally, you may
notice the much larger values for A\, compared to \;. However, we should stress that any direct
comparison between the state covariance As and the action covariance)\, may not be very meaningful.
This is because the distribution of initial states and the distribution of initial actions may be very
different, making any direct comparison between As and \, hard to assess.

21

