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ABSTRACT

Variational Autoencoder (VAE) underscores its indispensable role along the grow-
ing prominence of Latent Video Diffusion Models (LVDMs). Nevertheless, cur-
rent latent generative models are generally built upon image VAEs, which com-
press the spatial dimension only. While, it is vital for video VAE to model tem-
poral dynamic patterns to produce smooth high quality video reconstruction. To
address these issues, we propose UniVAE, which compresses videos both spa-
tially and temporally while ensuring coherent video construction. Specifically,
we employ 3D convolutions at varying scales in the encoder to temporally com-
press videos, enabling the UniVAE to capture dependencies across multiple time
scales. Furthermore, existing VAEs only reconstruct videos at a low resolution
and fps, bounded by limited GPU memory, which makes the entire video gener-
ation pipeline fragmented and complicated. Thus, in conjunction with the new
encoder, we explore the potential of the VAE decoder to perform frame interpola-
tion, aiming to synthesize additional intermediate frames without relying on stan-
dalone add-on interpolation models. Compared with existing VAEs, the proposed
UniVAE explores a unified way to compress videos both spatially and temporally
with jointly designed encoder and decoder, thus achieving accurate and smooth
video reconstruction at a high frame rate. Extensive experiments on commonly
used public datasets for video reconstruction and generation demonstrate the su-
periority of the proposed UniVAE. The code and the pre-trained models will be
released to facilitate further research.

1 INTRODUCTION

The compression and reconstruction of visual data are fundamental to the generative research Rom-
bach et al. (2022); Yu et al. (2023). As latent diffusion models Blattmann et al. (2023); Guo et al.
(2023); Yang et al. (2024); Gong et al. (2024) become central to generative tasks, the quality of the
latent space largely determines the upper bound of generation performance, which is contingent on
the modeling capability of VAE models. While comparing to relatively mature image VAEs Rom-
bach et al. (2022); Podell et al. (2023), video data presents greater challenges due to the larger data
volume, temporal redundancy, and GPU memory constraints Chen et al. (2024a). These issues raise
the question how to design unified frame-enriched video VAEs dedicated to videos.

Current VAEs can be categorized into two main types: (1) Image VAE approachs Guo et al. (2023);
Blattmann et al. (2023), treating a video as a series of individual frames. This kind of VAE effec-
tively preserves spatial pixel contents and typically utilizes lightweight 2D convolution Rombach
et al. (2022). However, it may result in temporal instability and inadequate temporal compression in
the latent space, as well as large GPU memory consumption of diffusion models. (2) Video VAEs
with temporal compression Chen et al. (2024a); Zheng et al. (2024), which can compress video
along the temporal dimension, achieving higher compression ratios. Recently, many DiT based
video diffusion models Brooks et al. (2024); Lab & etc. (2024) have improved VAEs to achieve bet-
ter temporal modeling. It greatly increases the number of input tokens, allowing for the generation
of videos with more frames. However, the simplistic temporal compression designs in current video
VAESs, such as using the primitive temporal pooling operation, limit their ability to effectively cap-
ture temporal consistency, considerly restricting the performance of LVDMs. Thus, we believe that
a VAE’s ability to capture temporal relationships in video data is essential, which shall be designed
jointly and integrated in the diffusion generation process for optimal results.
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Figure 1: Architecture of the proposed UniVAE. It consists of the Causal 3D Encoder to compress
videos into latent representations for LVDMs temporally and spatially, and the Causal 3D Decoder
to reconstruct the videos. Moreover, the Causal 3D Refinement Decoder is introduced to generate
smooth videos, given the low fps outputs by the Causal 3D Decoder.

Such a unification is challenging for VAE:s, since it involves effectively combining temporal model-
ing with deep integration into diffusion models. Specifically, the video generation pipeline is much
more complicated than that of image generation Brooks et al. (2024); Yang et al. (2024), and is
severely bounded by GPU memory. As a result, existing VAEs primarily focus on compressing and
reconstructing inputs at a low resolution and frame rate, e.g., 256 x256 at 8fps. The interpolation of
frames and pixels is delegated to standalone add-on super-resolution Saharia et al. (2022); Shi et al.
(2024) or frame interpolation models Reda et al. (2022) connected at the end of the video generation
pipeline. This fragmentation complicates the use and optimization of the video generation pipeline,
motivating our pursuit of a unified approach. Our observations indicate that VAEs can assume mul-
tiple roles within the current video generation stream. If the encoder can effectively model temporal
variations, the decoder could theoretically synthesize additional frames, leading to high fps videos
without the need for separate interpolation models. This unified VAE structure could reduce the
number of frames required by diffusion models to improve training efficiency while streamlining
the video generation pipeline.

These issues motivate us to investigate a new approach, UniVAE, to compress videos both spatially
and temporally and jointly design the encoder and decoder, thus achieving accurate and smooth
video reconstruction at a high frame rate. Through the analysis of existing VAEs, we observe that
most methods typically utilize single-scale convolution kernels for temporal downsampling Chen
et al. (2024a). It limits the ability of VAEs to effectively model motions and changes occurring over
varying time scales, making it hard to maintain inter-frame coherence in the reconstructed videos,
such as flickering or blurriness. In fact, previous work Yang et al. (2024) has shown that encoding
in the temporal dimension in VAEs is more difficult than encoding in the spatial dimension, which
suggests that improving the temporal encoding capability is the key challenge.

To this end, we propose a multi-scale temporal convolution architecture for the encoder in UniVAE.
Specifically, during the temporal compression, we apply 3D convolution Ji et al. (2012) with vary-
ing kernel sizes to downsample the videos in the temporal dimension, followed by concatenating
and fusing the extracted features. Our multi-scale convolutions are designed across the channel di-
mension, without introducing additional computational cost. It allows UniVAE to capture dynamic
patterns across different time scales, enabling a comprehensive understanding of the video’s tempo-
ral structure. Furthermore, we integrate the frame interpolation function into the decoder to generate
high frame rate video, enabling the production of smooth video content. For this purpose, we pro-
pose a latent-guided refinement training scheme, which introduces a refinement decoder to UniVAE
with the assistance of a pre-trained VAE decoder.

We summarize our contributions as follows:
* We propose the UniVAE which is designed specifically for video data. Both the encoder

and decoder in UniVAE are enhanced to compress and reconstruct videos temporally and
spatially, devoted to video generation via latent diffusion models.
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* Our UniVAE’s encoder employs a multi-scale temporal convolution architecture to capture
dynamic video representations, while the decoder reconstruct and interpolate video frames
simultaneously for smooth video content. To the best of our knowledge, this is the first
effort to unify the spatial and temporal modeling in the encoder, and unify reconstruction
and interpolation in the decoder in VAE.

* Extensive experiments on commonly used public datasets for video reconstruction and gen-
eration demonstrate the superiority of the proposed UniVAE.

2 RELATED WORKS

Video Generation Models. Video generation may find killer applications in short video apps, video
ads, and filming. Ho et al. (2020). With the emergence of OpenAl SORA Brooks et al. (2024), the
immense potential of video generation models has become evident, prompting researchers to invest
passion and resources into this field. Some works Ho et al. (2022); Singer et al. (2022); Zhang et al.
(2023) directly generate videos in pixel space. Due to the computational constraints, recent works
have shifted toward learning video distributions in a latent space. The popular approach involves
leveraging a Variational Autoencoder (VAE) to compress videos into a latent space, followed by
employing diffusion models to learn the distribution within that space. The works such as Animate-
Diff Guo et al. (2023), Stable Video Diffusion Blattmann et al. (2023) adopt the U-Net structure
from T2I diffusion models, while others, such as SORA Brooks et al. (2024), Open-Sora Zheng
et al. (2024), Latte Ma et al. (2024), CogVideoX Yang et al. (2024), and Open-Sora-Plan Lab &
etc. (2024), utilize transformer as the denoisers. Regardless of the denoiser architecture, VAE plays
a decisive role in determining the quality of the latent space for training and the final video recon-
struction, which is crucial for latent video diffusion models (LVDMs).

Variational Autoencoder. Variational Autoencoder (VAE) Kingma (2013) is designed to gener-
ate new data by sampling from learned latent distribution. Recently, it has been widely used in
generative models, which can be divided into two categories, discrete and continuous. The first
one is discrete VQ-VAEs Van Den Oord et al. (2017), which compress an input sample into a latent
space and quantize it into discrete tokens with a codebook. These tokens are then fed into subsequent
autoregressive-based generative models Yu et al. (2023). The second one is continuous VAEs, which
compress an input sample into a continuous latent space and have been widely used in latent diffu-
sion models. Stable Diffusion Rombach et al. (2022) is the first work to introduce VAE to diffusion
models. For LVDMs, a straightforward approach is to apply Stable Diffusion VAE Rombach et al.
(2022) to compress input videos frames by frames. Stable Video Diffusion VAE Blattmann et al.
(2023) further explore the temporal relations based on Stable Diffusion VAE. However, these VAEs
only compress videos spatially, while ignoring the temporal dimension. Recently, several works
have explored designing VAEs that compress videos both temporally and spatially. OS-VAE Zheng
et al. (2024) adopts a cascaded architecture, where a temporal VAE is applied to the latent space of a
spatial VAE. CV-VAE Zhao et al. (2024) proposes to compress videos temporally while focusing on
aligning its latent space with that of the existing Stable Diffusion VAE. OD-VAE Chen et al. (2024a)
also proposes to compress video temporally. Building on previous research, the proposed UniVAE
explores a unified way to compress videos both spatially and temporally with jointly designed en-
coder and decoder, thus achieving accurate and smooth video reconstruction at a high frame rate.

3 METHOD

In this section, we will introduce the proposed UniVAE. We first overview the whole pipeline of our
UniVAE in Sec. 3.1. Then, we introduce the multi-scale temporal downsampling in Sec. 3.2 and
latent-guided refinement training strategy in Sec. 3.3, respectively.

3.1 OVERVIEW

The architecture of the proposed UniVAE is illustrated in Fig. 1, which consists of an encoder £ and
two decoders D; and D,. We denote a video with (N 4 1) frames as X € RIWVFDXHXWX3 \where
H and W are the height and width of each frame x; in X. Then, we feed X into £ to compress it to
the latent representation Z € R(*H+1)*hxwxe wwhich can be formulated as Z = £(X). Following the
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Figure 2: Illustration of the latent-guided refinement training strategy, which is implemented as a
2-stage training. In stage 1, we train the UniVAE encoder £ and decoder D; for accurate video re-
construction. In stage 2, we freeze the £ and D1, and train the refinement decoder D5 independently.
The features in D; are injected into D, to facilitate the frames interpolation.

common setting in 3D VAEs for LVDMs Chen et al. (2024a); Zhao et al. (2024); Zheng et al. (2024),
the temporal rate p; = % is set to 4, and the spatial rate p; = - = % is set to 8, respectively. The
first frame x; will is processed independently, which is only compressed spatially. A multi-scale
temporal downsampling is introduced to the causal 3D encoder £ to compress videos temporally
and spatially, which will be detailed in Sec. 3.2. Among the two decoders, the causal 3D decoder
D is responsible for reconstructing the input videos, while the causal 3D refinement decoder Dy

interpolates to further enhance the smoothness of the reconstructed videos. This can be formulated
as X = Dy (Z) and X = Dy(Z), where X € RWHDXHXWX3 denotes the reconstructed video, and

X € REN+DXH*Wx3 meang the enhanced videos with the interpolation of frames, respectively.
The training strategy of the two decoders will be described in Sec. 3.3.

3.2 MULTI-SCALE TEMPORAL DOWNSAMPLING

In addition to spatial compression, video VAEs also compress vidoes temporally to further reduce the
computational cost of video generation in LVDMs. However, the temporal compression inevitably
leads to details loss, resulting in issues such as jitter and flickering in the reconstructed videos.
Upon reviewing the existing video VAE architectures, we observe that most of them rely on fixed-
size convolutional kernels for temporal downsampling, with a kernel size of 3 being the common
choice Chen et al. (2024a). This limits their ability to capture dynamic temporal features across
different time scales in videos. In fact, previous work Yang et al. (2024) has shown that temporal
compression in video VAEs is more challenging than spatial compression for videos. Therefore, it
is crucial to explore better schemes for temporal compression.

To solve this issue, we propose a multi-scale temporal downsampling architecture to compress
videos temporally in the causal 3D encoder. Unlike previous works Chen et al. (2024a); Zhao
et al. (2024) that only utilize fixed-size convolutional kernels to compress videos temporally, we
design a series of convolutional kernels with varying kernel sizes for temporal compression, as
shown in Fig. 2. Specifically, we apply multiple causal 3D convolution F = { f1, fo, ..., f» }, where
fi € ReinXcourxtixhixwi j  [1 . pl). t;, h;, and w; represent the temporal size, height, and
width of the convolution kernel. Each f; has a unique kernel size ¢; along the time axis, which en-
dows F with the ability to capture dynamic patterns of different time scales in videos. On the other
hand, for all f; € F, they share the same h; and w;.

RNXHXWXC

Given an input video tensor x € , we first partition it into p parts along the channel

. . c
dimension. We can get x = [z1, Z2, ..., Zp), Where z; € RV HXWXT " Then, we leverage the

multi-scale convolution F' to compress x temporally and spatially. Specifically, we first perform
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convolution between each kernel f; and its corresponding segment x;, and then concatenate the
resulting y; along the channel dimension to produce the final output y, which can be formulated as:

y:F®X: [f1®$1,f2 ®$27~--7fp®xp]’

where ® is the convolution operation. Compared with previous video VAEs, UniVAE leverages
convolutional kernels with varying scales for video temporal compression. This allows the UniVAE
to capture temporal dependencies across different time scales. f; with smaller ¢; will focus on lo-
cal temporal variations, capturing fast movements and transient changes, while those with larger ¢;
capture long-term dynamics such as slow motions or extended trends. This enhances the diversity
and richness of the features extracted by &, providing more varied and informative latent represen-
tations for subsequent video diffusion models. Moreover, the multi-scaled features supports the Dy
to interpolate additional frames in between with consistent object appearance and coherent motion,
maintaining the coherence of the enhanced videos, which will be discussed in Sec. 3.3. Our design
also improves the VAE’s generalization ability, enabling it to adapt to videos with different motion
speeds and temporal patterns.

3.3 LATENT-GUIDED REFINEMENT TRAINING STRATEGY

Existing video VAEs typically employ an encoder to compress a video X into lower-dimensional la-
tent representation Z temporally and spatially to reduce the computational cost of LVDMs, and then
utilize a decoder to reconstruct the corresponding a video X to ensure high-quality video genera-
tion, where X and X have the same number of frames. Beyond the common paradigm, we wonder
whether 3D VAEs have the potential to generate richer video content beyond reconstruction.
Specifically, by interpolating frames during the decoding process, the decoder can produce content-
rich videos X. This could allow LVDMs to generate smooth, high-fps videos without increasing
computational costs of diffusion models.

To this end, we introduce a causal 3D refinement decoder to the UniVAE, which can interpolate
video frames, as illustrated in Fig. 2. In order to train the proposed decoder and refinement decoder
effectively, we propose a two-stage latent-guided refinement training scheme. As shown in Fig. 2,
we train the VAE encoder £ and decoder D; in the first stage. Given the original video X, we
send it to the encoder to get the latent representation Z, which is Z = £(X). Then, we utilize the
decoder to reconstruct video X, which is X = D1(Z). Following the training of video VAEs in
LVDMs Chen et al. (2024a); Zhao et al. (2024), we use a combination of reconstruction loss Zhang
et al. (2018), adversarial loss Goodfellow et al. (2020), and KL regularization Kingma (2013) as the
training objective, formulated as:

»C'VAE (57 Dl) = »Crecon (Xa X) + 'Cadv (Xv X) + 'CKL (Xv Z)a (l)

After training £ and D;, we introduce a refinement decoder D to UniVAE and train it independently
in the second stage. £ and D; are frozen in this stage. The refinement decoder D, shares almost the
same architecture as the standard decoder D1, with the primary difference being that Dy employs a
higher temporal upsampling rate in the final temporal decoding module, as illustrated in Fig. 2. This
enables Dy interpolate an extra intermediate frame between every two consecutive reconstructed
frames frames, improving the smoothness of the reconstructed videos. Since D; has been trained
to decode video from Z, we leverage it to facilitate the training of Ds. Specifically, given a video
X € RIVFDXHXWX3 e gend it to & to get Z. Then, we feed Z into D; and D-, respectively.
After passing the last temporal upsampling module, we can get the X = [#1, 29, ..., £n41] in Dy,
and X = [%1, T2, ..., Tan+1] in Da, respectively. For each Z; € X, we can find the corresponding
frame Z9;_1 € X. Then, we add each frame in X to the corresponding frame in X, formulated as:

Xpew = X + X = [T + 1,22, T3 + &2, T4, ..., Tai—1 + T4, Taiy .o, Toan, Tan41 + En41], Q)

Then, X,,¢,, is fed to subsequent module for further reconstruction. Since X is necessary for re-
constructing X, we inject X into X. This makes it easy for Ds to reconstruct existing frames
(i.e., [T1,%3,...,Tan+1]), and encourage D5 to focus on the generation of additional frames (i.e. ,
[Z2,Z4, ..., Zoan]). The multi-scale latent representation Z extracted by & provide the refinement
decoder D, with details about temporal patterns at various time scales, which helps D, make in-
formed additional frame generation about what should occur between existing frames when up-
sampling. Unlike frame interpolation methods Reda et al. (2022) with a stand-alone interpolation
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Table 1: Performance comparison of different VAEs on 25-frame video reconstruction across
WebVid-10M and Panda-70M dataset. The best results are marked as bold, and the second ones
are marked by underline. Note that the UniVAE * denotes that the UniVAE w/o refinement decoder
Ds, since only D; are utilized for standard video reconstruction.

WebVid-10M Panda-70M
Method | VCR  Params | perms—csivT LPIPS] [ PSNRT SSIMT LPIPS]
VQGAN | Tx8x8 69.0M | 2626 0.7699 0.0006 | 2607 08295 00722
SD-VAE | 1x8x8 837M | 30.19 08379 00568 | 3040 0.8894 0.0396
SVD-VAE | 1x8x8 97.7M | 31.15 08686 0.0547 | 31.00 09058 0.0379
TATS | 4x8x8 522M | 23.10 0.6758 02645 | 21.77 0.6680 0.2858
CV-VAE | 4x8x8 182.5M | 30.76 0.8566 0.0803 | 29.57 0.8795 0.0673
OS-VAE | 4x8x8 3933M | 31.12 08569 0.1003 | 31.06 0.8969 0.0666
OD-VAE | 4x8x8 2392M | 31.16 0.8694 0.0586 | 3049 0.8970 0.0454
UniVAE * | 4x8x8 2348M | 34.13 0.8783 0.0525 | 33.58 09138 0.0444

OD-VAE OS-VAE CV-VAE

UniVAE

GroundTruth

Figure 3: Qualitative comparison of different 3D VAEs on video reconstruction.

module, we integrate the frame interpolation into the VAE decoding process, rather than apply-
ing post-processing frame interpolation to the decoded videos. While various intermediate frame
methods are available, UniVAE utilizes a straightforward variant that directly upsamples features
temporally in Dy to explore the potential of video VAE to reconstruct videos with high fps.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Training Details. In the first stage, we train the encoder £ and the decoder D; of the UniVAE with
Adam optimizer for 380k steps, where 51 and 2 are set to 0.9 and 0.999, respectively. The learning
rate is set to a constant value of 1 x 10~°, and the batch size is set to 8. Following Chen et al. (2024a),
the input videos are pre-processed to a length of 25 frames with a resolution of 256 x 256. In the
second stage, we independently train the refinement decoder D for 1,000k steps. In this stage, the
input videos are processed to a length 25 frames with a resolution of 128 x 128. The entire UniVAE
is trained on 8 x NVIDIA A100 GPUs under Pytorch framework.
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Table 2: Performance comparison of different VAEs on video generation across UCF101 and Sky-
Timelapse dataset. The best results are marked as bold and the seconds one are marked by underline.

UCF101 SkyTimelapse
Method FVD] KVD] | FVD]  KVDJ
Latte + CV-VAE 874242 20.13 | 98630  11.25
Latte + OD-VAE | 8047.60  20.65 | 881.66 9.1
Latte + UniVAE 777771 1935 | 799.64  9.56

FTTFFFF
P ——

Figure 4: Video generation results of Latte equipped with different VAEs on SkyTimelapse dataset.

CV-VAE

OD-VAE

UniVAE

Datasets and Evaluation Metrics. We evaluate our UniVAE on video reconstruction and video
generation. For video reconstruction, WebVid-10M Bain et al. (2021) and Panda-70M Chen et al.
(2024b) are utilized for evalution. To assess the performance for video reconstruction, we adopt three
different metrics, including PSNR Hore & Ziou (2010), SSIM Wang et al. (2004) and LPIPS Zhang
et al. (2018). Among them, PSNR and SSIM are utilized to quantify the fidelity of the reconstructed
videos, where higher values mean better reconstruction quality. LPIPS is utilized to measure the
perceptual difference and visual quality, with lower values indicating better performance. For video
generation, we use the Latte Ma et al. (2024) as the latent video diffusion model. We apply different
VAE:s to Latte and evaluate their video generation performance. Following Chen et al. (2024a); Ge
et al. (2022), the UCF101 Soomro (2012) and SkyTimelapse Xiong et al. (2018) are selected as
datasets for video generation evaluation. Frechet Video Distance (FVD) and Kernel Video Distance
(KVD) Unterthiner et al. (2018) are employed as the evaluation metrics to assess the performance
of video generation.

4.2 COMPARISON ON VIDEO RECONSTRUCTION AND VIDEO GENERATION

Tab. 1 shows the performance comparison between the proposed UniVAE and other VAEs on video
reconstruction across WebVid-10M and Panda-70M validation set. We also present the video com-
pression rate (VCR) and training parameters in Tab. 1. All the input videos are pre-processed to a
length of 25 frames with resolution of 256 x 256 for evaluation. We select both 2D and 3D compres-
sors as baselines for comparison. For 2D compressor, we choose VQ-GAN Esser et al. (2021), SD-
VAE Rombach et al. (2022), and SVD-VAE Blattmann et al. (2023). For 3D compressor, TATS Ge
et al. (2022), CV-VAE Zhao et al. (2024), OS-VAE Zheng et al. (2024), and OD-VAE Chen et al.
(2024a) are utilized for comparison. As we can see, the proposed UniVAE achieves better superior
reconstruction performance than all compared baselines among all three metrics across two valida-
tion datasets, while keep the same temporal ans spatial video compression ratio. We also present the
qualitative comparison in Fig. 3.

We further evaluate different VAEs by connecting them with video diffusion models. As shown in
Tab. 2, our UniVAE has better performance than CV-VAE and OD-VAE overall. Specifically, on
the UCF101 dataset, Latte equipped with UniVAE achieves better FVD and KVD than that of the
CV-VAE and that of the OD-VAE. Our UniVAE also brings better FVD on SkyTimelapse dataset,
and has comparable KVD with OD-VAE. We also show the qualitative results in Fig. 4.
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Figure 6: Performance (PSNR and LPIPS) comparison of different VAEs on video reconstruction
across different frames.

4.3 EFFECTIVENESS OF THE REFINEMENT DECODER

In the proposed UniVAE, we introduce a refinement decoder Ds to interpolate frames with the as-
sistance of decoder D;. To the best of our knowledge, the UniVAE is the first work to investigate
the potential of VAE to interpolate reconstructed videos. It enables users to flexibly customize the
generated final video output, i.e. , the user can choose between the ordinary videos reconstructed
by D; or the enhanced videos reconstructed by D,. As shown in Fig. 5, the images in green and
blue boxes mean the input and reconstructed frames, respectively, while those in red box denote
the generated intermediate frames. As we can see, the video sequences reconstructed by D5 exhibit
greater smoothness compared with the input sequences. It is worth noting that except the proposed
latent-guided refinement training strategy, we do not introduce any special module into Ds. How-
ever, the generated additional frames still perform well. We attribute this to the multi-timescale
latent representation extracted by £, which greatly supports Dy to predict intermediate frames.

4.4 GENERALIZATION TO VIDEOS WITH DIFFERENT LENGTH

In this section, we discuss the generalization ability of VAEs to video sequences with different
length. An ideal video VAE should be able to accurately reconstruct videos of any lengths. To
evaluate the generalization of different video VAEs, we randomly select around 1,000 videos and
clip them to different lengths: 17 frames for short videos, 65 frames for medium-length videos, and
129 frames for long videos. We use OS-VAE and OD-VAE as baselines for comparison since they
have been used in popular LVDMs projects.

As shown in Fig. 6, all three VAEs achieve excellent performance in reconstructing relatively short
videos (i.e. , 17-frame video reconstruction). However, with the length of input videos increasing,
the performance of OS-VAE and OD-VAE drops significantly. For example, when the video re-
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Table 3: Ablation results of UniVAE for video reconstruction on WebVid-10M validation set.

Method Settings of F PSNR*T SSIMt LPIPS]
Baseline F =13] 31.16 0.8694 0.0586
UniVAE-V F =135 34.08 0.8785 0.0527
UniVAE F =13,57,9] 34.13 0.8783 0.0525

UanAE V2

ETEvETETEvEYE Ty

E=Ade——\d— A\ A=A\ e\ —\ ——\
Figure 7: Qualitative comparison of the UniVAE and UniVAE-V2.

UniVAE

construction length increases from 17 frames to 129 frames, OS-VAE experiences a performance
drop of 4.41dB/0.0897 in terms of PSNR/LPIPS. We analyze that this decline is due to its sepa-
rate compression of temporal and spatial information. OD-VAE compresses videos across temporal
and spatial dimensions simultaneously, which can capture spatial-temporal relationships better than
OS-VAE. As we can see, OD-VAE has better generalization ability than OS-VAE, however, it still
suffer obvious performance drop. In contrast, our UniVAE demonstrates superior generalization
performance, with minimal decline as the length of input videos increases. We attribute it to our
multi-scale temporal compression in £, which encourages the UniVAE to capture the temporal pat-
terns across various time-scale, and enables UniVAE to better adapt to videos with different length.

4.5 ABLATION STUDY

In this section, we perform comprehensive ablation studies to demonstrate the effectiveness of our
designs in the proposed UniVAE. Specifically, we evaluate the benefits of multi-scale temporal
downsampling module and the latent-guided refinement training strategy.

Effectiveness of the Multi-Scale Temporal Downsampling Module. To better capture the dy-
namic patterns across varying time scales in videos, we propose to utilize 3D convolution kernels
with multiple kernel sizes to compress the video temporally. As described in Tab. 3, our UniVAE
utilize 3D convolutions with four different kernel sizes (3, 5, 7, and 9) to perform temporal com-
pression. We also design two variants for comparison. Among them, “UniVAE-V” uses only two
different convolutions with kernel size 3 and 5. “Baseline” employs a single convolution with fixed
size 3 for temporal compression, which is popular in current video VAEs Chen et al. (2024a). As we
can see, UniVAE and UniVAE-V outperform “Baseline” by 2.97dB and 2.92dB in terms of PSNR,
respectively, which suggests that using multi-scale convolutions is beneficial for temporal compres-
sion. On the other hand, we observe that UniVAE, with diverse set of convolutions, obtains slightly
better performance than UniVAE-V. It indicates that increasing the diversity of convolutions in F
can effectively capture temporal features in videos, thereby improving the reconstruction quality.

Effectiveness of the Latent-Guided Refinement Training Strategy. We propose a latent-guided
refinement training strategy to train the standard decoder D; and refinement decoder Ds in different
stage. To verify the effectiveness of this, we propose a variant named UniVAE-V2, which directly
trains Dy without the assistance of D;. As shown in Fig 7, we can see that our latent-guided re-
finement training strategy can better facilitate the additional frames generation in Ds. The proposed
latent-guided refinement training strategy not only ensures Uni VAE standard video compression and
reconstruction capability, (i.e. , Dy), but also better encourages D to deliver smooth outputs.
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5 CONCLUSIONS

In this study, we analyze the critical role of VAEs in current latent diffusion generative models, and
present a unified video VAE for LVDMs, named UniVAE. We propose to utilize convolutions with
varying kernel sizes in the encoder for temporal compression. Moreover, we explore the potential of
VAE to generate additional frames to deliver smooth video content, and delicately design a latent-
guided refinement training strategy for this purpose. Extensive experiments on video reconstruction
and generation demonstrate the effectiveness of the UniVAE. We hope our work can motivate further
research in VAE to advane the development of generative models.
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