Hyperbolic Uncertainty-Aware Few-Shot Incremental Point Cloud Segmentation

Supplementary Material

1. Overview

In this supplementary document, we discuss in detail the
architecture with an illustrative diagram (in Fig. 1) and its
hyperparameter details (in Sec. 2).

Following that, we discuss the preliminary concepts re-
lated to operations in Hyperbolic space with their associated
formulae (in Sec. 3). We detail the evaluation metrics used
in our work (in Sec. 4). We discuss the pseudocode for
Hi1Po following the same, to better understand the working
of our method, which we believe will assist the reader to
easily understand the working of HIPO (in Sec. 5 ). Af-
ter briefly justifying the use of Hyperbolic space over Eu-
clidean space and the need for Riemannian optimization for
hierarchical data (in Sec. 6), we detail the dataset setup (in
Sec. 7) and finally provide some additional experimental
results(in Sec. 8). We conclude with a qualitative compar-
ative visualization of the baseline methods versus our pro-
posed method (in Fig. 2), as well as additional experimental
results, including the ablation of the backbone £(-) archi-
tecture (Table 2) and a comprehensive result for the 4 - 3T
setting on the S3DIS dataset, highlighting how performance
evolves across incremental sessions (Table 3).

2. Architecture and hyperparameter details

We have adopted PointTransformer [16] as the backbone
architecture £(.) due to its recent state-of-the-art perfor-
mance in point cloud recognition tasks. The architecture
comprises several sequentially placed blocks, each contain-
ing two components. For our proposed HIPO framework,
we implement a Hyperbolic Classifier (Mobius + softmax)
head #(.) as shown in Fig. 1. We also use a learning
rate scheduler whereby, after 50 epochs, the learning rate
decays by 0.5. We empirically choose the nearest neigh-
bors K = 12. We have incorporated the following pre-
processing techniques during training: point clouds are aug-
mented by Gaussian jitter and random rotation around the
Z-axis.

3. Preliminary definitions and formulae

All the important variables are detailed in Table 1.

Poincaré Ball Model: An n-dimensional Poincaré Ball
model with curvature —c is defined as hyperbolic space
B? = {z € R : ¢|jx|| < 1} and g¥ = (\¢)?L, is the
corresponding Riemannian metric tensor at the point z. A%
is the conformal factor defined as A\, = (PCTW Here,

I, is the Euclidean metric tensor.
Mobius Addition: ForV z; € B} and V 22 € B, the

Mobius addition is defined as follows:

(1+2¢(z1, 22) + c|lz2| )z + (1 — c||21]*) 22

21Dcz2 =
¢ 1—|—2c<z1,Zz>+C2HZ1||2HZ2||2

Exponential Map: For Vz € B, and Vv € 7B (ie.,
T.B can be seen as Euclidean space), the exponential map
exp$ (v) : T.BY? — B is described as follows:

(fAC ||v||) S

expy (v) = 2 B, —= 5
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Here z is the anchor.

Distance: For Vz1, 22 € B7, the distance d. : B} x
B> — R is given by the following:
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Geodesic Distance: The geodesic distance between two
points z1, z2 € B is given by:

(\/E ||—2«'1 @c Z2H) . (3)

dc (Zl, ZZ)
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dp(z1, 22) = arcosh (1 +2 .
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4. Evaluation Metrics

AJA and Last: We define average incremental accuracy
AIA and accuracy after learning the final task Last in the
main text following [6]. Let the accuracy after learning the
task' ¢ be:

ASH #correctly classified samples in Ui/:o D,(i,)

Zt’ 0 ‘D t(etst

Then, after training for all 7T sessions, AIA =
LS AR and Last = A(ST),

Here D,(etx), is the test-set for the session S*) ¢ > 0, and
# is “the number of”. In other words, A means the
average accuracy of all the test data from task O to task ¢.

Average Forgetting Rate for CIL: Apart from the clas-
stfication accuracy (ACC), we report another popular CIL

evaluation metric average forgetting rate. The popular def-
inition of average forgetting rate is the following:

t—1

(i)
12‘4 ’t

=1

F) —

where Agt) is the accuracy of task ¢’s test set on the CL
model after task ¢ is learned [7], which is also referred to
as backward transfer in other literature [8].

'We use task and session synonymously
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Figure 1. Architecture diagram: We use the PointTransformer network as our backbone architecture. The input is passed through &£,
which consists of a set of Point Transformer blocks and Transition up and Transition down blocks. Then, the feature vector is passed
through the exponential mapping and Mdobius layer to be projected to the hyperbolic space. The learning is guided by the cross entropy
loss, ideal prototype loss, and uncertainty loss, as depicted in the diagram.

Variable Description
T Total number of incremental sessions.
S t*" incremental session.
D®) t*" incremental session dataset.
P,Et) k" point cloud sample in the ¢ session.
M Associated labels of the k" point cloud in the ' session.
c® Label space of point cloud classes in the t** session.
z(cgt)) Hyperbolic prototype for the i*” class in the t*" session.
B Poincaré ball of n-dimensional with curvature c.
Og Origin of Poincaré ball B.
u; Ideal prototype for class <.
AL Set describing the boundary of the n-dimensional Poincaré ball formed by the n class prototypes.
expy(+) Exponential map projecting points from Euclidean space to Hyperbolic space.
H(-) Hyperbolic Classifier head.
M Mbobius layer (also called Hyperbolic Feedforward layer).
() Feature extractor, the main backbone architecture.
B Busemann function.
10) Regularization constant controlling strength of regularization effect for the uncertainty loss.

Table 1. Variables used and associated meaning: We describe the important variables used to formulate our proposed methodology

HiPo.
1 T—1
T 7 T
=1
5. Pseudocode for HIPO

We discuss the working of our HIPO framework in the fol-
lowing pseudocode (Algorithm 1). Our method works
identically for all the sessions (both base and subsequent
incremental sessions). We first position the ideal prototypes
corresponding to every individual class on the boundary of
the Poincare ball. Following that, as data arrives for each
session, we compute their Hyperbolic embedding onto the
Poincare ball and try to align its representations with the

corresponding ideal prototype. To avoid the vanishing gra-
dient problem, we try to regularize the alignment with an
uncertainty measure.

6. Justification of Hyperbolic space and the
need for Riemannian optimization

In a recent study, Moreira et al. [9] demonstrate that in high-
dimensional embeddings, the volume of a hyperbolic ball,
similar to its Euclidean counterpart, is concentrated near the
boundary. This formed a key argument in their work, where
they asserted that a fixed-radius encoder utilizing the Eu-
clidean metric can achieve better performance, irrespective
of the embedding dimension. But, in formulating this hy-



Algorithm 1 HIPO: Hyperbolic Ideal Prototype Optimization

Require: D = {D,...,Dr}, C ={C4,...,C,}, Poincaré ball (B!) with curvature (—c), max_epochs

1: I" + Optimal_positioning(C) {Optimize the ideal prototypes within the unit Poincaré ball to maximize the distance

between semantically similar classes}

2: fort =1to T do

P,gt), M,gt) < D {Data and Labels}

for epoch = 1 to max_epochs do
v' < mean(& (P,Et))) {Compute the mean feature vector for each class in Euclidean space}
2t < M(expg(v?)) {Project to Hyperbolic space to obtain Hyperbolic mean class prototype}
L atignment < B(z', ™) {Align class prototype to ideal prototype}

0 ® AN kW

loss < Lalignment + Luncertainty + CE(z', M ,gt)) {Compute total loss}
10: Perform loss backpropagation {Model parameter update}

11:  end for

12: end for

Luncerinty <— Uncertainty_regularizer(z') {Regularize alignment to avoid close proximity to ideal prototype}
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Figure 2. Qualitative visualization of model performance for 7-3T setting: Comparing the FSCIL results for 3D point cloud segmen-
tation between our method (HIPO) and baseline approaches, we observe that even in a few-shot setup, our model performs significantly

better in segmenting objects such as walls, counters, and others, when compared to the other methods.



Backbone Methods S3DIS [1] ScanNetv2 [4]
Lastt AIAt FP | Lastt AIAt FO),
DGCNN [12] LwF [3] 970 2568 2397 414 2132 2698
C-FSCIL [5] 1537 2454 2876 895 2032 23.10
LGKD [15] 2160 3327 1751 1020 2386  21.92
SDCOT [17] 2042 3230 17.82 745 1810  22.65
3DPC-CISS [14] 21.60 32.65 1656 1387 2352 1933
HIPo 2930 3662 1098 1587 2452 1633
PointTransformer [18] LwF [3] 860 2180 1980  1.05 1753 24.72
C-FSCIL [5] 2001 3192 1786 1112 2418  19.59
LGKD [15] 19.76 3041 1597 955 2552 2245
SDCOT [17] 1200 2946 2620 040 17.83  26.15
3DPC-CISS [14] 2420 3450 1545 810 2230 21.30
HIPO 2940 3680 11.10 1465 27.22 1885

Table 2. Performance comparison in few shot incremental segmentation across the S3DIS dataset under a 7-3T configuration and the
ScanNetV2 dataset under a 10-5T setup with various backbone architectures. AIA(?) is the average incremental mloU (%). Last (1) is
the mloU after learning the final task. F g;)st(i) is the average forgetting rate (%) after learning the final task.

"]
=] — £ 2 St g = b
g = S|l B8 | E|*] = ° - T O B
Base Session | 91.27 | 95.58 | 77.51 | 0.00 - - - - - - - -
Session 1 90.03 | 94.21 | 72.00 | 0.00 | 3.94 | 29.97 | 8.73 - - - - - -
Session 2 88.02 | 91.87 | 70.85 | 0.00 | 0.96 | 1.53 | 2.29 | 38.51 | 32.07 | 32.78 - - -
Session 3 87.89 | 93.34 | 67.94 | 0.00 | 0.00 | 0.00 | 0.00 | 16.68 | 30.22 | 25.98 | 35.22 | 10.77 | 22.95

Table 3. Comparison of class-wise mIoU(%) values: We compare the performance of HIPO concerning different classes across in the

4-3T setting of S3DIS [1] dataset for 5-shot FSCIL.

pothesis, they relied on a strong first-order approximation
to Equation 17 (refer to the main paper), thus assuming a
faster convergence to zero. In our view, this approxima-
tion and the resulting upper bound leading to Equation 17
appear somewhat restrictive. We acknowledge the findings
of [9] but emphasize that the use of Hyperbolic Geometry,
rather than Euclidean Geometry, is not excessive. On the
contrary, Hyperbolic Geometry offers numerous advantages
for addressing the challenging problem of few-shot class-
incremental learning. These benefits are evident from the
experimental results described in Table [4] and Fig. [2] in
the main paper, where Hyperbolic representation enhances

class separation. Notably, we achieve improved perfor-
mance in terms of AIA and }"L(z;z

7. Dataset Setup

We apply a sliding window [10, 12] to divide the rooms
of S3DIS and ScanNet into 7,547 and 36,350 1m X 1m
blocks, respectively, and randomly sample 2048 points in
each block as input. For the FSCIL setup, We follow a
stricter version of the disjoint setting in [2] where the incre-
mental sessions include only the current classes of the point
cloud but not the old or future ones. For FSCIL in 3D point

cloud segmentation, we create three scenarios for both in-
domain (S3DIS, ScanNetv2) and cross-dataset (ScanNetv2
— S3DIS) settings. For (a) S3DIS, we have constructed
the scenarios 4 - 3T, 7 - 3T and 10 - 3T where scenario
M - NT implies M classes in the base session S(°) and N
novel classes in each incremental session S, ¢t > 0 (b)
ScanNetv2, we have designed 10 - 2T, 10 - 5T and 15 - 5T
scenarios (¢) ScanNetv2 — S3DIS, scenarios 10 - 2T, 10 -
4T and 10 - 8T have been constructed likewise. The motiva-
tion behind constructing such scenarios stems from the fact
that the strength of catastrophic forgetting increases with an
increase in the number of incremental sessions as observed
in point cloud recognition task [11].

8. Additional Experimental results

We present detailed results for the 4 - 3T setting on the
S3DIS dataset, highlighting the change in class-wise mloU
values for HIPO in Table 3. As we can observe, there is very
minimal forgetting of the classes introduced in the base ses-
sion. Some classes introduced in subsequent sessions suffer
significant forgetting, while others undergo minimal forget-
ting. This presents an open direction for future research,
inspiring further exploration. We also present a visual com-



parative study in Fig. 2, illustrating the performance of key
baselines and HIPO in a 7 - 3T setting on the S3DIS dataset.
It is evident that HTPO performs much better than all other
baselines in accurately classifying the points. For instance,
HIPO identifies the ”bookshelf”” with greater precision com-
pared to the baselines (as seen in the fourth image). Simi-
larly, points belonging to the “clutter” class are correctly
identified (in the second image).

8.1. Ablation studies on backbone architecture

We conduct our experiments using two recent state-of-the-
art backbone architectures: the DGCNN architecture [12]
and the PointTransformer architecture [16].

From Table 2, it is evident that our proposed frame-
work, based on Hyperbolic Ideal Prototype optimiza-
tion, effectively mitigates catastrophic forgetting for both
DGCNN [12] and PointTransformer [18]. This demon-
strates that our approach is backbone-agnostic.

9. Limitations

As discussed in section 3.2.1, we position Hyperbolic Ideal
Prototypes for n predefined classes at the boundary of a
Poincaré Ball. For experiments conducted on S3DIS [1]
and ScanNetV2 [4], we assume n = 13 and n = 20 respec-
tively. While we assume the predefined classes to be equal
to the number of categories in the datasets as mentioned ear-
lier, the n predefined object categories can be adapted from
the most common indoor object categories in the world [13].
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