A Appendix

A.1 Latent Responses

In a similar setup as [54]], we can extend the joint distribution p(X, Z) to include the reconstruction
and response as p(X, Z, X, Z), where crucial question is how the posterior ¢(Z | X; ¢) relates to the
response ¢(Z | X; ¢) where Z and Z are related by (also shown in equation |

r(212:0,6) = / (2| X: (X | Z:0)d% (12)

Note, that 7(Z | Z; 0, ¢) is equivalent to the transition kernel Qayag in [54]. However, crucially,
we do not make two assumptions used to derive the AVAE objective. Firstly, we do not assume
that the decoder is a one-to-one mapping between latent samples and a corresponding generated
sample. The contractive behavior observed in the latent space of autoencoders [59], suggests a
many-to-one mapping is more realistic, which may be interpretted as the decoder filtering out useless

exogenous information from the latent code. Consequently, we also do not treat p(Z ;0,0) =
Eyz)[r(Z | Z;0, ¢)] as a normal distribution, which would imply the encoder perfectly inverts the
decoder.

Consider the reconstructions X of the maximally overfit encoder q(z = Z | 2; = X;$) = 0(s; — 2)

(recall 5; = f?(;)) and decoder p(X | Z;0). Since the autoencoder is trained on the empirical
generative process 7(X) rather than the true generative process p(X ), the overfit decoder generates

samples from p(X;0) = fp(X | Z;0)p(Z)dZ = 7(X), which does not have continuous support.
For such a decoder, all exogenous noise is completely removed and the decoder mapping is obviously
many-to-one, and it follows that r(Z = 2| Z = 2;0,¢) = §(2 — s) (recall z = s + u).

Now consider the more desirable (and perhaps slightly more realistic) setting where the autoencoder
extrapolates somewhat beyond 7 (X ) to resemble p(X ), in which case decoding the latent sample z ~

¢(Z | X = ;) to generate & ~ p(& = X | z = Z; 0) will not necessarily match the observation ,
which, by our definition of endogenous information, implies a change in the endogenous information

contained in z. When re-encoding to get q(Z | X =i @), the changes in the endogenous information
result in some width to the distribution over Z.

A.2 Derivation of Equation [6]

Starting from our definition of § = f?(2) where 2 = ¢?(2), 2 = f®(2), 2 = s +u,and e = & — 2.

The high-level goal is expand f¢ around x and then g% around s to first order.



A.3 Comparing the Conditioned Response Matrix and the DCI Responsibility Matrix

In [42]], the responsibility matrix is used to evaluate the disentanglement of a learned representation.
In the matrix, element R;; corresponds to the relative importance of latent variable j in predicting
the true factor of variation 7 for a simple classifier trained with full supervision to recover the true
factors from the latent vector. Although the scalar scores (DCI-d and CDS) are computed identically
from the respective matrices, there are important practical and theoretical distinctions in the DCI and
latent response frameworks.

First and most importantly, since the DCI framework only uses the encoder, the learned generative
process is not taken into account at all. Consequently, the DCI framework (and other existing
disentanglement metrics) fail to evaluate how disentangled the causal drivers of the learned generative
process are, and instead evaluate which latent variables are correlated with true factors. Furthermore,
practically speaking, the DCI framework is sensitive to a variety of hyperparameters such as the exact
design and training of the model [72]], while the conditioned response matrix has far fewer (and more
intuitive) hyperparameters relating to the Monte carlo integration.

Interestingly, the DCI responsibility matrices do often resemble the conditioned response matrices,
suggesting that relying on correlations instead of a full causal analysis, can yield similar results.
Obviously as the data becomes more challenging and realistic, and the true generative process involves
a more complicated causal structure, then we may expect the DCI responsibility matrix to become
less reliable for analyzing the generative model structure. In fact, then the learned causal structure
estimated using the latent response matrix may be used in tandem to develop a structure-aware
disentanglement metric.

A.4 Mean Curvature for Manifold Learning

The geometry of learned representations with a focus on the generalization ability of neural networks
has been discussed in [[73]]. One key problem is that the standard Gaussian prior used in variational
autoencoders relies on the usual Lebesgue measure which in turn, assumes a Euclidean structure over
the latent space. This has been demonstrated to lead to difficulties in particular when interpolating
in the latent space [25| 74} [75] due to a manifold mismatch [76] [77]. Given the complexity of
the underlying data manifold, a viable alternative is based on riemanian geometry [78]] which has
previously been investigated for alternative probabilistic models like Gaussian Process regression
[79].

These methods focus on the intrinsic curvature of the data manifold, which does not depend on the
specific embedding of the manifold in the latent space. However, our focus is precisely on how the
data manifold is embedded in the latent space, to (among other things) quantify the relationships
between latent variables and how well the representation disentangles the true factors of variation.
Consequently, we focus on the extrinsic curvature, and more specifically the mean curvature which
can readily be estimated using the response maps.

As discussed in the main paper, |u(z)| = |z — s is interpreted as a distance where |u(z)| = 0 implies
z is on the latent manifold and there is no exogenous noise. The gradient of this function V |u(z)|,
effectively projects any point in the latent space onto the endogenous manifold. Similarly, the mean
curvature (equation [I3]) can be computed, which can be interpreted as identifying the regions in the
latent space where the |u(z)| converges and diverges. These gradients are estimated numerically by
finite differencing.

i (Ve 1o u)
=5V (|vz|u<z>|> (13

A.5 Double Helix Example Details

To illustrate how the latent response framework can be used to study the representation learned by
a VAE, we show the process when learning a 2D representation for samples from a double helix
embedded in R3, defined as:

Xr; = [Al COS(TF(wti —+ ni)), A2 Sil’l(ﬂ'(wti —+ TLZ)), Agti]T + €; (14)
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where ¢; ~ Uniform(—1,1), n; ~ Bernoulli(0.5), ¢; ~ N(0,cI). For this experiment, we set
A1:A2:A3=wzlanda:0.1.

Disregarding the additive noise ¢;, the data manifold has two degrees of freedom, which are the strand
location ¢; and the strand number n;.

To provide the model sufficient capacity, we use four hidden layers with 32 units each for the encoder
and decoder. We train until convergence (at most Sk steps) with 5 = 0.05 using an Adam optimizer on
a total of N = 1024 training samples (see the supplementary code for the full training and evaluation
details).
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Figure 7: The response map of the representation trained on the double helix. Starting from the latent
samples (blue dots), applying the decoder followed by the encoder (i.e. response function) results in
the orange dots connected by the black arrows. Note that applying the response function effectively
contracts points all over the latent space into a relatively small non-linear region, corresponding to
endogenous information.

A.6 Architecture and Training Details

All our models are based on the same convolutional neural network architecture detailed in table[10]so
that in total models have approximately 500k trainable parameters. For the smaller datasets MNIST
and Fashion-MNIST, samples are upsampled to 32x32 pixels from their original 28x28 and the one
convolutional block is removed from both the encoder and decoder.

The datasets are split into a 70-10-20 train-val-test split, and are optimized using Adam with a
learning rate of 0.0001, weight decay 0, and 31, 82 of 0.9 and 0.999 respectively. The models are
trained for 100k iterations with a batch size of 64 (128 for MNIST and Fashion-MNIST).
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Figure 8: Encoder Architecture

Figure 10: Model architectures where "k" is the kernel size, "s" is the stride, and "p

padding
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Figure 9: Decoder Architecture
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B Additional Results

B.1 3D-Shapes
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(c) DCI Responsibility Matrices
Figure 11: Response and Responsibility matrices for several VAEs (d = 12).
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Figure 12: Full response and responsibility matrices of the 4-VAE (d = 24) also shown in ﬁgure@
Note how the Latent Response matrices (I2a) shows a categorical difference between the latent
dimensions where the diagonal element is close to zero (non-causal), compared to the dimensions
with diagonal elements close to 1 (causal).
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Figure 13: Visualization of the representation learned by a 4-VAE trained on 3D-Shapes (same

model as in figure[T2).
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Figure 14: Visualization of the representation learned by a 4-VAE trained on 3D-Shapes (same

model as in figure[T2).
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Figure 15: Visualization of the representation learned by a 4-VAE trained on 3D-Shapes (same
model as in figure[T2).
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Figure 16: Visualization of the representation learned by a 4-VAE trained on 3D-Shapes (same
model as in figure[I2)). This projection is particularly interesting as the information encoding shape
is not exactly axis-aligned, leading to a slight mismatch between the aggregate posterior and the
divergence maps. As our visualizations are presently confined to two dimensions, the structure can
become significantly more obscured to us if the information is not disentangled and axis-aligned.
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Figure 17: Visualization of the representation learned by a 4-VAE trained on 3D-Shapes (same

model as in figure[T2).
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B.2 MPI3D
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(b) Conditioned Response Matrices
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(c) DCI Responsibility Matrices

Figure 18: Response and Responsibility matrices for several VAEs (d = 12) trained on the MPI3D
Toy dataset.
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(b) Conditioned Response Matrices
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(c) DCI Responsibility Matrices

Figure 19: Response and Responsibility matrices for several VAEs (d = 12) trained on the MPI3D
Real dataset.

Name CDS DCI-D 1IRS MIG
I-VAE  0.69 0.33 058 0.32
2-VAE 0.86 0.17 059 0.14
4-VAE 0.66 0.11 0.61 0.05
8-VAE 1 0.13 0.79 0.1
1-VAE  0.61 0.24 051 0.07
2-VAE 0.69 026 072 024
4-VAE 04 0.09 0.75 0.04
8-VAE 0.7 0.08 0.71 0.04
Table 2: disentanglement scores for the MPI3D Toy (first four rows) and Real (last four rows).
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Figure 20: Visualization of the representation learned by the 1-VAE trained on MPI3D Toy.
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Figure 21: Visualization of the representation learned by the 1-VAE trained on MPI3D Toy.
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Figure 22: Visualization of the representation learned by the 4-VAE trained on MPI3D Toy. Note that
due to posterior collapse, the full latent manifold is contained in this projection (see the corresponding

response matrix in figure T8).
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Figure 23: Visualization of the representation learned by the 1-VAE trained on MPI3D Real.
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Figure 24: Visualization of the representation learned by the 1-VAE trained on MPI3D Real.
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Figure 25: Visualization of the representation learned by the 8-VAE trained on MPI3D Real. Note that
due to posterior collapse, the full latent manifold is contained in this projection (see the corresponding
response matrix in figure T9).
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B.3 MNIST

Due to the computational cost of evaluating the response function over a dense grid, we focus our
visualizations to 2D projections of the latent space. However, for MNIST and Fashion-MNIST, we
train several VAE models to embed the whole representation into two dimensions d = 2, so that
we can visualize the full representation. While the resulting divergence and curvature maps do not
demonstrate as intuitive structure as in the disentangled representations for 3D-Shapes or MPI-3D,
we can nevertheless appreciate the learned manifold beyond qualitatively observing reconstructions.
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B.3.1 MNIST

(a) Divergence Map and Aggregate Posterior (b) Mean Curvature Map
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(c) Corresponding Reconstructions

Figure 26: The full latent space for a VAE (d = 2) model trained on MNIST. [26a|shows the computed
divergence of the response field in blue and red while the green points are samples from the aggregate
posterior. [26b| shows the resulting mean curvature, which identifies 10 points where the curvature
spikes and the boundaries between the regions corresponding to different clusters in the posterior.
Finally shows the reconstructions over the same region. Note how the high divergence (red)
regions correspond to boundaries between significantly different samples (such as changing digit
value or stroke thickness). )3
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(c) Corresponding Reconstructions

Figure 27: Same plot and model as ﬁgure except over a larger range of the latent space [—4, 4].
Note that even though the posterior (green dots) is concentrated near the prior (standard normal),
reconstructions far away (along the edges of the figure) still look recognizable, demonstrating the
exceptional robustness of VAEs to project unexpected latent vectors back onto the learned manifold.
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(a) Response field [—2, 2] (b) Response field [—4, 4]

Figure 28: Response fields for the same model analyzed in figures and The blue dots show
the initial latent samples, and the orange dots connected by the black arrows show the corresponding
responses (the latent sample after decoding and reencoding).
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B.3.2 Fashion-MNIST
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(c) Corresponding Reconstructions

Figure 29: The full latent space for a 8-VAE (d = 2) model trained on Fashion-MNIST. shows
the computed divergence of the response field in blue and red while the green points are samples from
the aggregate posterior. 29b| shows the resulting mean curvature, which identifies 10 points where the
curvature spikes and the boundaries between the regions corresponding to different clusters in the
posterior. Finally shows the reconstructions over the same region. Note how the high divergence
(red) regions correspond to boundaries between significantly different samples (such as changing
digit value or stroke thickness). 1
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(a) Divergence Map and Aggregate Posterior (b) Mean Curvature Map
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(c) Corresponding Reconstructions

Figure 30: Same plot and model as ﬁgure except over a larger range of the latent space [—4, 4].
Note that even though the posterior (green dots) is concentrated near the prior (standard normal),
reconstructions far away (along the edges of the figure) still look recognizable, demonstrating the
exceptional robustness of VAEs to project unexpected latent vectors back onto the learned manifold.
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(b) Response field [—4, 4]
Figure 31: Response fields for the same model analyzed in figures and The blue dots show

the initial latent samples, and the orange dots connected by the black arrows show the corresponding

responses (the latent sample after decoding and reencoding).
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(a) Response field [—2, 2]




	Appendix
	Latent Responses
	Derivation of Equation 6
	Comparing the Conditioned Response Matrix and the DCI Responsibility Matrix
	Mean Curvature for Manifold Learning
	Double Helix Example Details
	Architecture and Training Details

	Additional Results
	3D-Shapes
	MPI3D
	MNIST
	MNIST
	Fashion-MNIST



