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Abstract

The community detection problem requires to cluster the nodes of a network into a
small number of well-connected ‘communities’. There has been substantial recent
progress in characterizing the fundamental statistical limits of community detection
under simple stochastic block models. However, in real-world applications, the
network structure is typically dynamic, with nodes that join over time. In this
setting, we would like a detection algorithm to perform only a limited number
of updates at each node arrival. While standard voting approaches satisfy this
constraint, it is unclear whether they exploit the network information optimally.
We introduce a simple model for networks growing over time which we refer to
as streaming stochastic block model (StSBM). Within this model, we prove that
voting algorithms have fundamental limitations. We also develop a streaming
belief-propagation (STREAMBP) approach, for which we prove optimality in
certain regimes. We validate our theoretical findings on synthetic and real data.

1 Introduction

Given a single realization of a network G = (V,E), the community detection problem requires to
find a partition of its vertices into a small number of clusters or ‘communities’ [GN02, MO04, JTZ04,
For10, PKVS12, JYL+18].

Numerous methods have been developed for community detection on static networks [GN02, CNM04,
GA05, RCC+04, LF09, VLBB08, WZCX18]. However, the network structure evolves over time
in most applications. For instance, in social networks new users can join the network; in online
commerce new products can be listed; see [WGKM18, GLZ08, KvB+14] for other examples. In
such dynamic settings, it is desirable to have algorithms that perform only a limited number of
operations each time a node joins or leaves, possibly revising the labels of nodes in a neighborhood of
the new node. (These notions will be formalized below.) Several groups have developed algorithms
of this type in the recent past [HS12, CSG16, ZWCY19, MKV+20]. The present paper aims at
characterizing the fundamental statistical limits of community detection in the dynamic setting, and
proposing algorithms that achieve those limits.
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As usual, establishing fundamental statistical limits requires introducing a statistical model for the
networkG = (V,E). In the case of static networks, precise characterizations have only been achieved
recently, and almost uniquely for a simple network model, namely the stochastic block model (SBM)
[HLL83, ABFX08, KN11, RCY+11, DKMZ11, Mas14, ABH15, AS15, MNS18]. In this paper we
build on these recent advances and study a dynamic generalization of the SBM, which we refer to as
streaming SBM (StSBM).

The SBM can be defined as follows. Each vertex v is given a label τ(v) drawn independently from a
fixed distribution over the set [k] = {1, 2, . . . , k}. Edges are conditionally independent given vertex
labels. Two vertices u, v are connected by an edge with probability Wτ(u),τ(v). The analyst is given
a realization of the graph and required to estimate the labels τ . We will assume in addition that the
analyst has access to some noisy version of the vertex labels, denoted by τ̃ = (τ̃(v))v∈V . This is
a mathematically convenient generalization: the special case in which no noisy observations τ̃ are
available can be captured by letting τ̃ be independent of τ . Further, such a generalization is useful to
model cases in which covariate information is available at the nodes [MX16].

Informally, the streaming SBM (StSBM) is a version of SBM in which nodes are revealed one at a time
in random order (see below for a formal definition). In order to model the notion that only a limited
number of updates is performed each time a new node joins the network, we introduce a class of ‘local
streaming algorithms.’ These encompass several algorithms in earlier literature, e.g, [ZGL03, CSG16].
Our definition is inspired and motivated by the more classical definition of local algorithms for static
graphs. Local algorithms output estimates for one vertex based only on a small neighborhood around
it, and thus scale well to large graphs; see [Suo13] for a survey. A substantial literature studies the
behavior of local algorithms for sparse graphs [GT12, HLS14, GS14, Mon15, MX16, FM17].

Our results focus on the sparse regime in which the graph’s average degree is bounded. This is
the most challenging regime for the SBM, and it is also relevant for real-world applications where
networks are usually sparse. We present the following contributions:

Fundamental limitations of local streaming algorithms. We prove that, in the absence of side informa-
tion, in streaming symmetric SBM (introduced in Section 2), local streaming algorithms (introduced
in Section 3) do not achieve any non-trivial reconstruction: their accuracy is asymptotically the same
as random guessing; see Corollary 1. This holds despite the fact that there exist polynomial time
non-local algorithms that achieve significantly better accuracy. From a practical viewpoint, this
indicates that methods with a small ‘locality radius’ (the range over which the algorithm updates its
estimates) are ineffective at aggregating information: they perform poorly unless strong local side
information is available.

Optimality of streaming belief propagation. On the positive side, in Section 4 we define a streaming
version of belief propagation (BP), a local streaming algorithm that we call STREAMBP, parame-
terized by a locality radius R. We prove that, for any non-vanishing amount of side information,
STREAMBP achieves the same reconstruction accuracy as offline BP; see Theorem 2. The latter is
in turn conjectured to be the optimal offline polynomial-time algorithm [DKMZ11, Abb17, HS17].
Under this conjecture, there is no loss of performance in restricting to local streaming algorithms
as long as (1) local side information is available; (2) the locality radius is sufficiently large; and
(3) information is aggregated optimally via STREAMBP.

Let us emphasize that we do not claim (nor do we expect) STREAMBP to outperform offline BP. We
use offline BP as an ‘oracle’ benchmark (as it has the full graph information available, and is not
constrained to act in a streaming fashion).

Implementation and numerical experiments. In Section 5 and Appendix A–C, we validate our results
both on synthetic data, generated according to the StSBM, and on real datasets. Our empirical
results are consistent with the theory; in particular, STREAMBP substantially outperforms simple
voting methods. However, we observe that it can behave poorly with large locality radius R. In
order to overcome this problem, we introduce a ‘bounded distance’ version of STREAMBP, called
STREAMBP∗, which appears to be more robust. (STREAMBP∗ can be shown to enjoy the same
theoretical guarantees as STREAMBP.)
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2 Streaming stochastic block model

In this section we present a formal definition of the proposed model. The streaming stochastic block
model is a probability distribution StSBM(n, k, p,W, α) over triples (τ, τ̃,G) where τ ∈ [k]n is
a vector of labels (here [k] , {1, . . . , k}), τ̃ ∈ [k]n are noisy observations of the labels τ , and
G = (G(0), G(1), . . . , G(n)) is a sequence of undirected graphs. Here G(t) = (V (t), E(t)) is a
graph over |V (t)| = t vertices and, for each 0 ≤ t ≤ n− 1, V (t) ⊆ V (t+ 1) and E(t) ⊆ E(t+ 1).
We will assume, without loss of generality, that V (n) = [n], and interpret τ(v) as the label associated
to vertex v ∈ [n]. For each 0 ≤ t ≤ n − 1, G(t) is the subgraph induced in G(t + 1) by V (t);
equivalently, all edges in E(t+ 1) \ E(t) are incident to the unique vertex in V (t+ 1) \ V (t).

The distribution StSBM(n, k, p,W, α) is parameterized by a scalar α ∈ [0, k−1
k ], a probability vector

p = (p1, . . . , pk) ∈ ∆k , {x ∈ [0, 1]k, 〈x, 1〉 = 1}, and a symmetric matrix W ∈ [0, 1]k×k. We
draw the coordinates of τ independently with distribution p, and set τ̃(v) = τ(v) with probability
1− α, and τ̃(v) ∼ Unif([k] \ {τ(v)}) otherwise, independently across vertices:

P
(
τ(v) = s

)
= ps, P (τ̃(v) = s1 | τ(v) = s0) =

{
1− α if s1 = s0,

α/(k − 1) if s1 6= s0.

We then construct G(n) by generating conditionally independent edges, given (τ, τ̃), with

P
(
(u, v) ∈ E(n) | τ, τ̃

)
= Wτ(u),τ(v). (1)

Note that the labels τ̃ provide noisy ‘side information’ about the true labels τ . This information τ̃
is conditionally independent of the graph G(n) given τ . Finally we generate the graph sequence
G by choosing a uniformly random permutation of the vertices (v(1), v(2), . . . , v(n)) and setting
V (t) = {v(1), . . . , v(t)} and G(t) to the graph induced by V (t). If v = v(t), then we define t as the
arrival order of vertex v. Note that, for each t, G(t) is distributed according to a standard SBM with t
vertices: G(t) ∼ SBM(t, k, p,W ).

An equivalent description is that (conditional on τ, τ̃ ) StSBM(n, k, p,W, α) defines a Markov chain
over graphs. The new graph G(t + 1) is generated from G(t) by drawing the vertex v(t + 1)
uniformly at random from [n] \ V (t), and then the edges (u, v(t+ 1)), u ∈ V (t), independently with
probabilities given by Equation (1).

We are interested in the behavior of large graphs with bounded average degree. In order to focus
on this regime, we will consider n → ∞ and W = W (n) → 0 with W (n) = W0/n for a matrix
W0 ∈ Rk×k≥0 independent of n.

A case of special interest is the streaming symmetric SBM, StSSBM(n, k, a, b, α), which corresponds
to taking p = (1/k, . . . , 1/k) and W0 having diagonal elements a and non-diagonal elements b.
Finally, the case α = (k − 1)/k corresponds to pure noise τ̃ : in this case we can drop τ̃ from the
observations and we will drop α from the distribution parameters.
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Figure 1: Evolving process of StSBM.

2.1 Definitions and notations

For two nodes v, v′ ∈ V (t), we denote by dt(v, v′) their graph distance in G(t), i.e., the length
of the shortest path in G(t) connecting v and v′, with dt(v, v′) = ∞ if no such path exists. We
also write d(v, v′) = dn(v, v′) for the graph distance in G(n). For v ∈ V (n) and R ∈ N+, let
BtR(v) = (V tR(v), EtR(v)) denote the ball of radius R in G(t) centered at v, i.e., the subgraph
induced in G(t) by nodes V tR(v) , {v′ ∈ V (t) : dt(v, v

′) ≤ R} and edges (v1, v2) ∈ E(t) with

3



v1, v2 ∈ V tR(v). Furthermore, let Dt
R(v) , {v′ ∈ V (t) : d(v, v′) = R}. Throughout the paper,

unless otherwise stated, we assume (v1, v2) is an undirected edge.

We consider an algorithm A that takes as input the graph G(n) and side information τ̃ , and for each
v ∈ V (n) outputs A(v;G(n), τ̃) ∈ [k] as an estimate for τ(v). Note that we always assume the
arrival orders of vertices are observed (i.e., by observing v ∈ [n] we also observe the unique t ∈ [n]
such that v = v(t)), thus G(n) contains the arrival order of its vertices. We define the estimation
accuracy of algorithm A as

Qn(A) , E

max
π∈Sk

1

n

∑
v∈V (n)

1 (A(v;G(n), τ̃) = π ◦ τ(v))

. (2)

Here Sk is the group of permutations over [k] and the expectation is with respect to G(n), τ, τ̃ , and
the randomness of the algorithm (if A is randomized).

3 Local streaming algorithms

In this section we introduce local streaming algorithms, which are a generalization of local algorithms
in the dynamic network setting. An R-local streaming algorithm is an algorithm that at each vertex
keeps some information available to that vertex. As a new vertex v(t) joins, information within
the R-neighborhood BtR(v(t)) is pulled. An estimate for τ(v) is constructed based on information
available to v. In order to accommodate randomized algorithms we assume that random variables
(ξv)v∈V (n)

iid∼Unif([0, 1]), independent of the graph, are part of the local information available to the
algorithm.

As an example, we can consider a simple voting algorithm. At each step t, this algorithm keeps in
memory the current estimates τ̂(v) ∈ [k] for all v ∈ V (t). As a new vertex v(t) joins, its estimated
label is determined according to

τ̂(v(t)) = argmaxs∈[k] πt(s) πt(s) = δ 1(s = τ̃(v(t))) +
∑

(v(t),u)∈E(t)

1(s = τ̂(u)) . (3)

In words, the estimated label at v(t) is the winner of a voting procedure, where the neighbors of v(t)
contribute one vote each, while the side information at v(t) contributes δ votes.

For v ∈ V (n) and t ∈ [n], we denote the subgraph accessible to v at time t by Gtv = (Vtv, Etv), with
initialization G0

v = ({v}, ∅). At time t, we conduct the following updates:

Vtv ,


⋃

v′∈V tR(v(t))

Vt−1
v′ for v ∈ V tR(v(t)),

Vt−1
v for v /∈ V tR(v(t)).

We let Gtv be the subgraph induced in G(t) by Vtv, and denote by Ḡtv = (V̄tv, Ētv) the corresponding
labeled graph with vertex labels τ̃ and randomness ξ. Namely V̄tv , {(v′, τ̃(v′), ξv′) : v′ ∈ Vtv},
Ētv , Etv. At time t, all nodes in the R neighborhood of v(t) share the same updated subgraph Gtv(t)

while the rest of the subgraphs stay unchanged. Let us emphasize that the ‘neighborhoods’ Gtv are not
symmetric, in the sense that we can have v1 ∈ Gtv2 but v2 6∈ Gtv1 .
Definition 1 (R-local streaming algorithm). An algorithm A is an R-local streaming algorithm if, at
each time t and for each vertex v ∈ V (t), it outputs an estimate of τ(v) denoted by At(v;G(t), τ̃) ∈
[k], which is a function uniquely of Ḡtv .

Note that this class includes as special cases voting algorithms (which correspond to R = 1) but
also a broad class of other approaches. We will compare R-local streaming algorithms with R-local
algorithms (non-streaming). In order to define the latter, given a neighborhood BtR(v), we define
the corresponding labeled graph as B̄tR(v) , (V̄ tR(v), EtR(v)), with V̄ tR(v) , {(v′, τ̃(v′), ξv′) : v′ ∈
V tR(v(t))}.
Definition 2 (R-local algorithm). An algorithm A is an R-local algorithm if, at each time t and for
each vertex v ∈ V (t), it outputs an estimate of τ(v) denoted by At(v;G(t), τ̃) ∈ [k], which is a
function uniquely of B̄tR(v).
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For simplicity, define the final output of an algorithm A by A(v;G(n), τ̃) , An(v;G(n), τ̃). The
next theorem states that, under StSSBM, any local streaming algorithm with fixed radius behaves
asymptotically as a local algorithm. Here we focus on StSSBM—extension to asymmetric cases is
straightforward.
Theorem 1. Let G be distributed according to StSSBM(n, k, a, b, α), and v0 ∼ Unif([n]) be a
vertex chosen independently of G. Then, for any ε > 0, there exist nε, rε ∈ N+, such that for every
n ≥ nε with probability at least 1−ε, the following properties hold: (1) Gnv0 is a subgraph of Bnrε(v0);
and (2) v0 does not belong to Gnv for any v ∈ V (n)\V nrε(v0).

Under the symmetric SBM, local algorithms without side information cannot achieve non-trivial
estimation accuracy as defined in (2) [KMS16]. Therefore we have the following corollary of the
first part of Theorem 1.
Corollary 1. Under StSSBM(n, k, a, b) with no side information, no R-local streaming algorithm
A can achieve non-trivial estimation accuracy. That is, limn→∞Qn(A) = 1/k.
Remark 1. Corollary 1 does not hold if side information is available. As we will see below, an
arbitrarily small amount of side information (any α < (k − 1)/k) can be boosted to ideal accuracy
using R-local streaming algorithms with sufficiently large R. On the other hand, for a fixed small R,
a small amount of side information has only limited impact on accuracy. Our numerical simulations
illustrate this for voting algorithms, which are R-local for R = 1: they do not provide substantial
boost over the use of only side information (i.e., the estimated label τ̂(v) = τ̃(v) at all vertices).
Remark 2. In practice we can imagine keeping a small memory containing global information and
updating it each time a new vertex joins. This global information would be available at each node.
For example, we could keep track of the estimated size of each community. For a suitable class of
algorithms of this type, it can be shown that they cannot achieve non-trivial reconstruction in the
symmetric model StSSBM(n, k, a, b) either. Due to space constraints we do not present this result
here. Interested readers are referred to Section G in the appendix.

4 Streaming belief propagation

In this section we focus on the symmetric model StSSBM. Notice that this model makes community
detection more difficult compared to the asymmetric model, as in the latter case average degrees
for vertices are different across communities, and one can obtain non-trivial estimation accuracy by
simply using the degree of each vertex. For the symmetric model StSSBM(n, k, a, b, α), we proved
that local streaming algorithms cannot provide any non-trivial reconstruction of the true labels if no
side information is provided, i.e., if α = (k − 1)/k. We also comment that, for a fixed (small) R,
accuracy achieved by any algorithm is continuous in α, and hence a small amount of side information
will have a small effect.

In contrast, for any non-vanishing side information α < (k − 1)/k, we conjecture that information-
theoretically optimal reconstruction is possible using a local streaming algorithm, under two condi-
tions: (i) the locality radius R is large enough; and (ii) the following Kesten-Stigum (KS) condition
is met:

λ ,
(a− b)2

a+ (k − 1)b
> 1 . (4)

We will refer to λ as to the ‘signal-to-noise ratio’ (SNR).

We provide evidence towards this conjecture by proposing a streaming belief propagation algorithm
(STREAMBP) and showing that it achieves asymptotically the same accuracy as the standard offline
BP algorithm. The latter is believed to achieve information-theoretically optimal reconstruction above
the KS threshold [DKMZ11, MNS14]. We will describe STREAMBP in the setting of the symmetric
model StSSBM(n, k, a, b, α), but its generalization to the asymmetric case is immediate.

The algorithm has a state which is given by a vector of messages indexed by directed edges in G(t),
mt = {mt

u→v,m
t
v→u : (u, v) ∈ E(t)}. Note that G(t) is an undirected graph, and each edge

(u, v) corresponds to two messages indexed by u → v and v → u. Each message is a probability
distribution over [k]:

mu→v = (mu→v(1),mu→v(2), . . . ,mu→v(k)) ∈ ∆k .
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Figure 2: Update schedule of STREAMBP. Upon the arrival of a new vertex (shown in the leftmost
figure), STREAMBP performs the belief propagation updates corresponding to the blue edges in the
three other figures, in the order from left to right.

The BP update is a map BP : (∆k)∗ × [k] → ∆k, where (∆k)∗ denotes the finite sequences of
elements of ∆k:

BP({mi}i≤`; τ̃)(s) :=
BP0(τ̃)(s)

Z

∏̀
i=1

(
b+ (a− b)mi(s)

)
. (5)

Here BP0(τ̃)(s) ,
(
α + (k − 1 − kα)1τ̃=s

)
/(k − 1) and the constant Z = Z({mi : i ≤ `}; τ̃)

is defined implicitly by the normalization condition
∑
s∈[k] BP({mi : i ≤ `}; τ̃)(s) = 1. When a

message v → u is updated, we compute its new value by applying the function (5) to the incoming
messages into vertex v, with the exception of u→ v (non-backtracking property):

mv→u ← BP({mw→v : w ∈ ∂v \ {u}}; τ̃(v)) . (6)

Here ∂v denotes the set of neighbors of vertex v in the current graph. When a new vertex v(t) joins at
time t, we use the above rule to: (1) update all the messages incoming into v(t), i.e., w → v(t), for
w a neighbor of v(t) in G(t), and (2) update all messages at distance 1 ≤ ` ≤ R from v(t) in G(t),
along paths outgoing from v(t), in order of increasing distance `. The pseudocode for STREAMBP
is given in Algorithm 1, and an illustration in Figure 2. For the sake of simplicity, we analyze this
algorithm in the two-group symmetric model StSSBM(n, 2, a, b, α). We believe that the extension of
this analysis to other cases is straightforward, but we leave it out of this presentation.

Algorithm 1 Streaming R-local belief
propagation

1: for t = 1, 2, . . . , n do
2: // Update the incoming messages:
3: for w ∈ Dt

1(v(t)) do
4: mw→v(t) ← BP({mu→w :

u ∈ ∂w \ {v(t)}}; τ̃(w))
5: end for
6: // Update the outgoing messages:
7: for r = 1, 2, . . . , R do
8: for v ∈ Dt

r(v(t)) do
9: Let v′ ∈ Dt

1(v) on a shortest path
connecting v and v(t).

10: mv′→v ← BP({mu→v′ : u ∈
∂v′ \ {v}}; τ̃(v′))

11: end for
12: end for
13: end for
14: for u ∈ V do
15: mu ← BP({mv→u}v∈∂u; τ̃(u))
16: Output τ̂(u) := arg maxs∈[k]mu(s) as

an estimate for τ(u).
17: end for

Our main result is that STREAMBP achieves
asymptotically at least the same accuracy as of-
fline BP, as originally proposed in [DKMZ11]
and analyzed, e.g., in [MX16]. Offline BP per-
forms the updates via Equation (6) in paral-
lel on all the edges of G(n) for R − 1 itera-
tions, and then computes vertex estimates us-
ing mu ← BP({mv→u}v∈∂u; τ̃(u)), τ̂(u) :=
arg maxs∈[k]mu(s). Note that, for each R, this
defines an R-local algorithm, and hence we will
refer to R as its radius.
Theorem 2. For v ∈ V (n), let
AR(v;G(n), τ̃) ∈ [k] be the estimate of
τ(v) given by Algorithm 1 (STREAMBP), and
Aoff
R (v;G(n), τ̃) ∈ [k] be the estimate given

by offline BP with radius R (equivalently, BP
with parallel updates, stopped after R itera-
tions). Under the model StSSBM(n, 2, a, b, α),
STREAMBP performs at least as well as offline
BP:

lim inf
n→∞

(
Qn(AR)−Qn(Aoff

R )
)
≥ 0.

It is conjectured that, in the presence of side information, i.e., for α < (k − 1)/k, offline BP is
optimal among all polynomial-time algorithms [DKMZ11] (provided R can be taken arbitrarily
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large). Whenever this is the case, the above theorem implies that STREAMBP is optimal as well. In
the case of the symmetric model, it is also believed that under the KS condition (Equation 4), and for
α < (k − 1)/k, offline BP does indeed achieve the information-theoretically optimal accuracy. This
claim has been proven in certain cases by [MX16]: we can use the results of [MX16] in conjunction
with Theorem 2 to obtain conditions under which STREAMBP is information-theoretically optimal.
Corollary 2. Suppose one of the following conditions holds (for a sufficiently large absolute constant
C) in the two-group symmetric model StSSBM(n, k = 2, a, b, α): (1) |a− b| < 2 and α ∈ (0, 1/2);
(2) (a− b)2 > C(a+ b) and α ∈ (0, 1/2); or (3) α ∈ (0, 1/C). Then Algorithm 1 achieves optimal
estimation accuracy:

lim sup
R→∞

lim sup
n→∞

(
Qn(AR)− sup

A
Qn(A)

)
= 0.

(Here the supremum is taken over all algorithms, not necessarily local or online.)

5 Empirical evaluation

In this section, we compare the empirical performance of two versions of our streaming belief
propagation algorithm (Algorithm 1) with some baselines. We consider the following streaming
algorithms:

• STREAMBP: proposed algorithm in this work with radius R, outlined in Algorithm 1.
• STREAMBP∗: proposed algorithm in this work, which is a ‘bounded-distance’ version of

STREAMBP. It is described in more detail in Section 5.1, and its pseudocode is given in
Algorithm 2.
• VOTE1X, VOTE2X, VOTE3X: simple plurality voting algorithms that give a weight δ to the

side information, as defined in Equation (3) (the numbering corresponds to δ ∈ {1, 2, 3}).
Despite looking somewhat naïve, voting algorithms are common in industrial applications.

We also compare the streaming algorithms above with ORACLEBP, which is the offline belief
propagation algorithm, parameterized by its radius (number of parallel iterations) R. Note that in
contrast to the streaming algorithms, to which we reveal one vertex at a time (along with its side
information and the edges connecting it to previously revealed vertices), ORACLEBP has access to
the entire graph and the side information of all the vertices from the beginning.

Our experiments are based both on synthetic datasets (Section 5.2) and on real-world datasets (Sec-
tion 5.3). Because the model considered in this paper assumes undirected graphs, in a preprocessing
step we convert the input graphs of the real-world datasets into undirected graphs by simply ignoring
edge directions. Table 1 shows statistics of the datasets used (after making the graphs undirected);
the values used for a and b for the real-world datasets are discussed in Section 5.3.

|V ||V ||V | |E||E||E| kkk aaa bbb

Citeseer 3,264 4,536 6 11.47 0.89
Cora 2,708 5,278 7 17.62 0.90
Polblogs 1,490 16,715 2 40.69 4.23
Synthetic [10,000–50,000] [20,000–700,000] [2–5] [2.5–18] [0.05–1]

Table 1: Statistics of the synthetic and real-world datasets. For the synthetic datasets, various
experiments with a range of parameters are performed.

As the measure of accuracy, we use the empirical fraction of labels correctly recovered by each
algorithm, that is

Acc = Ê

max
π∈Sk

1

n

∑
v∈V (n)

1 (A(v;G(n), τ̃) = π ◦ τ(v))

.
In synthetic data we observe that, as soon as α < (k−1)/k, the maximization over π is not necessary
(as expected from theory), and hence we drop it.
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5.1 Bounded-distance streaming BP

In our experimental results presented below, we observed that the simple implementation in Algo-
rithm 1 exhibits undesirable behaviors for certain graphs. We believe this is caused by two factors.
First, unlike ORACLEBP, we do not have an upper bound on the radius of influence of each vertex in
STREAMBP; it may indeed use long paths. Second, the number of cycles in the graph increases as
a, b grow. Large values of a and b can result in many paths being cycles, which negatively affects the
performance of the algorithm.

In order to overcome these problems, we use two modifications. The first one is standard: we
constrain messages so that mu→v(s) ∈ [ε, 1− ε] for some fixed small ε > 0 (we essentially constrain
the log-likelihood ratios to be bounded).

The second modification defines a variant, presented in Algorithm 2, which we call STREAMBP∗.
Here the estimate at node v is guaranteed to depend only on the graph structure and side information
within BnR(v), and not on the information outside this ball. This constraint can be implemented in
a message-passing fashion, by keeping, on each edge, R+ 1 distinct messages m0

u→v, . . . ,m
R
u→v,

corresponding to different locality radii.

5.2 Synthetic datasets

Algorithm 2 STREAMBP∗: Bounded-distance
streaming BP

1: for t = 1, 2, . . . , n do
2: for v ∈ Dt

1(v(t)) do
3: m0

v→v(t) ← 1/k

4: for i = 1, 2, . . . , R do
5: mi

v→v(t) ←
BP({mi−1

v′→v}v′∈∂v\{v(t)}; τ̃(v))
6: end for
7: end for
8: for v ∈ Dt

1(v(t)) do
9: m0

v(t)→v ← 1/k

10: for i = 1, 2, . . . , R do
11: mi

v(t)→v ←
BP({mi−1

v′→v(t)}v′∈∂v(t)\{v}; τ̃(v(t)))

12: end for
13: end for
14: for r = 2, 3, . . . , R do
15: for v ∈ Dt

r(v(t)) do
16: Let v′ ∈ Dt

1(v) on a shortest path
connecting v and v(t).

17: for i = 1, 2, . . . , R do
18: mi

v′→v ←
BP({mi−1

u→v′}u∈∂v′\{v}; τ̃(v′))
19: end for
20: end for
21: end for
22: end for
23: // Compute the estimates:
24: for u ∈ V do
25: mu ← BP({mR

v→u}v∈∂u; τ̃(u))
26: Output τ̂(u) := arg maxsmu(s)
27: end for

Figure 3 illustrates the effect of the radius on the
performance of the algorithms.1 We use various
settings for k, a, b, α. We observe that voting al-
gorithms do not perform significantly better than
the baseline 1−α (dashed line). This is due both
to the very small radius R = 1 of these algo-
rithms, and to the specific choice of the update
rule. For R = 1, STREAMBP and STREAMBP∗
perform significantly better than voting, showing
that their update rule is preferable. Their accuracy
improves with R, and is often close to the opti-
mal accuracy (i.e. the accuracy of ORACLEBP
for large R) already for R ≈ 5.

In Figure 4, we study the effect of the SNR pa-
rameter λ, defined in Equation (4), on the perfor-
mance of the BP algorithms. The accuracy of the
algorithms improves as λ increases. It is close
to the baseline 1 − α when the SNR is close to
the KS threshold at λ = 1, and then it improves
for large λ. This is a trace of the phase transition
at the KS threshold which is blurred because of
side information. For large values of R, the ac-
curacy of our streaming algorithms STREAMBP
and STREAMBP∗ nearly matches that of the op-
timal offline algorithm ORACLEBP.

Further experiments on synthetic datasets are re-
ported in Appendix A. We then present in Ap-
pendix B the result of experiments where no side
information is provided to the algorithms. We ob-
serve that in the streaming setting, and for small
radius (R), neither STREAMBP nor STREAMBP∗
achieves high accuracy (above 1/k) in the ab-
sence of side information, as suggested by our
theoretical results.

1Notice that the three voting algorithms do not depend on the radius, resulting in horizontal lines in the
diagram.
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5.3 Real-world datasets

We further investigate the performance of our algorithms on three real-world datasets: Cora [RA15],
Citeseer [RA15], and Polblogs [AG05]. Cora and Citeseer are academic citation networks: vertices
represent scientific publications partitioned into k = 7 and k = 6 classes respectively; directed edges
represent citations of a publication by another. The Polblogs dataset represents the structure of the
political blogosphere in the United States around its 2004 presidential election: vertices correspond to
political blogs, and directed edges represent the existence of hyperlinks from one blog to another. The
blogs are partitioned into k = 2 classes based on their political orientation (liberal or conservative).

As mentioned in the beginning of Section 5, in a preprocessing step we convert the input graphs
of the real-world datasets into undirected graphs by simply ignoring edge directions. Also, since
the graphs do not stem from the models of Section 2, we use oracle estimates of parameters a and
b, obtained by matching the density of intra- and inter-community edges with those in the model
StSSBM(n, k, ã, b̃, α). Namely, for a graph G = (V,E), letting V1, . . . , Vk ⊆ V be the ground-truth
communities, we set

ã = |V | ·
∑
i∈[k]

∑
(u,v)∈E 1{u, v ∈ Vi}∑
i∈[k]

(|Vi|
2

) , b̃ = |V | ·

∑
{i,j}∈([k]

2 )
∑

(u,v)∈E 1{u ∈ Vi, v ∈ Vj}∑
{i,j}∈([k]

2 ) |Vi||Vj |
.

For each dataset, we run the streaming algorithms STREAMBP and STREAMBP∗ using the parameters
a = ã and b = b̃. Notice that these estimates cannot be implemented in practice because we do not
know the communities Vj to start with. However, the performances appear not to be too sensitive to
these estimates; we provide empirical evidence of this in Appendix A.

Figure 5 shows the accuracy of different algorithms on these datasets, for selected values of α.
Although the graphs in these datasets are not random graphs generated according to StSBM, the
empirical results generally align with the theoretical results we proved for that model. Specifically, we
see that our streaming algorithm STREAMBP∗ is approximately as accurate as the offline algorithm
ORACLEBP, and significantly better than the voting algorithms. STREAMBP produces high-quality
results for Cora and Citeseer datasets, but behaves erratically on the Polblogs dataset. As Polblogs is
relatively dense compared with Cora and Citeseer thus contains more cycles, such phenomenon is
likely due to the issues discussed in Section 5.1.

Appendix C provides additional details on these experiments, as well as results for other values of α.

(a) k = 2, a = 3, b = .1, α = .4. (b) k = 2, a = 5, b = .5, α = .3.

(c) k = 3, a = 4, b = .05, α = .5. (d) k = 4, a = 3, b = .1, α = .6. (e) k = 5, a = 8, b = .1, α = .7.

Figure 3: Results of the experiments on synthetic datasets with 50,000 vertices. The black dashed line
represents the accuracy of the noisy side information (without using the graph at all), namely 1− α.
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(a) R = 1 (b) R = 3 (c) R = 5

Figure 4: Results of the experiments on synthetic datasets with 50,000 vertices, with k = 2, a+ b =
8, α = 0.2, as we increase the ratio λ from 1.0 to 3.0. The black dashed line represents the accuracy
of the noisy side information (without using the graph at all), namely 1− α.

(a) Cora (k = 7), α = 0.6. (b) Citeseer (k = 6), α = 0.6. (c) Polblogs (k = 2), α = 0.3.

Figure 5: Results of experiments on real-world datasets. The black dashed line represents the accuracy
of the noisy side information (without using the graph at all), namely 1− α.
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A Further experiments with synthetic datasets

Results with different sets of parameters. In Figures 6–9, we report more comprehensively the
dependence of our algorithms’ performance on the radius, where each figure corresponds to one
choice of k = 2, 3, 4, 5. Similarly to Figure 3, we can see that as the radius increases, the performance
of the three belief propagation algorithms (STREAMBP, STREAMBP∗, and ORACLEBP) improves
and converges to the same value. For some parameter settings, we observe that STREAMBP performs
poorly when the radius is above a certain threshold; that is likely due to the issues discussed in
Section 5.1.

(a) a = 2.5, b = 0.05, α = 0.3. (b) a = 2.5, b = 0.05, α = 0.2.

(c) a = 2.5, b = 0.05, α = 0.4. (d) a = 3, b = 0.1, α = 0.2. (e) a = 3, b = 0.1, α = 0.3.

(f) a = 3, b = 0.1, α = 0.4. (g) a = 5, b = 0.5, α = 0.2. (h) a = 5, b = 0.5, α = 0.3.

Figure 6: Results of the experiments on synthetic datasets with 50,000 vertices, and k = 2. The black
dashed line represents the accuracy of the noisy side information (without using the graph at all),
namely 1− α.

Variation of the accuracy of STREAMBP and STREAMBP∗ during their execution. We also
investigate how the accuracy of the streaming algorithms STREAMBP and STREAMBP∗ varies
during their execution on a given graph, as new vertices arrive one at a time. Figure 10 shows the
results obtained for graphs generated according to the distribution StSSBM(n, a, b, k, α), for various
parameter settings.

We generally observe a very high accuracy (close to 1.0) for the first very few vertices, and then
a sharp decline. This is not surprising given our use of the estimation accuracy Qn(A) defined in
Section 2; in particular, the accuracy upon arrival of the first vertex is always equal to 1.0. After
this initial sharp decline, the arrival of more vertices almost steadily improves the accuracy, which
eventually stabilizes. Note that this improvement accelerates at some point; this is a trace of the
phase transition at the KS threshold which is blurred because of side information. Also note that
the truncation of a triple (τ, τ̃,G) ∼ StSSBM(n, k, a, b, α) to the first n′ < n vertices induces
the distribution StSSBM(n′, k, n

′

n a,
n′

n b, α), whose signal-to-noise ratio is λ(n′) , n′

n λ; i.e., the
signal-to-noise ratio increases linearly with n′. Each plot in Figure 10 has a vertical line showing the
point where λ(n′) crosses the threshold 1.0.
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(a) a = 4, b = 0.05, α = 0.3. (b) a = 4, b = 0.05, α = 0.4.

(c) a = 4, b = 0.05, α = 0.5. (d) a = 5, b = 0.1, α = 0.3. (e) a = 5, b = 0.1, α = 0.4.

(f) a = 5, b = 0.1, α = 0.5. (g) a = 7, b = 0.5, α = 0.3. (h) a = 7, b = 0.5, α = 0.4.

Figure 7: Results of the experiments on synthetic datasets with 50,000 vertices, and k = 3. The black
dashed line represents the accuracy of the noisy side information (without using the graph at all),
namely 1− α.

Robustness of STREAMBP and STREAMBP∗ w.r.t. the parameters a and b. Note that our
proposed algorithms use a and b as input parameters. When applying these algorithms to real-world
datasets that do not conform to the StSSBM model, we must approximate these parameters. Indeed
in Section 5 we used empirical estimates of a and b.

In this section we provide some evidence that our algorithms’ behavior is robust to the choice of a and
b. In Figures 11 and 12 we present some results of experiments on synthetic data, where the algorithm
and the model generating the input graph are given different a or b parameters. We observe that even
with a relatively high discrepancy between the approximate and true parameters, STREAMBP∗ still
achieves results comparable to the optimal setting of the parameters. Similar observations can be
made about STREAMBP.

Various settings of k, a, b, and α are given as the caption to the individual plots. Here a and b
signify the true parameters, according to which the input graph was generated. The performance
of STREAMBP∗ is then plotted with various input parameters. For instance, the label “a+200%" in
Figure 11 indicates that the algorithm receives a parameter a that is three times greater than the true
value. Similarly “b-67%" in Figure 12 indicates that the algorithm receives a parameter b that is 67%
less than the true value.

B Experiments without side information

In this section, we provide details of our experiments on synthetic data, when no side information
is provided to the algorithms. Here α is set to 1− 1/k, that is, τ̃ is completely independent from τ .
Note that in this setting we cannot hope to have large overlap between the output labels τ̂ and the
true labels τ . Therefore, we must evaluate the algorithms based on the best possible permutation of
the output labels, as described in Section 2.1 in the definition of Qn(A):
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(a) a = 5, b = 0.05, α = 0.4. (b) a = 5, b = 0.05, α = 0.6.

(c) a = 5, b = 0.05, α = 0.7. (d) a = 6, b = 0.1, α = 0.4. (e) a = 6, b = 0.1, α = 0.6.

(f) a = 6, b = 0.1, α = 0.7. (g) a = 10, b = 0.5, α = 0.4. (h) a = 10, b = 0.5, α = 0.7.

Figure 8: Results of the experiments on synthetic datasets with 50,000 vertices, and k = 4. The black
dashed line represents the accuracy of the noisy side information (without using the graph at all),
namely 1− α.

max
π∈Sk

1

n

∑
v∈V (n)

1 (τ̂(v) = π ◦ τ(v)) .

Our observations confirm the theoretical result from Corollary 1. As predicted, when r is small, no
algorithm—neither the baselines nor our algorithms—can achieve any meaningful improvement over
the trivial 1/k accuracy. We further observe that for sufficiently large r, both the offline algorithm
ORACLEBP and our algorithm STREAMBP∗ perform significantly better than 1/k. However, this
occurs when r is comparable to the diameter of the graph, when an online algorithm is no longer
efficient. STREAMBP is unable to get any non-trivial result due to issues described in Section 5.1
which become especially problematic for large values of a, b, and r.

We present the results of our experiments for various settings of k, a, and b in Figure 13. Note that
the settings always satisfy the Kesten-Stigum condition from Equation (4). Without side information,
this is necessary to see any non-trivial behavior, even for large radii.

C Additional results on real-world datasets

Figure 14 summarizes the results obtained by running the different algorithms on the datasets Cora,
Citeseer, and Polblogs. For each dataset and choice of the radius (used by the algorithms STREAMBP,
STREAMBP∗, and ORACLEBP) and of the parameter α, we run each algorithm 9 times; each run
independently chooses an arrival order of the vertices (uniformly at random among all permutations
of the vertices) and the side information (as described in Section 2). We note that the accuracy of our
streaming algorithm STREAMBP∗ is comparable to that of the offline algorithm ORACLEBP, and
significantly superior to the accuracy of the voting algorithms. STREAMBP produces high-quality
results for the datasets Cora and Citeseer, but behaves erratically in the Polblogs dataset, generally
worse than the voting algorithms; that is likely due to the issues discussed in Section 5.1.
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(a) a = 6, b = 0.05, α = 0.4. (b) a = 6, b = 0.05, α = 0.5.

(c) a = 6, b = 0.05, α = 0.7. (d) a = 8, b = 0.1, α = 0.4. (e) a = 8, b = 0.1, α = 0.5.

(f) a = 8, b = 0.1, α = 0.7. (g) a = 13, b = 0.5, α = 0.4. (h) a = 13, b = 0.5, α = 0.7.

Figure 9: Results of the experiments on synthetic datasets with 50,000 vertices, and k = 5. The black
dashed line represents the accuracy of the noisy side information (without using the graph at all),
namely 1− α.

D Definitions and technical lemmas

For completeness, we reproduce a standard lemma establishing that sparse graphs from SBM are
locally tree-like.
Lemma 1 ([MNS15]). Let (X,G) ∼ SSBM(n, 2, a/n, b/n) and R = R(n) =
b 1

10 log(n)/ log(2(a + b))c. Let BR := {v ∈ [n] : dG(1, v) ≤ R} be the set of vertices at graph
distance at most R from vertex 1, GR be the restriction of G on BR, and let XR = {Xu : u ∈ BR}.
Let TR be a Galton-Watson tree with offspring Poisson(a + b)/2 and R generations, and let X̃(t)

be the labelling on the vertices at generation t obtained by broadcasting the bit X̃(0) := X1 from
the root with flip probability b/(a + b). Let X̃R = {X̃(t)

u : t ≤ R}. Then, there exists a coupling
between (GR, XR) and (TR, X̃R) such that

lim
n→∞

P
(

(GR, XR) = (TR, X̃R)
)

= 1.

For A ⊆ V , let τ(A) be the vector containing all true labels of vertices in A, and τ̃(A) be the vector
containing all noisy labels of vertices in A.
Definition 3 (Labeled branching tree). For r ∈ N+, d > 0, p ∈ (0, 1), let PTr,d,p denote the law of a
labeled Galton Watson branching tree: this tree has r generations, with the offspring distribution
being Poisson with expectation d. Each vertex in the tree is associated with a label taking values in
{1, 2}. The label at the root node is uniformly distributed over {1, 2}, and labels on the rest of the
vertices are obtained by broadcasting the label from the root node with flip probability p.

Furthermore, we denote the optimal estimation accuracy by

Q∗n , sup
A

E

max
π∈Sk

1

n

∑
v∈V (n)

1 (A(v;G(n), τ̃) = π ◦ τ(v))

. (7)
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(a) k = 2, a = 7.0, b = 0.1, α = 0.4. (b) k = 2, a = 8.0, b = 0.5, α = 0.3.

(c) k = 3, a = 10.0, b = 0.2, α =
0.6.

(d) k = 3, a = 15.0, b = 0.5, α =
0.6.

(e) k = 3, a = 18.0, b = 1.0, α =
0.5.

(f) k = 4, a = 15.0, b = 0.01, α =
0.6.

(g) k = 4, a = 15.0, b = 0.01,
α = 0.7.

(h) k = 4, a = 23.0, b = 1.0, α =
0.6.

Figure 10: Accuracy per iteration obtained by running STREAMBP and STREAMBP∗ on a graph
sampled from StSSBM(n, k, a, b, α) with n = 10, 000. The black dashed line represents the accuracy
of the noisy side information (without using the graph at all), namely 1− α. The pink vertical line
indicates the point where the signal-to-noise ratio crosses the threshold 1.0.

(a) k = 2, a = 4.5, b = 0.1, α = 0.4. (b) k = 2, a = 6, b = 0.5, α = 0.3.

(c) k = 2, a = 7, b = 1, α = 0.4. (d) k = 3, a = 5, b = 0.1, α = 0.4. (e) k = 3, a = 7, b = 1, α = 0.6.

Figure 11: Robustness of STREAMBP∗ w.r.t. to the choice of a.
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(a) k = 2, a = 4.5, b = 0.1, α = 0.4. (b) k = 2, a = 6, b = 0.5, α = 0.3.

(c) k = 2, a = 7, b = 1, α = 0.4. (d) k = 3, a = 5, b = 0.1, α = 0.4. (e) k = 3, a = 7, 1, α = 0.6.

Figure 12: Robustness of STREAMBP∗ w.r.t. to the choice of b.

(a) k = 2 a = 7.5, b = 0.1. (b) k = 2, a = 8, b = 0.1.

(c) k = 3, a = 7.5, b = 0.1. (d) k = 3, a = 8, b = 0.1. (e) k = 3, a = 10, b = 0.3.

(f) k = 4, a = 7.5, b = 0.1. (g) k = 4, a = 8, b = 0.1. (h) k = 4, a = 10, b = 0.3.

Figure 13: Results of the experiments on synthetic datasets with 10,000 vertices, and no side
information (i.e. α = 1− 1/k).
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(a) Cora (k = 7), α = 0.5. (b) Cora (k = 7), α = 0.6. (c) Cora (k = 7), α = 0.7.

(d) Citeseer (k = 6), α = 0.5. (e) Citeseer (k = 6), α = 0.6. (f) Citeseer (k = 6), α = 0.7.

(g) Polblogs (k = 2), α = 0.2. (h) Polblogs (k = 2), α = 0.3. (i) Polblogs (k = 2), α = 0.4.

Figure 14: Results of the experiments on real-world datasets. The black dashed line represents the
accuracy of the noisy side information (without using the graph at all), namely 1− α.

E Analysis of local streaming algorithms

E.1 Proof of Theorem 1

With a slight abuse of notations, in this part of the proof, when we refer to V tr (v), Etr(v),Btr(v)
and Gtr(v), we do not assume we know the revealing orderings of vertices within. For the sake of
simplicity, we consider k = 2, cases with k > 2 can be proven similarly. Let d = (a+ b)/2 be the
average degree, r ∈ N+ satisfying

r ≥ 22R+3R

(
1 + (1− e−d)−1

R∑
i=0

di

)
d2Re.

Let (λr+R, Tr+R) ∼ PT
r+R,d, b

a+b

as in Definition 3, with Tr+R being the graph and λr+R being the

set of labels. By Lemma 1, for any ε > 0, there exists nε ∈ N+ which is a function of r,R and ε, such
that for n ≥ nε, there exists a coupling of (λr+R, Tr+R) and (τ(V nr+R(v0)),Bnr+R(v0)) preserving
u0 paired up with v0, and satisfies

P
(
(λr+R, Tr+R) 6= (τ(V nr+R(v0)),Bnr+R(v0))

)
≤ ε/2.

If Gnv0 is not a subgraph of Bnr (v0), then there must exist vb ∈ Dn
r (v0) such that vb belongs to Gnv0 .

This is equivalently saying that there exists an “information flow" starting at vb, proceeds as vertices
are gradually revealed, and finally could reach v0 by the end.

Definition 4 (Information flow). Given the graph G(n) = (V (n), E(n)), an information flow with
origin at vb and end at v0 is defined as a sequence of vertices p1, p2, · · · , pl ∈ V (n), such that

1. t∗(pi) = ti, and ti < ti+1 for all i ∈ [l − 1].

2. V nR (pi) ∩ V nR (pi+1) 6= ∅. Furthermore, min{d(v0, v) : v ∈ V nR (pi+1)} < min{d(v0, v) :
v ∈ V nR (pi)}, for all i ∈ [l − 1].

3. vb ∈ V nR (p1), v0 ∈ V nR (pl), v0 /∈ V nR (pi) for all i ∈ [l − 1].
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Notice that on the event Bnr+R(v0) is a tree, a necessary condition for vb ∈ Gnv0 is that there exists
an information flow u1, u2, · · · , ul with origin at vb and end at v0. For i ∈ [l], among all vertices
on the shortest path connecting v0 and vb, let vi be a vertex with the smallest graph distance to ui.
A moment of thought reveals that we can find an eligible information flow such that v1, · · · , vl are
distinct.

Denote the set of vertices on the path connecting v0 and vb by Vp. Given l and the graph, the
number of (unordered) vertex combinations {v1, v2, · · · , vl} is upper bounded by

(
r
l

)
. For each

x ∈ {v1, v2, · · · , vl}, we define the following set:

V xp := {v ∈ V nR (x) : @v′ ∈ Vp, v′ 6= x, d(v, v′) < d(v, x)} .

Given {v1, v2, · · · , vl}, the total number of possible unordered vertex combinations {u1, u2, · · · , ul}
is upper bounded by

∏l
i=1 |V vip |. Furthermore, given unordered set {u1, u2, · · · , ul}, by defi-

nition one can specify their relative ordering u1, u2, · · · , ul by sorting the following distances:
min{d(v0, v) : v ∈ V nR (ui)}. Finally, for such combinations to exist, one must have br/2Rc ≤ l ≤ r.

As a result, given Bnr+R(v0), if it is a tree, then the conditional probability of Gnv0 not being a subgraph
of Bnr (v0) is upper bounded by∑

vb∈V (n)

1{vb ∈ Dn
r (v0)}

r∑
l=br/2Rc

∑
{v1,v2,··· ,vl}

l∏
i=1

|V vip | ×
1

l!
.

Let Pbt(·) denote the probability distribution over (λr+R, Tr+R), and let Ebt(·) be the corresponding
notation for taking expectation under that distribution. Then we have

P(Gnv0 is not a subgraph of Bnr (v0))

≤P((λr+R, Tr+R) 6= (τ(V nr+R(v0)),Bnr+R(v0)))+

P
(
Gnv0 is not a subgraph of Bnr (v0), (λr+R, Tr+R) = (τ(V nr+R(v0)),Bnr+R(v0))

)
≤ε/2 +

∑
vb∈V (n)

Ebt

1{vb ∈ Dn
r (v0)}

r∑
l=br/2Rc

∑
{v1,v2,··· ,vl}

l∏
i=1

|V vip | ×
1

l!


(i)

≤ε/2 +
∑

vb∈V (n)

Ebt

1{vb ∈ Dn
r (v0)}

r∑
l=br/2Rc

∑
{v1,v2,··· ,vl}

1

l!
×

(
1 + (1− e−d)−1

R∑
i=1

di

)l
︸ ︷︷ ︸

C(d,R)l


≤ε/2 +

r∑
l=br/2Rc

(
r

l

)
1

l!
C(d,R)ldr, (8)

where (i) uses the fact that conditioning on vb ∈ Dn
r (v0), the path connecting v0 and vb, and the

choice of v1, · · · , vl, the conditional expectation of
l∏
i=1

|V vip | is upper bounded by C(d,R)l. By

Stirling’s formula, there exists numerical constants C1 and C2, such that for any positive integer m,

C2

√
m
(m
e

)m
≤ m! ≤ C1

√
m
(m
e

)m
.

Then application of Stirling’s formula gives us
r∑

l=br/2Rc

(
r

l

)
1

l!
C(d,R)ldr

≤
r∑

l=br/2Rc

2rdr

C2

(e
l

)l
C(d,R)l

≤22Rd2R

C2

∞∑
l=br/2Rc

(
22R+2RC(d,R)d2Re

r

)l
. (9)
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where we use the fact that r/2R − 1 ≤ l ≤ r/2R and 2R/(r − 2R) ≤ 4R/r
for all r ≥ 22R+3RC(d,R)d2Re. Furthermore, with r having value exceeding this
threshold,

(
22R+2RC(d,R)d2Re

r

)
≤ 1

2 , thus

22Rd2R

C2

∞∑
l=br/2Rc

(
22R+2RC(d,R)d2Re

r

)l
≤22R+1d2R

C2

(
22R+2RC(d,R)d2Re

r

)br/2Rc

=CR

(
22R+2RC(d,R)d2Re

r

)br/2Rc
, (10)

where CR is a constant that depends only on d,R. Then there exists an rε ∈ N+, such that for r ≥ rε,

CR

(
2R+2RC(d,R)d2Re

r

)br/2Rc
≤ ε/2. (11)

Combining equations (8), (9), (10) and (11) gives us P(Gnv0 is a subgraph of Bnr (v0)) ≤ ε for large
enough n and r. Note that the choice of rε indeed only depends on R, d and ε. Having decided the
value of rε, what remains to be done is to select nε large enough to accommodate with this choice of
rε such that for n ≥ nε, the rε +R neighborhood of v0 is locally tree-like with high probability as in
Lemma 1. Note that since the choice of rε depends only on R, d and ε, the choice of nε essentially
depends only on R, d and ε. This finishes the proof of the first part of Theorem 1.

As for the second part of the theorem, we simply reverse the direction of information flow analysis
and everything else remains the same.

E.2 Proof of Corollary 1

By Theorem 1, for any ε > 0, there exists nε, rε ∈ N+, such that for all n ≥ nε,

E

[
max
π∈Sk

1

n

n∑
i=1

1{A(i;G(n)) = π ◦ τ(i)}

]

≤E[max
π∈Sk

1

n

n∑
i=1

(1{A(i;G(n)) = π ◦ τ(i),Gni is a subgraph of Bnrε(i)}

+ 1{Gni is not a subgraph of Bnrε(i)})]

≤ε+ sup
A′

E

[
max
π∈Sk

1

n

n∑
i=1

1{A′(i;G(n)) = π ◦ τ(i)}

]
,

where in the last line A′ is taken over the family of rε-local algorithms. Lemma 1 implies that the
last line above has limiting supremum no larger than 1/k + ε as n→∞ (for detailed arguments, see
[KMS16]). Since ε is arbitrary, then the corollary directly follows.

F Analysis of streaming belief propagation with side information

In this section we prove Theorem 2. Let F (x) = 1
2 log

(
e2xa+b
e2xb+a

)
, h1 = 1

2 log 1−α
α , and h2 =

1
2 log α

1−α . With k = 2, notice that Algorithm 1 can be equivalently reduced to the following form,
with which we will continue our proof:

Algorithm 3 R-local streaming belief propagation with k = 2

1: Initialization: V (0) = E(0) = G(0) = ∅.
2: for t = 1, 2, · · · , n do
3: V (t)← V (t− 1) ∪ {v(t)}
4: E(t)← E(t− 1) ∪ {(v(t), v) : v ∈ V (t− 1), (v(t), t) ∈ E}
5: G(t)← (V (t), E(t))
6: for v ∈ Dt

1(v(t)) do
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7: Mv→v(t) ← hτ̃(v) +
∑

v′∈Dt−1
1 (v)

F (Mv′→v)

8: end for
9: for r = 1, 2, · · · , R do

10: for v ∈ Dt
r(v(t)) do

11: Let v′ ∈ Dt
1(v) be a vertex which is on a shortest path connecting v and v(t).

12: Mv′→v ← hτ̃(v′) +
∑

v′′∈Dt1(v′)\{v}
F (Mv′′→v′)

13: end for
14: end for
15: end for
16: for u ∈ V (n) do
17: Mu ← hτ̃(u) +

∑
u′∈Dn1 (u)

F (Mu′→u)

18: Output −1{Mu ≥ 0}+ 2 as an estimate for τ(u).
19: end for

We start the proof by introducing the following definition and lemmas:
Definition 5 (Output of belief propagation). Let T = (V (T ), E(T )) be a tree rooted at u. Let LT
be the set of leaves of T : LT = {v : v has degree 1 in T}. For each v ∈ ∂T , assume we are given
M input
v ∈ R which we refer to as the input belief into T at v. For each v ∈ V (T ), suppose we

observe a noisy label τ̃(v) ∈ {1, 2}, and denote the set of children of v in T by C(v). Given the
model parameters a, b and α,

1. For v ∈ ∂T , set M̃v→pa(v) = M input
v , where pa(v) is the parent vertex of v in T .

2. Denote the depth of tree T by R. For r = R − 1, R − 2, · · · , 1, sequentially conduct the
following updates: for any v ∈ Dn

r (v0), let

M̃v→pa(v) = hτ̃(v) +
∑

v′∈C(v)

F (M̃v′→v).

3. We define the output of belief propagation BPROP(u;T, {M input
v : v ∈ ∂T}, τ̃, α, a, b) on

the tree T as follows:

BPROP(u;T, {M input
v : v ∈ ∂T}, τ̃, α, a, b) = hτ̃(u) +

∑
u′∈C(u)

F (M̃u′→u).

Lemma 2. Let (Mu)u∈V (n) be the output of Algorithm 3, under StSSBM(n, 2, a, b, α), for any
ε > 0, there exists rε, nε ∈ N+, such that for any u ∈ V (n), n ≥ nε, with probability at least 1− ε,
the following holds:

Mu = BPROP(u;T, {M input
v = hτ̃(v) : v ∈ ∂T}, τ̃, α, a, b)

for some (random) tree T rooted at u, with the depth of T no larger than rε.

Proof. By Lemma 1 and Theorem 1, for any ε > 0, there exists rε, nε ∈ N+, such that with
probability no less than 1 − ε, (1) Gnu is a subgraph of Bnrε(u), so Mu is a function of Ḡnu and
(2) Bnrε(u) is a tree. The result then follows by observing the iterating formulas of Algorithm 3.
Furthermore, if the event just described occurs, then the depth of T is no larger than rε.

Lemma 3. Consider Algorithm 3, denote the value of Mv→v′ before vertex v(t + 1) arrives by
M t
v→v′ . Then the following equation holds for some random time indices {t(v) ∈ [n] : v ∈ Dn

R(u)}:

Mu = BPROP(u;BnR(u), {M input
v = M

t(v)
v→pa(v) : v ∈ Dn

R(u)}, τ̃, α, a, b).

Proof. We conduct this proof by induction. Actually, we will show a stronger result. Instead of
focusing only on R-local streaming belief propagation, we will show a more general result for
N -local streaming belief propagation with any N ≥ R. Specifically, we will consider the following
algorithm:
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1. At each time t, a new vertex v(t) is revealed. For v ∈ Dt
1(v(t)), define Mv→v(t)(N) =

hτ̃(v) +
∑

v′∈Dt1(v)\{v(t)}
F (Mv′→v(N)).

2. For r = 1, 2, · · · , N , sequentially conduct the following updates: for each v ∈ Dt
r(v), let

v′ ∈ Dt
1(v) be a vertex which is on one of the shortest path connecting v(t) and v, update

or initialize the value of Mv′→v(N) = hτ̃(v′) +
∑

v′′∈Dt1(v′)\{v}
F (Mv′′→v′(N)). Since the

graph is with high probability locally tree-like, such v′ is with high probability unique.

3. Repeat step 1 and step 2 for all 1 ≤ t ≤ n.

For (v, v′) ∈ E(t), let M t
v→v′(N) denote the value of Mv→v′(N) after t-th iteration obtained by the

N -local streaming belief propagation algorithm. Let tR(u) be the first time such that all vertices in
V nR (u) have been revealed:

tR(u) := inf{t ∈ [n] : V nR (u) = V tR(u)}.

Let M t
u(N) = hτ̃(u) +

∑
u′∈Dt1(u)

F (M t
u′→u(N)). Now instead of proving Lemma 3, we show

that for any N ≥ R, and any t ≥ tR(u), if BnR(u) is a tree, then for some random time indices
{t(v) ∈ [n] : v ∈ Dt

R(u)}, we have

M t
u(N) = BPROP(u;BnR(u), {M input

v = M
t(v)
v→pa(v)(N) : v ∈ Dn

R(u)}, τ̃, α, a, b). (12)

Note that for all t ≥ tR(u), M t
u(R) = Mn

u (R) = Mu, therefore the result we have just described
is indeed a stronger version of Lemma 3. Then we will prove this stronger result by performing
induction on R. Equation (12) obviously holds for R = 1. Now suppose equation (12) holds for
R = r, we will show it holds for R = r + 1 by induction. If Bnr+1(u) is a tree rooted at u, for
any N ≥ r + 1, u′ ∈ Dn

1 (u), let T̄ ru′ be the depth r subtree consisting of u′ and its descendants in
Bnr+1(u). Let

t̄r(u
′) = inf{t : T̄ ru′ is a subgraph of Btr+1(u)}.

For u1, u2 ∈ Dn
1 (u), u1 6= u2, we have t̄r(u1) 6= t̄r(u2), and t∗(u) 6= t̄r(u1), where t∗ is defined in

Section G. For u′ ∈ Dn
1 (u), by the induction hypothesis, for t ≥ t∗(u) ∨ t̄r(u′), there exists random

time indices {t(v) ∈ [n] : v being a leaf vertex in T̄ ru′}, such that

M t
u′→u(N) = BPROP(u′; T̄ ru′ , {M input

v = M
t(v)
v→pa(v)(N) : v being a leaf vertex in T̄ ru′}, τ̃, α, a, b).

Since tr+1(u) ≥ t̄r(u
′) ∨ t∗(u) for all u′ ∈ Dn

1 (u), then for all t ≥ tr+1(u), there exists random
time indices {t(v) ∈ [n] : v ∈ Dt

r+1(u)}, such that

M t
u(N) =hτ̃(u) +

∑
u′∈Dt1(u)

F (M t
u′→u(N))

=BPROP(u;Bnr+1(u), {M input
v = M

t(v)
v→pa(v)(N) : v ∈ Dt

r+1(u)}, τ̃, α, a, b),

which finishes the proof of this lemma.

F.1 Proof of Theorem 2

For u ∈ V , let (λrε , T
rε
u ) ∼ PTrε,(a+b)/2,b/(a+b) where T rεu is the tree and λrε is the set of la-

bels. For vertices in T rεu , we denote the set of noisy labels generated independently with incorrect
probability α by λ̃rε . For any ε > 0, by Theorem 1 and Lemma 1, there exists rε, nε ∈ N+,
such that for all n ≥ nε, with probability at least 1 − ε: (1) Gnu is a subgraph of Bnrε(u), (2)
(λrε , λ̃rε , T

rε
u ) = (τ(V nrε(u)), τ̃(V nrε(u)),Bnrε(u)). Further there exists a coupling of (λrε , λ̃rε , T

rε
u )

and (τ(V nrε(u)), τ̃(V nrε(u)),Bnrε(u)) such that defining

Sε :=
{

(λrε , λ̃rε , T
rε
u ) = (τ(V nrε(u)), τ̃(V nrε(u)),Bnrε(u)),Gnu is a subgraph of Bnrε(u)

}
,
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then P(Sε) ≥ 1 − ε for all n ≥ nε. In the following parts of the analysis, we always assume Sε
occurs. Let Pbt denote the probability distribution of (λrε , λ̃rε , T

rε
u ). According to Lemma 2 and 3,

conditioning on Sε, there exists Tu being a tree rooted at u, such that BnR(u) is a subgraph of Tu and
Tu is a subgraph of Bnrε(u). Furthermore, Mu can be expressed as:

Mu = BPROP(u;Tu, {M input
v = hτ̃(v) : v ∈ ∂Tu}, τ̃, α, a, b) =

1

2
log

Pbt (τ(u) = 1 |Tu, τ̃(Tu))

Pbt (τ(u) = 2 |Tu, τ̃(Tu))
,

where ∂Tu is the set of leaf vertices in Tu, τ̃(Tu) refers to the set of noisy labels of vertices in Tu.
Then for all n ≥ nε, we have

Qn(AR) ≥P({AR(u;G(n), τ̃) = 1, τ(u) = 1} ∩ Sε) + P({AR(u;G(n), τ̃) = 2, τu = 2} ∩ Sε)

≥1

2
Pbt(Mu ≥ 0 | τ(u) = 1) +

1

2
Pbt(Mu < 0 | τ(u) = 2)− ε

=
1

2
+ Ebt

[∣∣∣∣Pbt(τ(u) = 1 | Tu, τ̃(Tu))− 1

2

∣∣∣∣]− ε.
We further have

Ebt [Pbt(τ(u) = 1|Tu, τ̃(Tu)) | BnR(u), τ̃(V nR (u))] = Pbt(τ(u) = 1|BnR(u), τ̃(V nR (u))).

Since x 7→ |x− 1
2 | is convex, therefore, by Jensen’s inequality, for all n ≥ nε,

Qn(AR) ≥ 1

2
+ Ebt

[∣∣∣∣Pbt(τ(u) = 1 |BnR(u), τ̃(V nR (u)))− 1

2

∣∣∣∣]− ε.
Since ε is arbitrary, we have

lim inf
n→∞

(
Qn(AR)− 1

2
− Ebt

[∣∣∣∣Pbt(τ(u) = 1 |BnR(u), τ̃(V nR (u)))− 1

2

∣∣∣∣]) ≥ 0. (13)

According to Lemma 3.7 in [MX16], we have

lim
n→∞

∣∣∣∣Qn(Aoff
R )− 1

2
− Ebt

[∣∣∣∣Pbt(τ(u) = 1|BnR(u), τ̃(V nR (u)))− 1

2

∣∣∣∣]∣∣∣∣ = 0. (14)

Combining equations (13) and (14), we have

lim inf
n→∞

(
Qn(AR)−Qn(Aoff

R )
)
≥ 0,

Thus finishes the proof of Theorem 2.

F.2 Proof of Corollary 2

According to Theorem 2.3 in [MX16], under the three regimes listed in this theorem, we have

lim
R→∞

lim sup
n→∞

(
Q∗n −Qn(Aoff

R )
)

= 0. (15)

Combining (15) and Theorem 2, we have

lim sup
n→∞

(Q∗n −Qn(AR)) ≤ lim sup
n→∞

(
Q∗n −Qn(Aoff

R )
)

+ lim sup
n→∞

(
Qn(Aoff

R )−Qn(AR)
)

≤ lim sup
n→∞

(
Q∗n −Qn(Aoff

R )
)
,

thus

lim sup
R→∞

lim sup
n→∞

(Q∗n −Qn(AR)) ≤ lim
R→∞

lim sup
n→∞

(
Q∗n −Qn(Aoff

R )
)

= 0.

Since Q∗n ≥ Qn(AR), the other direction naturally holds, thus finishes the proof of Corollary 2.
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G Local streaming algorithms with summary statistics

The class of local algorithms is somewhat restrictive. In practice we can imagine keeping a small
memory containing global information and updating it each time a new vertex joins. We will not
consider general streaming algorithms under a memory constraint; we instead consider a subclass
that we name ‘local streaming algorithms with summary statistics’. For instance, in social network
setting, such algorithm has access not only to local information as in Definition 1, but also global
statistics like the average number of friends.

Formally speaking, the state of the algorithm at time t is encoded in two vectors wt = (wti)i∈V (t) ∈
(Rm)V (t), et = (etij)(i,j)∈E(t) ∈ (Rm)E(t), indexed respectively by the vertices and edges of
G(t). Here m is a fixed integer independent of n. These are initialized to independent random
variables wt∗(i)−1

i
iid∼ Pw, et∗(i)∨t∗(j)−1

ij
iid∼ Pe, where t∗(i) is the time at which vertex i joins the graph

(v(t∗(i)) = i), t∗(i) ∨ t∗(j) , max{t∗(i), t∗(j)}, and Pw, Pe are probability distributions over Rm.

At each t ∈ [n], a new vertex v(t) joins the graph, and a ‘range of action’ (Vact
t ,Eact

t ) is decided, with
Vact
t ⊆ V (t) a vertex set and Eact

t ⊆ E(t) an edge set. We assume (Vact
t ,Eact

t ) to depend uniquely
on the R-neighborhood of v(t), BtR(v(t)), and to be such that: (i) the range of action is a subset of
the neighborhood: Vact

t ⊆ V tR(v(t)), Eact
t ⊆ EtR(v(t)); and (ii) the range of action has bounded size:

|Vact
t |+ |Eact

t | ≤ Cact = Cact(R) which does not scale with n. Notice that the second condition is
only required because the maximum degree in G(n) is log n, and it is to avoid pathological behavior
due to high-degree vertices; we believe it should be possible to avoid it at the cost of extra technical
work.

At each time t, the algorithm updates the quantities wti , e
t
ij in the range of action:

wti = F tw(wt−1(Vact
t ), et−1(Eact

t ), w̄t−1, ēt−1|i) , ∀i ∈ Vact
t ,

etij = F te(wt−1(Vact
t ), et−1(Eact

t ), w̄t−1, ēt−1|i, j) , ∀(i, j) ∈ Eact
t .

Here wt−1(Vact
t ), et−1(Eact

t ) are the restrictions of wt−1, et−1 to the range of action sets, and w̄t−1,
ēt−1 are summary statistics, updated according to:

w̄t =
1

|V (t)|
∑

v∈V (t)

wtv , ēt =
1

|E(t)|
∑

(i,j)∈E(t)

etij .

Finally, vertex labels are estimated using a function τ̂ : Rm → [k]. Namely, label at vertex v is
estimated at time t as τ̂(wtv). If wti = number of friends user i has at time t, then m = 1, and the
corresponding summary statistics is the average number of friends per user in the current network.

We next establish that, under mild assumptions, local streaming algorithms with summary statistics
cannot achieve non-trivial reconstruction in the symmetric model StSSBM(n, k, a, b). Notice that
this claim cannot hold for a general algorithm in this class. Indeed, each node i could encode the
structure of (a bounded-size subgraph) BtR(i) in the decimal expansion of wti , in such a way that
distinct vertices use non-overlapping sets of digits. Then the summary statistics w̄t would contain
the structure of the whole graph. We avoid this by requiring the update functions to be bounded
Lipschitz, and adding a small amount ε of noise to wni , before taking a decision. Informally speaking,
this means that we assume small change in the quantitative result can not lead to a big difference in
the qualitative outcome, thus adding small perturbation will not have huge affect on the final output.

Theorem 3. Assume that there exist numerical constant LF , independent of n, such that for all
t ∈ [n], all i ∈ [t] and all 1 ≤ j < l ≤ t, we have ‖F tw( · |i)‖∞, ‖F te( · |j, l)‖∞ ≤ LF and
‖F tw( · |i)‖Lip, ‖F te( · |j, l)‖Lip ≤ LF . (Here ‖f‖Lip denotes the Lipschitz modulus of function f .) Let
{wti : t ≤ n, i ∈ V (t)} be the vertex variables generated by the local streaming algorithm with
summary statistics defined by functions Fw, Fe. Let τ̂ : Rm → [k] and (Uij)i≤n,j≤m

iid∼Unif([−1, 1])
independent of the other randomness. Let Ui = (Uij)j≤m ∈ Rm. Then under StSSBM(n, k, a, b),
for any ε > 0,

lim sup
n→∞

E

[
max
π∈Sk

1

n

n∑
i=1

1(τ̂(wni + εUi) = π ◦ τ(i))

]
=

1

k
.

26



H Analysis of local streaming algorithms with summary statistics

For the sake of simplicity, we assumem = 1. We point out that extension tom ≥ 2 is straightforward.

H.1 An auxiliary algorithm

To prove Theorem 3, we first introduce an auxiliary algorithm (Algorithm 4) which is almost a local
algorithm. Then we show that the original algorithm can be well approximated by the proposed
auxiliary algorithm (Lemma 4). Finally, we show that the auxiliary algorithm can not achieve
non-trivial estimation accuracy (Lemma 5).

Let δ ∈ (0, 1) be a small constant independent of n, and let nh = |{v ∈ V (n) : τ(v) = h}|, h ∈ [k].
We shall perform a global algorithm up to time dδne, followed by a local algorithm. To represent
the information up to time dδne and the size of communities at time n, we introduce the following
sigma-algebra:

Fa := σ{G(dδne), (v(i), ξv(i), τ(v(i))), wi−1
v(i), e

j∨s−1
v(j)v(s), nh :

1 ≤ i, j, s ≤ dδne, (v(j), v(s)) ∈ E(dδne), h ∈ [k]}.

In the auxiliary algorithm, we attach a number bti to node i at time t, with the same initialization as
w: bt∗(i)−1

i = w
t∗(i)−1
i . Similarly, we attach to edge (v(i), v(j)) at time t a number ctij = ctji with

initialization ct∗(i)∨t∗(j)−1
ij = e

t∗(i)∨t∗(j)−1
ij . Note that wt∗(i)−1

i and et∗(i)∨t∗(j)−1
ij are as defined in

the original algorithm. Denote the vector containing all b’s attached to vertices in Vact
s at time t by bts,

and the vector containing all c’s attached to edges in Eact
s at time t by cts. Similarly, let wt

s and ets
denote the restrictions of wt and et to Vact

s and Eact
s , respectively. For dδne ≤ t ≤ [n], let

averageb(t) =
1

t

t∑
i=1

btv(i), averagec(t) =
1

|E(t)|
∑

(j,k)∈E(t)

ctjk.

Then we introduce the following auxiliary algorithm:

Algorithm 4 Auxiliary algorithm with summary statistics

1: for i ∈ V (dδne) do
2: b

dδne
i = w

dδne
i

3: end for
4: for (i, j) ∈ E(dδne) do
5: c

dδne
ij = c

dδne
ji = e

dδne
ij

6: end for
7: b̄dδne ← averageb(dδne)
8: c̄dδne ← averagec(dδne)
9: for t = dδne+ 1, dδne+ 2, · · · , n do

10: for i ∈ Vact
t do

11: bti ← F tw(bt−1
t , ct−1

t ,E[b̄t−1 | Fa],E[c̄t−1 | Fa] | i)
12: end for
13: for (i, j) ∈ Eact

t do
14: ctij ← F te(bt−1

t , ct−1
t ,E[b̄t−1 | Fa],E[c̄t−1 | Fa] | i, j)

15: end for
16: b̄t ← averageb(t)
17: c̄t ← averagec(t)
18: end for
19: for t = 1, 2, · · · , n do
20: Output τ̂(bnt ) as an estimate for τ(t).
21: end for

We can prove the following lemmas regarding Algorithm 4:
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Lemma 4. Under the conditions stated in Theorem 3, Algorithm 4 and the original algorithm
proposed in Section G are asymptotically equivalent, in the sense that as n→∞,

1

n

n∑
i=1

|wni − bni |+
1

|E(n)|
∑

(i,j)∈E(n)

|enij − cnij |
P→ 0.

Lemma 5. Under the conditions stated in Theorem 3, for any ε > 0, the following holds:

lim sup
δ→0+

lim sup
n→∞

E

[
max
π∈Sk

1

n

n∑
i=1

1{τ̂(bni + εUi) = π ◦ τ(i)}

]
=

1

k
.

We defer the proofs of Lemma 4 and 5 to later parts of the appendix. With these two lemmas, we are
able to prove Theorem 3.

H.2 Proof of Theorem 3

For any δ ∈ (0, 1), using Lemma 4, we conclude that for any ζ ∈ (0, 1), n large enough, with
probability at least 1− ζ , 1

n

∑n
i=1 |wni − bni | ≤ ζ2. If this happens, then #{i : |wni − bni | ≥ ζ} ≤ ζn.

For ε given in the theorem, let ψε(ζ) := TV(εZ1, ζ + εZ2) where Z1, Z2 ∼ Unif[−1, 1] and TV
stands for the total variation distance between probability distributions. One can verify that ψε(ζ)→ 0
as ζ → 0. Then we have

E

[
max
π∈Sk

1

n

n∑
i=1

1{τ̂(wni + εUi) = π ◦ τ(i)}

]

≤E

[
max
π∈Sk

1

n

n∑
i=1

1{τ̂(wni + εUi) = π ◦ τ(i)}1{ 1

n

n∑
i=1

|wni − bni | ≤ ζ2}

]
+ ζ

≤E

[
max
π∈Sk

1

n

n∑
i=1

1{τ̂(wni + εUi) = π ◦ τ(i), |wni − bni | ≤ ζ}1{
1

n

n∑
i=1

|wni − bni | ≤ ζ2}

]
+ 2ζ

(16)
:=4. (17)

Conditioning on given values of wni and bni , we may bound the total variation distance between
wni + εUi and bni + εUi. Specifically, conditional on all wni and bni , there exists U ′i

iid∼Unif[−1, 1] for
i ∈ [n], independent of wni and bni , such that with probability at least 1− ψε(|wni − bni |), we have
wni + εUi = bni + εU ′i . Note that U ′i is independent of wni , b

n
i , but dependent on Ui. Then we have

4 ≤E

[
max
π∈Sk

1

n

n∑
i=1

1{τ̂(bni + εU ′i) = π ◦ τ(i), |wni − bni | ≤ ζ}1{
1

n

n∑
i=1

|wni − bni | ≤ ζ2}

]
+ 2ζ + ψε(ζ)

≤E

[
max
π∈Sk

1

n

n∑
i=1

1{τ̂(bni + εU ′i) = π ◦ τ(i)}

]
+ 2ζ + ψε(ζ).

Since ζ can be arbitrarily small,

lim sup
n→∞

E

[
max
π∈Sk

1

n

n∑
i=1

1{τ̂(wni + εUi) = π ◦ τ(i)}

]
≤

lim sup
n→∞

E

[
max
π∈Sk

1

n

n∑
i=1

1{τ̂(bni + εU ′i) = π ◦ τ(i)}

]
.

This holds for any value of δ. Taking δ → 0+ then using Lemma 5 finishes the proof of Theorem 3.
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H.3 Proof of Lemma 4

For simplicity of presentation, in the proof of this lemma we drop the edge attachments (i.e., setting
them to zero), and consider only the vertex attachments. We point out that proof involving edge
attachments can be conducted almost identically. By the Lipschitz continuity assumption, as the
(t+ 1)-th vertex joins we have

for all l ∈ Vact
t+1, |wt+1

l − bt+1
l | ≤ LF

∑
i∈Vact

t+1

|wti − bti|+ LF |w̄t − b̄t|+ LF |b̄t − E[b̄t|Fa]|,

(18)

for all l /∈ Vact
t+1, |wt+1

l − bt+1
l | = |w

t
l − btl |. (19)

Using equations (18) and (19), we have

|w̄t+1 − b̄t+1| ≤ |w̄t − b̄t|+ 1

t+ 1

∑
i∈Vact

t+1

|wt+1
i − bt+1

i |+
1

t+ 1

∑
i∈Vact

t+1

|wti − bti|

≤
(

1 +
LF |Vact

t+1|
t+ 1

)
|w̄t − b̄t|+

LF |Vact
t+1|+ 1

t+ 1

∑
i∈Vact

t+1

|wti − bti|+
LF |Vact

t+1|
t+ 1

|b̄t − E[b̄t|Fa]|.

(20)

For t ∈ [n], let dt ∈ Rn+1 with entries indexed from 0 to n. The first entry is set to |w̄t − b̄t|, and
for i ∈ [n], the entry with index i is set to |wti − bti|. By definition for all 1 ≤ s ≤ dδne, ds has only
zero entries.

For S1, S2, S ⊆ {0} ∪ [n], let 1S ∈ Rn+1 be a vector with entries indexed by 0 to n, and the entry
with index α is 1 if and only if α ∈ S otherwise it is zero. For simplicity, let 1t = 1{t}, and let
Q(S1, S2) := 1S11

T
S2
∈ R(n+1)×(n+1). Then define the following matrices:

At := Q(Vact
t , {0} ∪ Vact

t ) +
|Vact
t |+ 1

t
Q({0}, {0} ∪ Vact

t ),

At1,t2 := Q(Vact
t1 , {0} ∪ Vact

t2 ) +
|Vact
t1 |+ 1

t1
Q({0}, {0} ∪ Vact

t2 ).

Without loss of generality we may assume LF ≥ 1, then combining equations (18), (19) and (20)
gives

dt+1 ≤ (I + LFAt+1)dt + LF (|b̄t − E[b̄t|Fa]|)At+11v(t+1),

here “≤" refers to element-wise comparison. Let

d̃dδne = ddδne = ~0, d̃t+1 = (I + LFAt+1)d̃t + (|b̄t − E[b̄t|Fa]|)LFAt+11v(t+1),

then we have dt ≤ d̃t for all t ≥ dδne. Furthermore, we have the following decomposition with ht
defined in equation (22):

〈dn,~1〉 ≤ 〈d̃n,~1〉 =

n−1∑
t=dδne+1

ht|b̄t − E[b̄t|Fa]|. (21)

Before elaborating on the definition of ht, we state the following lemma without proof. Notice that
the proof is nothing but basic linear algebra.
Lemma 6. For n ≥ tm > tm−1 > · · · > t1 ≥ dδne+ 1, we have

A(tm, tm−1, · · · , t1) := AtmAtm−1
· · ·At1 =

m−1∏
k=1

( |Vact
tk
|+ 1

tk
+ |Vact

tk
∩ Vact

tk+1
|
)
Atm,t1 .

Applying Lemma 6, we have for all dδne+ 1 ≤ t ≤ n− 1,

ht =
∑

n≥tm>···>t1=t+1

〈LmF A(tm, tm−1, · · · , t1)1v(t+1),~1〉
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=
∑

n≥tm>···>t1=t+1

LmF

(
|Vact
tm |+

|Vact
tm |+ 1

tm

)
×
m−1∏
k=1

(
|Vact
tk
∩ Vact

tk+1
|+
|Vact
tk
|+ 1

tk

)
. (22)

For dδne+ 1 ≤ s ≤ n− 1, let H(s) =
∑n−1
t=s ht, and let

C(s) =
∑

n≥tm>···>t1=s+1

LmF

(
|Vact
tm |+

|Vact
tm |+ 1

tm

)
×

m−1∏
k=1

(
|Vact
tk
∩ Vact

tk+1
|+
|Vact
tk
|+ 1

tk

)
1
{
|Vact
tk
∩ Vact

tk+1
| > 0

}
.

Then we can provide an upper bound for H(s) using C(s) and H(s+ 1):

H(s) ≤
(

1 +
1

dδne
C(s)

)
H(s+ 1) + C(s).

By induction, and applying the fact that log(1 + x) ≤ x for all x > −1, we have

Hdδne+1 ≤
n−1∑

s=dδne+1

C(s)

n−1∏
s=dδne+1

(
1 +

C(s)

dδne

)
≤

n−1∑
s=dδne+1

C(s) exp

 1

dδne

n−1∑
s=dδne+1

C(s)

 .

(23)

Using equation (21), we can prove Lemma 4 if we can prove the following two lemmas.
Lemma 7. Under the assumptions stated in Theorem 3, for all δ > 0, we have Hdδne+1 = Op(n).
Lemma 8. Under the assumptions stated in Theorem 3, we have

sup
dδne+1≤t≤n

|b̄t − E[b̄t|Fa]| = op(1).

The proof of Lemma 7 and 8 will be deferred to later parts of the appendix. Using Lemma 7 and 8,
then apply equation (21), we have

1

n

n∑
i=1

|wti − bti| ≤
1

n
〈dn~1〉 ≤

1

n
H(dδne) sup

dδne+1≤t≤n−1

|b̄t − E[b̄t|Fa]| = op(1),

thus finishes the proof of Lemma 4.

H.4 Proof of Lemma 7

To prove Lemma 7 we shall first provide a uniform upper bound for the expectation of C(s) which
is independent of n, δ and s. If this holds, then by Markov’s inequality

∑n
s=dδne+1 C(s) = Op(n).

Plugging this into equation (23) gives Hdδne+1 = Op(n), which finishes the proof of this lemma. Let

δ1 := 1
2

(
(a+(k−1)b)δ

k ∧ 1
)
δ. For n large enough, we have

|Vact
tk
|+1

tk
< 1 for all dδne+ 1 ≤ tk ≤ n,

then we have

C(s) ≤
∑

n≥tm>···>t1=s+1

2mLmF C
m
act1

{
|Vact
tk
∩ Vact

tk+1
| > 0 k = 1, 2, · · · ,m− 1

}
≤

∑
n≥tm>···>t1=s+1

2mLmF C
m
act1 {d(v(tk), v(tk+1)) ≤ 2R, k = 1, 2, · · · ,m− 1} . (24)

Note that in equation (24), m can be any positive integer, therefore, taking the expectation of C(s)
gives

E[C(s)] ≤
∞∑
m=1

∑
n≥tm>···>t1=s+1

2mLmF C
m
actP(d(v(tk), v(tk+1)) ≤ 2R, k = 1, 2, · · · ,m− 1)

≤
∞∑
m=1

∑
n≥tm>···>t1=s+1

2mLmF C
m
actE

[
m−1∏
k=1

|V n2R(v(tk))|
n− k

]
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≤
∞∑
m=1

2mLmCmact
(m− 1)!

E[|V n2R(v)|m],

where v is an arbitrary vertex in V (n). The following lemma provides an upper bound on
E[|V n2R(v)|m].

Lemma 9. Under the assumptions of Theorem 3, we have

lim sup
n→∞

∞∑
m=1

2mLmF C
m
act

(m− 1)!
E[|V n2R(v)|m] <∞.

The proof of Lemma 9 is deferred to next subsection. With Lemma 9, we can apply Markov’s
inequality to prove

∑n
s=dδne+1 C(s) = Op(n), then Lemma 7 follows from equation (23).

H.5 Proof of Lemma 9

To prove lemma 9, we introduce the following branching process:

1. X0 = 1.

2. Let {Z(i, t) : i, t ∈ Z+} be an array of i.i.d. Z+-valued random variables with distribution
Binomial(n, a∨bn ). For t ≥ 1, define Xt =

∑
1≤i≤Xt−1

Z(i, t).

Then we have

E [|V n2R(v)|m] ≤ E

[(
2R∑
k=0

Xk

)m]
. (25)

Let fj(t) := E[exp(tXj)], µm := a ∨ b. By the proof of Theorem 2.3.1 in [Ver18], we have

f1(t) ≤ exp (µm(et − 1)). For γ > 0, let tγ1 := log
(

γ
µm

+ 1
)

, and tγj+1 =: log
(
tγj
µm

+ 1
)

for

j ∈ N+. Then by Proposition 5.2 in [LP17], we have

fj+1(tγj+1) ≤ fj(tγj ) ≤ · · · ≤ f1(tγ1) ≤ exp(γ).

Then for all 1 ≤ j ≤ 2R and γ0 > 0, we have

E[|Xm
j |] =

∫ ∞
0

mγm−1P(Xj ≥ γ)dγ

≤
∫ ∞

0

mγm−1 exp(−γtγj + γ)dγ

=

∫ γ0

0

mγm−1 exp(−γtγj + γ)dγ +

∫ ∞
γ0

mγm−1 exp(−γtγj + γ)dγ

≤γm0 exp(γ0) +
m!

(tγ0j − 1)m
. (26)

By equation (26), for any γ0 > 0, we have

E

[(
2R∑
k=0

Xk

)m]
≤ (2R+ 1)mγm0 exp(γ0) + (2R+ 1)m−1

2R∑
j=1

m!

(tγ0j − 1)m
+ (2R+ 1)m−1.

(27)

Notice that we can choose γ0 large enough, such that min
1≤j≤2R

tγ0j − 1 ≥ 4LFCact(2R+ 1). Using

equations (25) and (27), we have

∞∑
m=1

2mLmF C
m
act

(m− 1)!
E[|V n2R(v)|m]
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≤
∞∑
m=1

2mLmF C
m
act

(m− 1)!
(2R+ 1)m(γm0 exp(γ0) + 1)︸ ︷︷ ︸

I

+

∞∑
m=1

2mLmF C
m
act(2R+ 1)mm

( min
1≤j≤2R

tγ0j − 1)m︸ ︷︷ ︸
II

.

The choice of γ0 gives us equation II ≤
∑∞
m=1

m
2m <∞. One can also derive equation I <∞ for

any value of γ0. Note that the derived upper bounds for equations I and II are independent of n. Thus
we have finished proving Lemma 9.

H.6 Proof of Lemma 8

We first show a weaker result. As n→∞, we want to show supdδne+1≤t≤n E[|b̄t−E[b̄t|Fa]|2]→ 0.
Since the |Fw| functions are uniformly bounded by LF , we only need to show as n→∞,

sup
dδne+1≤t≤n

sup
1≤x<y≤t

∣∣∣E [(btv(x) − E[btv(x)|Fa])(btv(y) − E[btv(y)|Fa])
]∣∣∣→ 0. (28)

For 1 ≤ x < y ≤ n, r ∈ N+, we introduce the following sets in the probability space we consider:

Arx =
{
Gnv(x) is a subgraph of Bnr (v(x))

}
, Brx,y =

{
V nr+1(v(x)) ∩ V nr+1(v(y)) = ∅

}
.

Then we have

|E[(btv(x) − E[btv(x)|Fa])(btv(y) − E[btv(y)|Fa])]| (29)

≤ 4L2
F

(
P((Brx,y)c) + P((Arx)c) + P((Ary)c)

)
(30)

+ |E[(btv(x) − E[btv(x)|Fa])(btv(y) − E[btv(y)|Fa])1Arx∩Ary∩1Brx,y ]|︸ ︷︷ ︸
C(x,y,t,n,r)

.

Then we provide an upper bound for C(x, y, t, n, r). The following procedures are conducted
conditioning only onFa. We point out that Bnr+1(v(x)) can be generated via the following procedure,
which is equivalent to our proposed model StSSBM(n, k, a, b).

1. If x ≥ dδne, then arbitrarily pick v(x) in V \V (dδne). Otherwise, v(x) is already specified
by Fa.

2. Conditioning on Fa and v(x), generate Bnr+1(v(x)) following conditional distribution of
StSSBM(n, k, a, b).

3. For v ∈ V nr+1(v(x)), if t∗(v) is not yet specified, then assign it a value based on the current
conditional distribution.

Given Bnr+1(v(x)) and the orderings of vertices within, we are able to judge whether Gnv(x) is a
subgraph of Bnr (v(x)). If Gnv(x) is not a subgraph of Bnr (v(x)), then formula inside the expectation
of C(x, y, t, n, r) is zero. If Gnv(x) is a subgraph of Bnr (v(x)), then we consider another graph Gnew
which also follows StSSBM(n, k, a, b):

1. We assume that conditioning on Fa, Gnew and G(n) are exactly the same.
2. Again conditioning on Fa, we can find a bijection φ mapping vertices in G(n) to vertices

in Gnew: if v ∈ V (dδne), then φ maps v to the vertex in Gnew with reveal ordering t∗(v);
otherwise, map v to an arbitrary vertex in Gnew with the same community label. For
S ⊆ V (n), denote the image set of S obtained via mapping φ by φ(S).

3. Among all unordered vertices in Gnew, we randomly pick ṽ(y) and assign it the revealing
ordering y.

4. Generate the r + 1 neighborhood of ṽ(y) in Gnew, following the conditional distribution
of StSSBM(n, k, a, b) conditioning on Fa, and denote it by Bnr+1(ṽ(y)). For vertices in
Bnr+1(ṽ(y)) which have not been assigned orderings, we randomly assign them one.

In both G(n) and Gnew, we denote the r neighborhood of v with the information about revealing
orderings of vertices within encoded by Onr (v). Notice that conditioning on Fa, Onr+1(ṽ(y)) is
conditionally independent of Onr+1(v(x)). Let

NonOverlap(x, y) =
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{
revealing orderings in Onr+1(ṽ(y)) does not overlap with revealing orderings in Onr+1(v(x))

}
.

Then we have

L
(
Onr+1(v(y))|Onr+1(v(x)), V nr+1(v(x)) ∩ V nr+1(v(y)) = ∅,Fa

)
=L(Onr+1(ṽ(y))|Onr+1(v(x)), V nr+1(ṽ(y)) ∩ φ(V nr+1(v(x))) = ∅,NonOverlap(x, y),Fa).

where L(·|·) denotes the conditional probability law. Furthermore, the marginal probability distribu-
tions are equal: L(Onr+1(v(y))|Fa) = L(Onr+1(ṽ(y))|Fa). Define the following sets:

Ãry =
{
Gnṽ(y) is a subgraph of Bnr (ṽ(y))

}
,

C̃rx,y =
{
V nr+1(ṽ(y)) ∩ φ(V nr+1(v(x))) = ∅

}
∩ NonOverlap(x, y).

In Gnew we can still run Algorithm 4, and denote the obtained quantity at time t for vertex ṽ(y) by
b̃tṽ(y). Then we have

|E[(btv(x) − E[btv(x)|Fa])1Arx1Brx,y (btv(y) − E[btv(y)|Fa])1Ary |Fa]|
=|E[(btv(x) − E[btv(x)|Fa])1Arx1Brx,yE[(btv(y) − E[btv(y)|Fa])1Ary |O

n
r+1(v(x)), Brx,y,Fa]|Fa]|

=|E[(btv(x) − E[btv(x)|Fa])1Arx1Brx,yE[(b̃tṽ(y) − E[b̃tṽ(y)|Fa])1Ãry
|Onr+1(v(x)), C̃rx,y,Fa]|Fa]|

=

∣∣∣∣∣∣E
(btv(x) − E[btv(x)|Fa])1Arx1Brx,y

E[(b̃tṽ(y) − E[b̃tṽ(y)|Fa])1Ãry
1C̃rx,y

|Onr+1(v(x)),Fa]

P(C̃rx,y|Onr+1(v(x)),Fa)

∣∣∣∣∣∣Fa
∣∣∣∣∣∣

(31)

Obviously P(C̃rx,y|Onr+1(v(x)),Fa)
P→ 1, also notice that ‖Fw‖∞ has a uniform upper bound, then

equation (31) is no larger than∣∣∣∣∣∣∣E
[

(btv(x) − E[btv(x)|Fa])1Arx1Brx,y (b̃tṽ(y) − E[b̃tṽ(y)|Fa])1Ãry
1C̃rx,y

∣∣∣Fa]︸ ︷︷ ︸
∆

∣∣∣∣∣∣∣+
4L2

FE
[∣∣∣1− P(C̃rx,y|Onr+1(v(x)),Fa)−1

∣∣∣ ∧ 1 | Fa
]
. (32)

Notice that ∣∣∣∆− E
[
(btv(x) − E[btv(x)|Fa])1Arx1Brx,y (b̃tṽ(y) − E[b̃tṽ(y)|Fa])

∣∣∣Fa]∣∣∣ ≤
4L2

FP((Ãry)c|Fa) + 4L2
FP((C̃rx,y)c|Fa)

Conditioning on Fa, (b̃tṽ(y) − E[b̃tṽ(y)|Fa]) is conditionally independent of (btv(x) −
E[btv(x)|Fa])1Arx1Brx,y . Combining this and equations (29), (32), we have

|E[(btx − E[b̄t|Fa])(bty − E[b̄t|Fa])]|
≤4L2

FP((Brx,y)c) + 4L2
FP((Ary)c) + 4L2

FP((Arx)c) + 4L2
FP((Ãry)c) + 4L2

FP((C̃rx,y)c)+

4L2
FE
[∣∣∣1− P(C̃rx,y|Onr+1(v(x)),Fa)−1

∣∣∣ ∧ 1
]
.

According to the proof of Theorem 1 we have

lim sup
n→∞

sup
x,y∈[n]

{
4L2

FP((Arx)c) + 4L2
FP((Ary)c) + 4L2

FP((Ãry)c)
}

= 0.

Furthermore, we claim without proof that

lim sup
n→∞

sup
x,y∈[n]

{
4L2

FP((Brx,y)c) + 4L2
FP((C̃rx,y)c)

}
= 0, ,

lim sup
n→∞

sup
x,y∈[n]

4L2
FE
[∣∣∣1− P(C̃rx,y|Onr+1(v(x)),Fa)−1

∣∣∣ ∧ 1
]

= 0
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Notice that these asymptotic results do not depend on x, y or t, therefore,

lim sup
n→∞

sup
dδne+1≤t≤n

sup
1≤x<y≤t

∣∣∣E [(btv(x) − E[btv(x)|Fa])(btv(y) − E[btv(y)|Fa])
]∣∣∣ = 0.

Then we conclude that equation (28) holds, and Lemma 8 follows from a discretization argument.
Furthermore, from the proof of Lemma 8 we can deduce the following corollary:
Corollary 3. Assume (τ,G) ∼ StSSBM(n, k, a, b). LetA be any algorithm such thatA(i;G(n)) ∈
[k] is a function of Gni and Fa. Then we have as n→∞,

sup
A

Var

[
1

n

n∑
i=1

1{A(i;G(n)) = τ(i)} | Fa

]
P→ 0.

Proof. To prove this corollary, we first show for all x, y ∈ [n],

C(x, y) := sup
A
|P (A(v(x);G(n)) = τ(v(x)),A(v(y);G(n)) = τ(v(y)) | Fa)−

P (A(v(x);G(n)) = τ(v(x)) | Fa)P (A(v(y);G(n)) = τ(v(y)) | Fa)| P→ 0. (33)

Consider the graph generating procedure described in the proof of Lemma 8 and we use the notations
defined there. Furthermore, we define the following quantities(here we use tildes to represent objects
in Gnew):

∆1 := E
[
1{A(v(x);G(n)) = τ(v(x))}1Arx1Brx,y1{A(v(y);G(n)) = τ(v(y))}1Ary | Fa

]
,

∆2 := E
[
1{A(v(x);G(n)) = τ(v(x))}1Arx1Brx,y1{A(ṽ(y); G̃(n)) = τ(ṽ(y))}1Ãry1C̃rx,y | Fa

]
.

Similar to the proof of Lemma 8, we conclude that the following formulas hold:

|P (A(v(x);G(n)) = τ(v(x)),A(v(y);G(n)) = τ(v(y)) | Fa)−∆1|
≤P((Arx)c | Fa) + P((Ary)c | Fa) + P((Brx,y)c | Fa),

∆1 =E[1{A(v(x);G(n)) = τ(v(x))}1Arx1Brx,y
E[1{A(ṽ(y); G̃(n)) = τ(ṽ(y))}1Ãry | O

n
r+1(v(x)), C̃rx,y,Fa] | Fa]

=E[1{A(v(x);G(n)) = τ(v(x))}1Arx1Brx,y
E
[
1{A(ṽ(y); G̃(n)) = τ(ṽ(y))}1Ãry1C̃rx,y | O

n
r+1(v(x)),Fa

]
P
(
C̃rx,y | Onr+1(v(x)),Fa

) | Fa],

|∆1 −∆2| ≤ E
[∣∣∣∣P(C̃rx,y | Onr+1(v(x)),Fa

)−1

− 1

∣∣∣∣ ∧ 1 | Fa
]
,

|∆2 − P (A(v(x);G(n)) = τ(v(x)) | Fa)P (A(v(y);G(n)) = τ(v(y)) | Fa)|
≤P((Arx)c | Fa) + P((Brx,y)c | Fa) + P((Ãry)c | Fa) + P((C̃rx,y)c | Fa).

Combining the above equations we have

C(x, y) ≤ 2P((Arx)c | Fa) + 2P((Brx,y)c | Fa) + 2P((Ãry)c | Fa) + P((C̃rx,y)c | Fa)

+ E
[∣∣∣∣P(C̃rx,y | Onr+1(v(x)),Fa

)−1

− 1

∣∣∣∣ ∧ 1 | Fa
]
. (34)

The upper bound on the right hand side of equation (34) is independent of A, and converges in
probability to zero by Theorem 1. Thus we have finished proving (33). Furthermore, similar to the
proof of Lemma 8, from (34) we can conclude that as n→∞,

sup
x,y∈[n]

E[C(x, y)]→ 0,

thus we finishes the proof of this corollary by Markov’s inequality.
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H.7 Proof of Lemma 5

For any π ∈ Sk and δ > 0, using Corollary 3, we have

1

n

n∑
i=1

1{τ̂(bni + εUi) = π ◦ τ(i)} =
1

n

n∑
i=1

P (τ̂(bni + εUi) = π ◦ τ(i) | Fa) + op(1).

If we can show the following equation for all π ∈ Sk, then we finishes the proof of Lemma 5.

lim sup
δ→0+

lim sup
n→∞

E

[∣∣∣∣∣ 1n
n∑
i=1

P (τ̂(bni + εUi) = π ◦ τ(i) | Fa)− 1

k

∣∣∣∣∣
]

= 0.

Since

E

[∣∣∣∣∣ 1n
n∑
i=1

P (τ̂(bni + εUi) = π ◦ τ(i) | Fa)− 1

k

∣∣∣∣∣
]
≤ 1

n

n∑
i=1

k∑
h=1

E
[∣∣∣∣P (τ(i) = h | Fa, bni )− 1

k

∣∣∣∣] ,
then we only need to show for all 1 ≤ i ≤ n and all h ∈ [k],

lim sup
δ→0+

lim sup
n→∞

E
[∣∣∣∣P (τ(i) = h | Fa, bni )− 1

k

∣∣∣∣] = 0. (35)

By Theorem 1, for any ε > 0, there exists rε ∈ N+, such that
lim sup
n→∞

P(Gnv is not a subgraph of Bnrε(v)) ≤ ε for any v ∈ [n]. Then for large enough n,

after excluding irrelevant quantities then applying conditional Jensen’s inequality, we have

E
[∣∣∣∣P (τ(i) = h | bni ,Fa)− 1

k

∣∣∣∣]
≤P
(
Gni is not a subgraph of Bnrε(i)

)
+ E

[∣∣∣∣P (τ(i) = h | Fa,Bnrε(i)
)
− 1

k

∣∣∣∣1{V (dδne) ∩ V nrε(i) = ∅
}]

+ P(V (dδne) ∩ V nrε(i) 6= ∅) (36)

On the event V (dδne) ∩ V nrε(v) = ∅, for h1, h2 ∈ [k] with h1 6= h2, we have

P
(
τ(i) = h1|Fa,Bnrε(i)

)
P(τ(i) = h2|Fa,Bnrε(i))

=
P
(
τ(i) = h1 | Bnrε(i), {nh : h ∈ [k]}, τ(V (dδne))

)
P
(
τ(i) = h2 | Bnrε(i), {nh : h ∈ [k]}, τ(V (dδne))

)
Therefore, the right hand side of equation (36) is equal to

E
[∣∣∣∣P (τ(i) = h | Bnrε(i), {nh : h ∈ [k]}, τ(V (dδne))

)
− 1

k

∣∣∣∣1{V (dδne) ∩ V nrε(i) = ∅
}]

+ P
(
Gni is not a subgraph of Bnrε(i)

)
+ P(V (dδne) ∩ V nrε(i) 6= ∅).

By Proposition 2 in [MNS15],

lim
δ→0+

lim sup
n→∞

E
[∣∣∣∣P (τ(i) = h | Bnrε(i), {nh : h ∈ [k]}, τ(V (dδne))

)
− 1

k

∣∣∣∣] = 0.

Furthermore, as δ → 0+, lim sup
n→∞

P(V (dδne) ∩ V nrε(i) 6= ∅)→ 0, therefore,

lim sup
δ→0+

lim sup
n→∞

E
[∣∣∣∣P (τ(i) = h | Fa, bni )− 1

k

∣∣∣∣] ≤ ε.
Since ε is arbitrary, we conclude that equation (35) holds, this finishes the proof of this lemma.
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