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ABSTRACT

Variational Autoencoder (VAE) underscores its indispensable role along the grow-
ing prominence of Latent Video Diffusion Models (LVDMs). Nevertheless, cur-
rent latent generative models are generally built upon image VAEs, which com-
press the spatial dimension only. While, it is vital for video VAE to model tem-
poral dynamic patterns to produce smooth high quality video reconstruction. To
address these issues, we propose UniVAE, which compresses videos both spa-
tially and temporally while ensuring coherent video construction. Specifically,
we employ 3D convolutions at varying scales in the encoder to temporally com-
press videos, enabling the UniVAE to capture dependencies across multiple time
scales. Furthermore, existing VAEs only reconstruct videos at a low resolution
and fps, bounded by limited GPU memory, which makes the entire video gener-
ation pipeline fragmented and complicated. Thus, in conjunction with the new
encoder, we explore the potential of the VAE decoder to perform frame interpola-
tion, aiming to synthesize additional intermediate frames without relying on stan-
dalone add-on interpolation models. Compared with existing VAEs, the proposed
UniVAE explores a unified way to compress videos both spatially and temporally
with jointly designed encoder and decoder, thus achieving accurate and smooth
video reconstruction at a high frame rate. Extensive experiments on commonly
used public datasets for video reconstruction and generation demonstrate the su-
periority of the proposed UniVAE. The code and the pre-trained models will be
released to facilitate further research.

1 INTRODUCTION

The compression and reconstruction of visual data are fundamental to the generative research Rom-
bach et al. (2022); Yu et al. (2023). As latent diffusion models Blattmann et al. (2023); Guo et al.
(2023); Yang et al. (2024); Gong et al. (2024) become central to generative tasks, the quality of the
latent space largely determines the upper bound of generation performance, which is contingent on
the modeling capability of VAE models. While comparing to relatively mature image VAEs Rom-
bach et al. (2022); Podell et al. (2023), video data presents greater challenges due to the larger data
volume, temporal redundancy, and GPU memory constraints Chen et al. (2024a). These issues raise
the question how to design unified frame-enriched video VAEs dedicated to videos.

Current VAEs can be categorized into two main types: (1) Image VAE approachs Guo et al. (2023);
Blattmann et al. (2023), treating a video as a series of individual frames. This kind of VAE effec-
tively preserves spatial pixel contents and typically utilizes lightweight 2D convolution Rombach
et al. (2022). However, it may result in temporal instability and inadequate temporal compression in
the latent space, as well as large GPU memory consumption of diffusion models. (2) Video VAEs
with temporal compression Chen et al. (2024a); Zheng et al. (2024), which can compress video
along the temporal dimension, achieving higher compression ratios. Recently, many DiT based
video diffusion models Brooks et al. (2024); Lab & etc. (2024) have improved VAEs to achieve bet-
ter temporal modeling. It greatly increases the number of input tokens, allowing for the generation
of videos with more frames. However, the simplistic temporal compression designs in current video
VAEs, such as using the primitive temporal pooling operation, limit their ability to effectively cap-
ture temporal consistency, considerly restricting the performance of LVDMs. Thus, we believe that
a VAE’s ability to capture temporal relationships in video data is essential, which shall be designed
jointly and integrated in the diffusion generation process for optimal results.
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Figure 1: Architecture of the proposed UniVAE. It consists of the Causal 3D Encoder to compress
videos into latent representations for LVDMs temporally and spatially, and the Causal 3D Decoder
to reconstruct the videos. Moreover, the Causal 3D Refinement Decoder is introduced to generate
smooth videos, given the low fps outputs by the Causal 3D Decoder.

Such a unification is challenging for VAEs, since it involves effectively combining temporal model-
ing with deep integration into diffusion models. Specifically, the video generation pipeline is much
more complicated than that of image generation Brooks et al. (2024); Yang et al. (2024), and is
severely bounded by GPU memory. As a result, existing VAEs primarily focus on compressing and
reconstructing inputs at a low resolution and frame rate, e.g., 256×256 at 8fps. The interpolation of
frames and pixels is delegated to standalone add-on super-resolution Saharia et al. (2022); Shi et al.
(2024) or frame interpolation models Reda et al. (2022) connected at the end of the video generation
pipeline. This fragmentation complicates the use and optimization of the video generation pipeline,
motivating our pursuit of a unified approach. Our observations indicate that VAEs can assume mul-
tiple roles within the current video generation stream. If the encoder can effectively model temporal
variations, the decoder could theoretically synthesize additional frames, leading to high fps videos
without the need for separate interpolation models. This unified VAE structure could reduce the
number of frames required by diffusion models to improve training efficiency while streamlining
the video generation pipeline.

These issues motivate us to investigate a new approach, UniVAE, to compress videos both spatially
and temporally and jointly design the encoder and decoder, thus achieving accurate and smooth
video reconstruction at a high frame rate. Through the analysis of existing VAEs, we observe that
most methods typically utilize single-scale convolution kernels for temporal downsampling Chen
et al. (2024a). It limits the ability of VAEs to effectively model motions and changes occurring over
varying time scales, making it hard to maintain inter-frame coherence in the reconstructed videos,
such as flickering or blurriness. In fact, previous work Yang et al. (2024) has shown that encoding
in the temporal dimension in VAEs is more difficult than encoding in the spatial dimension, which
suggests that improving the temporal encoding capability is the key challenge.

To this end, we propose a multi-scale temporal convolution architecture for the encoder in UniVAE.
Specifically, during the temporal compression, we apply 3D convolution Ji et al. (2012) with vary-
ing kernel sizes to downsample the videos in the temporal dimension, followed by concatenating
and fusing the extracted features. Our multi-scale convolutions are designed across the channel di-
mension, without introducing additional computational cost. It allows UniVAE to capture dynamic
patterns across different time scales, enabling a comprehensive understanding of the video’s tempo-
ral structure. Furthermore, we integrate the frame interpolation function into the decoder to generate
high frame rate video, enabling the production of smooth video content. For this purpose, we pro-
pose a latent-guided refinement training scheme, which introduces a refinement decoder to UniVAE
with the assistance of a pre-trained VAE decoder.

We summarize our contributions as follows:

• We propose the UniVAE which is designed specifically for video data. Both the encoder
and decoder in UniVAE are enhanced to compress and reconstruct videos temporally and
spatially, devoted to video generation via latent diffusion models.
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• Our UniVAE’s encoder employs a multi-scale temporal convolution architecture to capture
dynamic video representations, while the decoder reconstruct and interpolate video frames
simultaneously for smooth video content. To the best of our knowledge, this is the first
effort to unify the spatial and temporal modeling in the encoder, and unify reconstruction
and interpolation in the decoder in VAE.

• Extensive experiments on commonly used public datasets for video reconstruction and gen-
eration demonstrate the superiority of the proposed UniVAE.

2 RELATED WORKS

Video Generation Models. Video generation may find killer applications in short video apps, video
ads, and filming. Ho et al. (2020). With the emergence of OpenAI SORA Brooks et al. (2024), the
immense potential of video generation models has become evident, prompting researchers to invest
passion and resources into this field. Some works Ho et al. (2022); Singer et al. (2022); Zhang et al.
(2023) directly generate videos in pixel space. Due to the computational constraints, recent works
have shifted toward learning video distributions in a latent space. The popular approach involves
leveraging a Variational Autoencoder (VAE) to compress videos into a latent space, followed by
employing diffusion models to learn the distribution within that space. The works such as Animate-
Diff Guo et al. (2023), Stable Video Diffusion Blattmann et al. (2023) adopt the U-Net structure
from T2I diffusion models, while others, such as SORA Brooks et al. (2024), Open-Sora Zheng
et al. (2024), Latte Ma et al. (2024), CogVideoX Yang et al. (2024), and Open-Sora-Plan Lab &
etc. (2024), utilize transformer as the denoisers. Regardless of the denoiser architecture, VAE plays
a decisive role in determining the quality of the latent space for training and the final video recon-
struction, which is crucial for latent video diffusion models (LVDMs).

Variational Autoencoder. Variational Autoencoder (VAE) Kingma (2013) is designed to gener-
ate new data by sampling from learned latent distribution. Recently, it has been widely used in
generative models, which can be divided into two categories, discrete and continuous. The first
one is discrete VQ-VAEs Van Den Oord et al. (2017), which compress an input sample into a latent
space and quantize it into discrete tokens with a codebook. These tokens are then fed into subsequent
autoregressive-based generative models Yu et al. (2023). The second one is continuous VAEs, which
compress an input sample into a continuous latent space and have been widely used in latent diffu-
sion models. Stable Diffusion Rombach et al. (2022) is the first work to introduce VAE to diffusion
models. For LVDMs, a straightforward approach is to apply Stable Diffusion VAE Rombach et al.
(2022) to compress input videos frames by frames. Stable Video Diffusion VAE Blattmann et al.
(2023) further explore the temporal relations based on Stable Diffusion VAE. However, these VAEs
only compress videos spatially, while ignoring the temporal dimension. Recently, several works
have explored designing VAEs that compress videos both temporally and spatially. OS-VAE Zheng
et al. (2024) adopts a cascaded architecture, where a temporal VAE is applied to the latent space of a
spatial VAE. CV-VAE Zhao et al. (2024) proposes to compress videos temporally while focusing on
aligning its latent space with that of the existing Stable Diffusion VAE. OD-VAE Chen et al. (2024a)
also proposes to compress video temporally. Building on previous research, the proposed UniVAE
explores a unified way to compress videos both spatially and temporally with jointly designed en-
coder and decoder, thus achieving accurate and smooth video reconstruction at a high frame rate.

3 METHOD

In this section, we will introduce the proposed UniVAE. We first overview the whole pipeline of our
UniVAE in Sec. 3.1. Then, we introduce the multi-scale temporal downsampling in Sec. 3.2 and
latent-guided refinement training strategy in Sec. 3.3, respectively.

3.1 OVERVIEW

The architecture of the proposed UniVAE is illustrated in Fig. 1, which consists of an encoder E and
two decoders D1 and D2. We denote a video with (N + 1) frames as X ∈ R(N+1)×H×W×3, where
H and W are the height and width of each frame xi in X. Then, we feed X into E to compress it to
the latent representation Z ∈ R(n+1)×h×w×c, which can be formulated as Z = E(X). Following the

3
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Figure 2: Illustration of the latent-guided refinement training strategy, which is implemented as a
2-stage training. In stage 1, we train the UniVAE encoder E and decoder D1 for accurate video re-
construction. In stage 2, we freeze the E and D1, and train the refinement decoder D2 independently.
The features in D1 are injected into D2 to facilitate the frames interpolation.

common setting in 3D VAEs for LVDMs Chen et al. (2024a); Zhao et al. (2024); Zheng et al. (2024),
the temporal rate ρt =

N
n is set to 4, and the spatial rate ρs = H

h = W
w is set to 8, respectively. The

first frame x1 will is processed independently, which is only compressed spatially. A multi-scale
temporal downsampling is introduced to the causal 3D encoder E to compress videos temporally
and spatially, which will be detailed in Sec. 3.2. Among the two decoders, the causal 3D decoder
D1 is responsible for reconstructing the input videos, while the causal 3D refinement decoder D2

interpolates to further enhance the smoothness of the reconstructed videos. This can be formulated
as X̂ = D1(Z) and X̃ = D2(Z), where X̂ ∈ R(N+1)×H×W×3 denotes the reconstructed video, and
X̃ ∈ R(2N+1)×H×W×3 means the enhanced videos with the interpolation of frames, respectively.
The training strategy of the two decoders will be described in Sec. 3.3.

3.2 MULTI-SCALE TEMPORAL DOWNSAMPLING

In addition to spatial compression, video VAEs also compress vidoes temporally to further reduce the
computational cost of video generation in LVDMs. However, the temporal compression inevitably
leads to details loss, resulting in issues such as jitter and flickering in the reconstructed videos.
Upon reviewing the existing video VAE architectures, we observe that most of them rely on fixed-
size convolutional kernels for temporal downsampling, with a kernel size of 3 being the common
choice Chen et al. (2024a). This limits their ability to capture dynamic temporal features across
different time scales in videos. In fact, previous work Yang et al. (2024) has shown that temporal
compression in video VAEs is more challenging than spatial compression for videos. Therefore, it
is crucial to explore better schemes for temporal compression.

To solve this issue, we propose a multi-scale temporal downsampling architecture to compress
videos temporally in the causal 3D encoder. Unlike previous works Chen et al. (2024a); Zhao
et al. (2024) that only utilize fixed-size convolutional kernels to compress videos temporally, we
design a series of convolutional kernels with varying kernel sizes for temporal compression, as
shown in Fig. 2. Specifically, we apply multiple causal 3D convolution F = {f1, f2, ..., fp}, where
fi ∈ Rcin×cout×ti×hi×wi (i ∈ [1, ..., p]). ti, hi, and wi represent the temporal size, height, and
width of the convolution kernel. Each fi has a unique kernel size ti along the time axis, which en-
dows F with the ability to capture dynamic patterns of different time scales in videos. On the other
hand, for all fi ∈ F, they share the same hi and wi.

Given an input video tensor x ∈ RN×H×W×C , we first partition it into p parts along the channel
dimension. We can get x = [x1, x2, ..., xp], where xi ∈ RN×H×W×C

p . Then, we leverage the
multi-scale convolution F to compress x temporally and spatially. Specifically, we first perform

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

convolution between each kernel fi and its corresponding segment xi, and then concatenate the
resulting yi along the channel dimension to produce the final output y, which can be formulated as:

y = F⊗ x = [f1 ⊗ x1, f2 ⊗ x2, ..., fp ⊗ xp],

where ⊗ is the convolution operation. Compared with previous video VAEs, UniVAE leverages
convolutional kernels with varying scales for video temporal compression. This allows the UniVAE
to capture temporal dependencies across different time scales. fi with smaller ti will focus on lo-
cal temporal variations, capturing fast movements and transient changes, while those with larger ti
capture long-term dynamics such as slow motions or extended trends. This enhances the diversity
and richness of the features extracted by E , providing more varied and informative latent represen-
tations for subsequent video diffusion models. Moreover, the multi-scaled features supports the D2

to interpolate additional frames in between with consistent object appearance and coherent motion,
maintaining the coherence of the enhanced videos, which will be discussed in Sec. 3.3. Our design
also improves the VAE’s generalization ability, enabling it to adapt to videos with different motion
speeds and temporal patterns.

3.3 LATENT-GUIDED REFINEMENT TRAINING STRATEGY

Existing video VAEs typically employ an encoder to compress a video X into lower-dimensional la-
tent representation Z temporally and spatially to reduce the computational cost of LVDMs, and then
utilize a decoder to reconstruct the corresponding a video X̂ to ensure high-quality video genera-
tion, where X and X̂ have the same number of frames. Beyond the common paradigm, we wonder
whether 3D VAEs have the potential to generate richer video content beyond reconstruction.
Specifically, by interpolating frames during the decoding process, the decoder can produce content-
rich videos X̃. This could allow LVDMs to generate smooth, high-fps videos without increasing
computational costs of diffusion models.

To this end, we introduce a causal 3D refinement decoder to the UniVAE, which can interpolate
video frames, as illustrated in Fig. 2. In order to train the proposed decoder and refinement decoder
effectively, we propose a two-stage latent-guided refinement training scheme. As shown in Fig. 2,
we train the VAE encoder E and decoder D1 in the first stage. Given the original video X, we
send it to the encoder to get the latent representation Z, which is Z = E(X). Then, we utilize the
decoder to reconstruct video X̂, which is X̂ = D1(Z). Following the training of video VAEs in
LVDMs Chen et al. (2024a); Zhao et al. (2024), we use a combination of reconstruction loss Zhang
et al. (2018), adversarial loss Goodfellow et al. (2020), and KL regularization Kingma (2013) as the
training objective, formulated as:

LV AE(E ,D1) = Lrecon(X, X̂) + Ladv(X, X̂) + LKL(X,Z), (1)

After training E and D1, we introduce a refinement decoder D2 to UniVAE and train it independently
in the second stage. E and D1 are frozen in this stage. The refinement decoder D2 shares almost the
same architecture as the standard decoder D1, with the primary difference being that D2 employs a
higher temporal upsampling rate in the final temporal decoding module, as illustrated in Fig. 2. This
enables D2 interpolate an extra intermediate frame between every two consecutive reconstructed
frames frames, improving the smoothness of the reconstructed videos. Since D1 has been trained
to decode video from Z, we leverage it to facilitate the training of D2. Specifically, given a video
X ∈ R(N+1)×H×W×3, we send it to E to get Z. Then, we feed Z into D1 and D2, respectively.
After passing the last temporal upsampling module, we can get the x̂ = [x̂1, x̂2, ..., x̂N+1] in D1,
and x̃ = [x̃1, x̃2, ..., x̃2N+1] in D2, respectively. For each x̂i ∈ x̂, we can find the corresponding
frame x̃2i−1 ∈ x̃. Then, we add each frame in x̂ to the corresponding frame in x̃, formulated as:

x̃new = x̃+ x̂ = [x̃1 + x̂1, x̃2, x̃3 + x̂2, x̃4, ..., x̃2i−1 + x̂i, x̃2i, ..., x̃2N , x̃2N+1 + x̂N+1], (2)

Then, x̃new is fed to subsequent module for further reconstruction. Since x̂ is necessary for re-
constructing X, we inject x̂ into x̃. This makes it easy for D2 to reconstruct existing frames
(i.e. , [x̃1, x̃3, ..., x̃2N+1]), and encourage D2 to focus on the generation of additional frames (i.e. ,
[x̃2, x̃4, ..., x̃2N ]). The multi-scale latent representation Z extracted by E provide the refinement
decoder D2 with details about temporal patterns at various time scales, which helps D2 make in-
formed additional frame generation about what should occur between existing frames when up-
sampling. Unlike frame interpolation methods Reda et al. (2022) with a stand-alone interpolation

5
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Table 1: Performance comparison of different VAEs on 25-frame video reconstruction across
WebVid-10M and Panda-70M dataset. The best results are marked as bold, and the second ones
are marked by underline. Note that the UniVAE ∗ denotes that the UniVAE w/o refinement decoder
D2, since only D1 are utilized for standard video reconstruction.

Method VCR Params WebVid-10M Panda-70M
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

VQGAN 1×8×8 69.0M 26.26 0.7699 0.0906 26.07 0.8295 0.0722
SD-VAE 1×8×8 83.7M 30.19 0.8379 0.0568 30.40 0.8894 0.0396

SVD-VAE 1×8×8 97.7M 31.15 0.8686 0.0547 31.00 0.9058 0.0379
TATS 4×8×8 52.2M 23.10 0.6758 0.2645 21.77 0.6680 0.2858

CV-VAE 4×8×8 182.5M 30.76 0.8566 0.0803 29.57 0.8795 0.0673
OS-VAE 4×8×8 393.3M 31.12 0.8569 0.1003 31.06 0.8969 0.0666
OD-VAE 4×8×8 239.2M 31.16 0.8694 0.0586 30.49 0.8970 0.0454
UniVAE ∗ 4×8×8 234.8M 34.13 0.8783 0.0525 33.58 0.9138 0.0444

Figure 3: Qualitative comparison of different 3D VAEs on video reconstruction.

module, we integrate the frame interpolation into the VAE decoding process, rather than apply-
ing post-processing frame interpolation to the decoded videos. While various intermediate frame
methods are available, UniVAE utilizes a straightforward variant that directly upsamples features
temporally in D2 to explore the potential of video VAE to reconstruct videos with high fps.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Training Details. In the first stage, we train the encoder E and the decoder D1 of the UniVAE with
Adam optimizer for 380k steps, where β1 and β2 are set to 0.9 and 0.999, respectively. The learning
rate is set to a constant value of 1×10−5, and the batch size is set to 8. Following Chen et al. (2024a),
the input videos are pre-processed to a length of 25 frames with a resolution of 256 × 256. In the
second stage, we independently train the refinement decoder D2 for 1,000k steps. In this stage, the
input videos are processed to a length 25 frames with a resolution of 128× 128. The entire UniVAE
is trained on 8 × NVIDIA A100 GPUs under Pytorch framework.
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Table 2: Performance comparison of different VAEs on video generation across UCF101 and Sky-
Timelapse dataset. The best results are marked as bold and the seconds one are marked by underline.

Method UCF101 SkyTimelapse
FVD↓ KVD↓ FVD↓ KVD↓

Latte + CV-VAE 8742.42 20.13 986.30 11.25
Latte + OD-VAE 8047.60 20.65 881.66 9.41
Latte + UniVAE 7777.71 19.35 799.64 9.56

Figure 4: Video generation results of Latte equipped with different VAEs on SkyTimelapse dataset.

Datasets and Evaluation Metrics. We evaluate our UniVAE on video reconstruction and video
generation. For video reconstruction, WebVid-10M Bain et al. (2021) and Panda-70M Chen et al.
(2024b) are utilized for evalution. To assess the performance for video reconstruction, we adopt three
different metrics, including PSNR Hore & Ziou (2010), SSIM Wang et al. (2004) and LPIPS Zhang
et al. (2018). Among them, PSNR and SSIM are utilized to quantify the fidelity of the reconstructed
videos, where higher values mean better reconstruction quality. LPIPS is utilized to measure the
perceptual difference and visual quality, with lower values indicating better performance. For video
generation, we use the Latte Ma et al. (2024) as the latent video diffusion model. We apply different
VAEs to Latte and evaluate their video generation performance. Following Chen et al. (2024a); Ge
et al. (2022), the UCF101 Soomro (2012) and SkyTimelapse Xiong et al. (2018) are selected as
datasets for video generation evaluation. Frechet Video Distance (FVD) and Kernel Video Distance
(KVD) Unterthiner et al. (2018) are employed as the evaluation metrics to assess the performance
of video generation.

4.2 COMPARISON ON VIDEO RECONSTRUCTION AND VIDEO GENERATION

Tab. 1 shows the performance comparison between the proposed UniVAE and other VAEs on video
reconstruction across WebVid-10M and Panda-70M validation set. We also present the video com-
pression rate (VCR) and training parameters in Tab. 1. All the input videos are pre-processed to a
length of 25 frames with resolution of 256×256 for evaluation. We select both 2D and 3D compres-
sors as baselines for comparison. For 2D compressor, we choose VQ-GAN Esser et al. (2021), SD-
VAE Rombach et al. (2022), and SVD-VAE Blattmann et al. (2023). For 3D compressor, TATS Ge
et al. (2022), CV-VAE Zhao et al. (2024), OS-VAE Zheng et al. (2024), and OD-VAE Chen et al.
(2024a) are utilized for comparison. As we can see, the proposed UniVAE achieves better superior
reconstruction performance than all compared baselines among all three metrics across two valida-
tion datasets, while keep the same temporal ans spatial video compression ratio. We also present the
qualitative comparison in Fig. 3.

We further evaluate different VAEs by connecting them with video diffusion models. As shown in
Tab. 2, our UniVAE has better performance than CV-VAE and OD-VAE overall. Specifically, on
the UCF101 dataset, Latte equipped with UniVAE achieves better FVD and KVD than that of the
CV-VAE and that of the OD-VAE. Our UniVAE also brings better FVD on SkyTimelapse dataset,
and has comparable KVD with OD-VAE. We also show the qualitative results in Fig. 4.
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Figure 5: Reconstruction results of the refinement decoder D2.

Figure 6: Performance (PSNR and LPIPS) comparison of different VAEs on video reconstruction
across different frames.

4.3 EFFECTIVENESS OF THE REFINEMENT DECODER

In the proposed UniVAE, we introduce a refinement decoder D2 to interpolate frames with the as-
sistance of decoder D1. To the best of our knowledge, the UniVAE is the first work to investigate
the potential of VAE to interpolate reconstructed videos. It enables users to flexibly customize the
generated final video output, i.e. , the user can choose between the ordinary videos reconstructed
by D1 or the enhanced videos reconstructed by D2. As shown in Fig. 5, the images in green and
blue boxes mean the input and reconstructed frames, respectively, while those in red box denote
the generated intermediate frames. As we can see, the video sequences reconstructed by D2 exhibit
greater smoothness compared with the input sequences. It is worth noting that except the proposed
latent-guided refinement training strategy, we do not introduce any special module into D2. How-
ever, the generated additional frames still perform well. We attribute this to the multi-timescale
latent representation extracted by E , which greatly supports D2 to predict intermediate frames.

4.4 GENERALIZATION TO VIDEOS WITH DIFFERENT LENGTH

In this section, we discuss the generalization ability of VAEs to video sequences with different
length. An ideal video VAE should be able to accurately reconstruct videos of any lengths. To
evaluate the generalization of different video VAEs, we randomly select around 1,000 videos and
clip them to different lengths: 17 frames for short videos, 65 frames for medium-length videos, and
129 frames for long videos. We use OS-VAE and OD-VAE as baselines for comparison since they
have been used in popular LVDMs projects.

As shown in Fig. 6, all three VAEs achieve excellent performance in reconstructing relatively short
videos (i.e. , 17-frame video reconstruction). However, with the length of input videos increasing,
the performance of OS-VAE and OD-VAE drops significantly. For example, when the video re-
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Table 3: Ablation results of UniVAE for video reconstruction on WebVid-10M validation set.

Method Settings of F PSNR↑ SSIM↑ LPIPS↓
Baseline F = [3] 31.16 0.8694 0.0586

UniVAE-V F = [3, 5] 34.08 0.8785 0.0527
UniVAE F = [3, 5, 7, 9] 34.13 0.8783 0.0525

Figure 7: Qualitative comparison of the UniVAE and UniVAE-V2.

construction length increases from 17 frames to 129 frames, OS-VAE experiences a performance
drop of 4.41dB/0.0897 in terms of PSNR/LPIPS. We analyze that this decline is due to its sepa-
rate compression of temporal and spatial information. OD-VAE compresses videos across temporal
and spatial dimensions simultaneously, which can capture spatial-temporal relationships better than
OS-VAE. As we can see, OD-VAE has better generalization ability than OS-VAE, however, it still
suffer obvious performance drop. In contrast, our UniVAE demonstrates superior generalization
performance, with minimal decline as the length of input videos increases. We attribute it to our
multi-scale temporal compression in E , which encourages the UniVAE to capture the temporal pat-
terns across various time-scale, and enables UniVAE to better adapt to videos with different length.

4.5 ABLATION STUDY

In this section, we perform comprehensive ablation studies to demonstrate the effectiveness of our
designs in the proposed UniVAE. Specifically, we evaluate the benefits of multi-scale temporal
downsampling module and the latent-guided refinement training strategy.

Effectiveness of the Multi-Scale Temporal Downsampling Module. To better capture the dy-
namic patterns across varying time scales in videos, we propose to utilize 3D convolution kernels
with multiple kernel sizes to compress the video temporally. As described in Tab. 3, our UniVAE
utilize 3D convolutions with four different kernel sizes (3, 5, 7, and 9) to perform temporal com-
pression. We also design two variants for comparison. Among them, “UniVAE-V” uses only two
different convolutions with kernel size 3 and 5. “Baseline” employs a single convolution with fixed
size 3 for temporal compression, which is popular in current video VAEs Chen et al. (2024a). As we
can see, UniVAE and UniVAE-V outperform “Baseline” by 2.97dB and 2.92dB in terms of PSNR,
respectively, which suggests that using multi-scale convolutions is beneficial for temporal compres-
sion. On the other hand, we observe that UniVAE, with diverse set of convolutions, obtains slightly
better performance than UniVAE-V. It indicates that increasing the diversity of convolutions in F
can effectively capture temporal features in videos, thereby improving the reconstruction quality.

Effectiveness of the Latent-Guided Refinement Training Strategy. We propose a latent-guided
refinement training strategy to train the standard decoder D1 and refinement decoder D2 in different
stage. To verify the effectiveness of this, we propose a variant named UniVAE-V2, which directly
trains D2 without the assistance of D1. As shown in Fig 7, we can see that our latent-guided re-
finement training strategy can better facilitate the additional frames generation in D2. The proposed
latent-guided refinement training strategy not only ensures UniVAE standard video compression and
reconstruction capability, (i.e. , D1), but also better encourages D2 to deliver smooth outputs.
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5 CONCLUSIONS

In this study, we analyze the critical role of VAEs in current latent diffusion generative models, and
present a unified video VAE for LVDMs, named UniVAE. We propose to utilize convolutions with
varying kernel sizes in the encoder for temporal compression. Moreover, we explore the potential of
VAE to generate additional frames to deliver smooth video content, and delicately design a latent-
guided refinement training strategy for this purpose. Extensive experiments on video reconstruction
and generation demonstrate the effectiveness of the UniVAE. We hope our work can motivate further
research in VAE to advane the development of generative models.
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