
(a) Structural Causal Model (b) The definition of do(X)

Figure 1: Illustration of Structural Causal Model (SCM) and do-calculus definition.

A APPENDIX

A.1 ADDITIONAL PRELIMINARIES

A.1.1 CAUSAL INFERENCE

Structural Causal Model (SCM). SCM is a statistical model representing the causal relationship
between variables in the graph structure Glymour et al. (2016). In the causal graph, each variable
is denoted by nodes, and ‘causation’ between two different variables is denoted by a directed edge
between nodes. Fig. 1a illustrates an example of SCM representation in graph form. The edge X →
Y in the graph implies that X is the ‘cause’ of Y . Also, Z in the graph represents a ‘confounder’,
which simultaneously affects both X and Y , therefore making it difficult to find a true effect of X on
Y . Such confounder induces the spurious correlation between X and Y through the backdoor path
between X and Y . A backdoor path is formally defined as any path from X to Y that starts with
an arrow pointing to X (Yang et al., 2021), such as X ← Z → Y in 1a. To find out the true causal
relationship between X and Y , the causal intervention with do-calculus P (Y |do(X)) is applied to
cut-off the relationship Z → X , as illustrated in 1b, therefore removing the spurious correlation
induced by Z. Backdoor adjustment is a widely adopted approach to deconfound the effect of the
confounders Z using the do-calculus, which we further concretize in the very following section.

The Backdoor Adjustment. Given a directed acyclic graph consisting of X , Y , and Z as in 1a,
backdoor adjustment can be applied to reveal the true causal effect of the X on Y given the con-
founder Z. By Bayes’ theorem, P (Y |X) can be expressed as follows:

P (Y |X) =
∑
z∈Z

P (Y |X,Z = z)P (Z = z|X). (1)

The causal intervention with do-calculus P (Y |do(X)) mentioned in the previous section is then
formally defined as below:

P (Y |do(X)) =
∑
z∈Z

P (Y |X,Z = z)P (Z = z). (2)

Through the backdoor adjustment, the true causal relationship between X and Y , which is denoted
as P (Y |do(X)) is measured without any effect of the confounder Z.

Normalized Weighted Geometric Mean (NWGM). To approximate P (Y |do(X)), we use
NWGM. Before dealing with NWGM, we first revisit the definition of Weighted Geometric Mean
(WGM). Given a discrete variable X and its distribution P (X), the expectation of f(x) is defined
as:

Ex[f(x)] =
∑
x∈X

f(x)P (x). (3)

The Weighted Geometric Mean (WGM), an approximation of Ex[f(x)] is defined as follows:

WGM(f(x)) =
∏
x∈X

f(x)P (x). (4)
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If the activation function of f(x) is a composition of a function g(x) followed by an exponential
function, i.e., f(x) = exp(g(x)), Eq. 4 can be reformulated as:

WGM(f(x)) =
∏
x∈X

exp[g(x)]P (x) =
∏
x∈X

exp[g(x)P (x)]

= exp(
∑
x∈X

g(x)P (x)) = exp{Ex[g(x)]}.
(5)

Interpreting WGM in the perspective of deep learning, f(x) can be regarded as a neural network
whose last activation function is the softmax function. Therefore, Xu et al. (2015) and Yang et al.
(2021) approximate the expectation of the f(x) using the WGM as follows:

Ex[f(x)] ≈WGM(f(x)) = exp{Ex[g(x)]} (6)

To guarantee that output logits can be interpreted as a probability, NWGM, a normalized version of
WGM, is applied so that the sum of output logits adds up to one, and it is formally defined as:

NWGM(f(x)) =

∏
x exp(g(x))

P (x)∑
j

∏
x exp(g(x))

P (x)

=
exp(Ex[f(x)])∑
j exp(Ex[f(x)])

= Softmax(Ex[f(x)])

(7)

Adopting the WGM defined above to our model, P (Y |do(X)) can be approximated as below, where
P (Y |X, z) = Softmax(g(X, z)) ∝ exp(g(X, z)):

P (Y |do(X)) = Ez[P (Y |X, z)]

= Ez[exp(g(X, z))]

≈ exp(Ez[g(X, z)])

= exp{
∑
z∈Z

(f(X) + z + z̃)P (z)}.

(8)

where g(X, z) = f(X) + z + z̃. Then, we apply NWGM to normalize Eq. 8 as to get final decon-
founded prediction probabilities P (Y |do(X)) as follows:

P (Y |do(X)) ≈ Softmax(Ez[g(X, z)])

= Softmax{
∑
z∈Z

(f(X) + z + z̃)P (z)}. (9)

A.1.2 GENERALIZED CROSS ENTROPY (GCE) LOSS

GCE. GCE loss was first proposed as a generalized loss taking advantage of both Mean Absolute
Error (MAE) loss, and Categorical Cross Entropy (CCE) loss by Zhang & Sabuncu (2018). Given
an input x, the ground truth one-hot vector y, and the set of parameters θ of the classifier f , MAE
and CCE loss are formally defined as below in the common case where the softmax is followed by
the classification layer:

LMAE(f(x; θ), y) = ||y − f(x; θ)||1

LCCE(f(x; θ), y) = −
C∑

j=1

yj log fj(x; θ),
(10)

where C denotes the number of target classes, yj and fj denote the j-th element of y and the j-th
prediction of f . The gradient of loss functions with respect to parameter θ is as follows:

∂LMAE(f(x; θ), y)

∂θ
= −∇θfy(x; θ)

∂LCCE(f(x; θ), y)

∂θ
= − 1

fy(x; θ)
∇θfy(x; θ),

(11)

2



where fy denotes the element of the output logit corresponding to the ground-truth label. As for-
mulated in Eq. 11, CCE emphasizes samples with larger 1/fy(x; θ), or smaller fy(x; θ). On the
contrary, MAE equally treats every sample with the same weight. The fact that MAE does not place
a larger weight on difficult samples makes MAE robust to noisy labels, but it also makes training
difficult since every sample is treated equally so that challenging examples are not learned enough.
In contrast, optimizing a model using CCE is easier due to larger weights being given to challenging
samples. However, CCE is sensitive to noisy labels, since the model could easily be overfitted to
such noisy samples which are intrinsically difficult due to label noise. Then GCE loss can be viewed
as a generalization between MAE and CCE loss, and is formally defined as below:

LGCE(f(x; θ), y) =
1− py(x; θ)

q

q
, (12)

where q ∈ (0, 1] is a smoothing parameter. The gradient of LGCE with respect to θ is as follows:

∂LGCE(f(x; θ), y)

∂θ
= fy(x; θ)

q(− 1

fy(x; θ)
∇θfy(x; θ)) = fy(x; θ)

q ∂LCCE

∂θ

= −fy(x; θ)q−1∇θfy(x; θ) = fy(x; θ)
q−1 ∂LMAE

∂θ
.

(13)

Therefore, LGCE additionally weights each sample by fy(x; θ)
q times compared to CCE loss,

weighting difficult samples less. Also, it weights each sample by fy(x; θ)
q−1 times compared to

MAE loss, giving larger weight to difficult examples compared to MAE loss. If q is properly cho-
sen, GCE can therefore act as a generalized loss that is more robust than CCE and easier to train
than MAE, achieving a balanced trade-off between two losses.

GCE Loss in Computer Vision. By the fact that GCE loss gives smaller weights to ‘difficult’
examples compared to conventional CCE loss, Lee et al. (2021) and Nam et al. (2020) propose
capturing bias in the model by leveraging GCE loss to train a ‘biased network’, which is overfitted
to easy samples, which corresponds to ‘bias’ or ‘spurious correlation’ existing in the dataset. Both
works train the model with GCE loss to achieve the model to be biased by focusing on the “easier”
samples compared to the conventional CCE.

A.2 EXPERIMENTAL SETTINGS

A.2.1 DATASET

We validate the proposed model on four benchmark datasets: TGIF-QA (Li et al., 2016; Jang et al.,
2017), MSVD-QA (Chen & Dolan, 2011; Xu et al., 2017), and MSRVTT-QA (Xu et al., 2016;
2017). TGIF-QA consists of 103,913 QA pairs from 56,720 GIFs and includes three multiple-
choice VideoQA tasks: repetition count, repeating action, and state transition, along with an open-
ended frameQA task reasoning on a single frame. MSVD-QA and MSRVTT-QA are both open-
ended VideoQA datasets with descriptive QA tasks, while MSRVTT-QA consists of more complex
and longer 10,000 trimmed videos and larger 243,000 QA pairs compared to MSVD-QA with 1,970
trimmed videos and 50,500 QA pairs.

A.2.2 IMPLEMENTATION DETAILS.

Model Architecture. We adopt the Transformer (Vaswani et al., 2017) architecture with 12 layers
for both the data encoder f and the confounder encoder g. Concretely, for the data encoder f ,
visual tokens Xv and text tokens Xq are concatenated with an additional [CLS] token to form an
input X = (xq, xv) ∈ RN×D. To build xv , we sample 3 frames per single input video. Each
frame has a spatial resolution of 224×224, and is patchified into 14×14 patches with the size of
16×16 for each. For text token xq , we set 40 as the max length of the input text sequence. An
input text is then tokenized to have a hidden dimension of D = 768. After concatenating xq and
xv , modality encoding is added to input tokens having corresponding modalities. When conducting
cross-attention in g, we apply a stop-gradient operation to X̃ so that it could not be affected by
Lconfounder. Also, we use M = 128 for the number of confounder query tokens.
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Algorithm 1 Overall Algorithm
Inputs: sample {X = (xq, xv), Y }, negative sample {X ′ = (x′

q, x
′
v), Y

′}, confounder queries Z,
number of confounder queries M
Parameters: prior probability c, data encoder f , confounder encoder g, FFN {hf , hg}

1: Xq, Xv ← (xq, x
′
v), (x

′
q, xv)

2: X̃, X̃q, X̃v ← f(X), f(Xq), f(Xv)

3: Z̃, Z̃q, Z̃v ← {z̃|z̃ = g(X̃, z),∀z ∈ Z}, {z̃|z̃ = g(X̃q, z),∀z ∈ Z}, {z̃|z̃ = g(X̃v, z),∀z ∈ Z}
4: Ŷf ← hf

(∑
z∈Z

(
X̃ + z + z̃

)
cz

)
▷ cz is a prior probability of z

5: Z̃q,q, Z̃q,v, Z̃v,q, Z̃v,v ← Z̃q[0 : M/2], Z̃q[M/2 : M ], Z̃v[0 : M/2], Z̃v[M/2 : M ]

6: Ŷ
(q,q)
g , Ŷ

(q,v)
g , Ŷ

(v,q)
g , Ŷ

(v,v)
g ← hg(Z̃q,q), hg(Z̃q,v), hg(Z̃v,q), hg(Z̃v,v)

7: Lcausal ← CE(Ŷf , Y )

8: Lconfounder ← GCE(Ŷ (q,q)
g , Y ) + GCE(Ŷ (q,v)

g , Y ′) + GCE(Ŷ (v,q)
g , Y ′) + GCE(Ŷ (v,v)

g , Y )
9: L ← Lcausal + Lconfounder

10: return L

Training Details. For training, the initial learning rate is set to 10−4 with cosine decay
and warmup applied until 10% of the total training step is done. We train the models with
AdamW (Loshchilov & Hutter, 2017) optimizer with a weight decay rate of 0.01. The probabil-
ity of confounder dropout is 0.15. Our backbone encoders are pretrained on Webvid (Bain et al.,
2021), YT-Temporal 180M (Zellers et al., 2021), HowTo100M (Miech et al., 2019), CC3M (Sharma
et al., 2018), CC12M (Changpinyo et al., 2021), COCO (Lin et al., 2014), VisualGenome (Krishna
et al., 2017), and SBU (Ordonez et al., 2011) as in Fu et al. (2021) and Wang et al. (2022). All the
experiments are conducted on 4 × Tesla A100 GPUs.

MCQA Details. We concatenate each option and the question and insert the [SEP] token between
them to construct the text token sequence. To efficiently calculate Lconfounder, we only take into ac-
count two negative pairs (Xq, Y ) and (Xv, Y

′) instead of four negative pairs including (Xq, Y
′) and

(Xv, Y ), i.e., Lconfounder = GCE(Ŷ (q,q)
g , Y )+GCE(Ŷ (v,q)

g , Y ′). This is because it is cumbersome to
forward all the combinations of negative pairs including concatenated text token sequences for each
option.

A.3 OVERALL ALGORITHM

The overall algorithm to train our proposed framework is formulated in Alg. 1.
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