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ABSTRACT

Adaptive methods are a crucial component widely used for training generative
adversarial networks (GANs). While there has been some work to pinpoint the
“marginal value of adaptive methods” in standard tasks, it remains unclear why
they are still critical for GAN training. In this paper, we formally study how
adaptive methods help train GANs; inspired by the grafting method proposed in
Agarwal et al. (2020), we separate the magnitude and direction components of the
Adam updates, and graft them to the direction and magnitude of SGDA updates
respectively. By considering an update rule with the magnitude of the Adam
update and the normalized direction of SGD, we empirically show that the adaptive
magnitude of Adam is key for GAN training. This motivates us to have a closer look
at the class of normalized stochastic gradient descent ascent (nSGDA) methods
in the context of GAN training. We propose a synthetic theoretical framework to
compare the performance of nSGDA and SGDA for GAN training with neural
networks. We prove that in that setting, GANs trained with nSGDA recover all the
modes of the true distribution, whereas the same networks trained with SGDA (and
any learning rate configuration) suffer from mode collapse. The critical insight in
our analysis is that normalizing the gradients forces the discriminator and generator
to be updated at the same pace. We also experimentally show that for several
datasets, Adam’s performance can be recovered with nSGDA methods.

1 INTRODUCTION

Adaptive algorithms have become a key component in training modern neural network architectures
in various deep learning tasks. Minimization problems that arise in natural language processing
(Vaswani et al., 2017), fMRI (Zbontar et al., 2018), or min-max problems such as generative
adversarial networks (GANs) (Goodfellow et al., 2014) almost exclusively use adaptive methods,
and it has been empirically observed that Adam (Kingma & Ba, 2014) yields a solution with better
generalization than stochastic gradient descent (SGD) in such problems (Choi et al., 2019). Several
works have attempted to explain this phenomenon in the minimization setting. Common explanations
are that adaptive methods train faster (Zhou et al., 2018), escape flat “saddle-point”–like plateaus
faster (Orvieto et al., 2021), or handle heavy-tailed stochastic gradients better (Zhang et al., 2019;
Gorbunov et al., 2022). However, much less is known about why adaptive methods are so critical for
solving min-max problems such as GANs.

Several previous works attribute this performance to the superior convergence speed of adaptive
methods. For instance, Liu et al. (2019) show that an adaptive variant of Optimistic Gradient Descent
(Daskalakis et al., 2017) converges faster than stochastic gradient descent ascent (SGDA) for a class
of non-convex, non-concave min-max problems. However, contrary to the minimization setting,
convergence to a stationary point is not required to obtain satisfactory GAN performance. Mescheder
et al. (2018) empirically shows that popular architectures such as Wasserstein GANs (WGANs)
(Arjovsky et al., 2017) do not always converge, and yet they produce realistic images. We support this
observation with our own experiments in Section 2. Our findings motivate the central question in this
paper: what factors of Adam contribute to better quality solutions over SGDA when training GANs?

In this paper, we investigate why GANs trained with adaptive methods outperform those trained using
SGDA. Directly analyzing Adam is challenging due to the highly non-linear nature of its gradient
oracle and its path-dependent update rule. Inspired by the grafting approach in (Agarwal et al., 2020),
we disentangle the adaptive magnitude and direction of Adam and show evidence that an algorithm
using the adaptive magnitude of Adam and the direction of SGDA (which we call Ada-nSGDA)
recovers the performance of Adam in GANs. Our contributions are as follows:
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• In Section 2, we present the Ada-nSGDA algorithm.We emprically show that the adaptive magnitude
in Ada-nSGDA stays within a constant range and does not heavily fluctuate which motivates the
focus on normalized SGDA (nSGDA) which only contains the direction of SGDA.

• In Section 3, we prove that for a synthetic dataset consisting of two modes, a model trained
with SGDA suffers from mode collapse (producing only a single type of output), while a model
trained with nSGDA does not. This provides an explanation for why GANs trained with nSGDA
outperform those trained with SGDA.

• In Section 4, we empirically confirm that nSGDA mostly recovers the performance of Ada-nSGDA
when using different GAN architectures on a wide range of datasets.

Our key theoretical insight is that when using SGDA and any step-size configuration, either the
generator G or discriminator D updates much faster than the other. By normalizing the gradients
as done in nSGDA, D and G are forced to update at the same speed throughout training. The
consequence is that whenever D learns a mode of the distribution, G learns it right after, which makes
both of them learn all the modes of the distribution separately at the same pace.

1.1 RELATED WORK

Adaptive methods in games optimization. Several works designed adaptive algorithms and analyzed
their convergence to show their benefits relative to SGDA e.g. in variational inequality problems,
Gasnikov et al. (2019); Antonakopoulos et al. (2019); Bach & Levy (2019); Antonakopoulos et al.
(2020); Liu et al. (2019); Barazandeh et al. (2021). Heusel et al. (2017) show that Adam locally
converges to a Nash equilibrium in the regime where the step-size of the discriminator is much larger
than the one of the generator. Our work differs as we do not focus on the convergence properties of
Adam, but rather on the fit of the trained model to the true (and not empirical) data distribution.

Statistical results in GANs. Early works studied whether GANs memorize the training data or
actually learn the distribution (Arora et al., 2017; Liang, 2017; Feizi et al., 2017; Zhang et al., 2017;
Arora et al., 2018; Bai et al., 2018; Dumoulin et al., 2016). Some works explained GAN performance
through the lens of optimization. Lei et al. (2020); Balaji et al. (2021) show that GANs trained with
SGDA converge to a global saddle point when the generator is one-layer neural network and the
discriminator is a specific quadratic/linear function. Our contribution differs as i) we construct a
setting where SGDA converges to a locally optimal min-max equilibrium but still suffers from mode
collapse, and ii) we have a more challenging setting since we need at least a degree-3 discriminator
to learn the distribution, which is discussed in Section 3.

Normalized gradient descent. Introduced by Nesterov (1984), normalized gradient descent has
been widely used in minimization problems. Normalizing the gradient remedies the issue of iterates
being stuck in flat regions such as spurious local minima or saddle points (Hazan et al., 2015; Levy,
2016). Normalized gradient descent methods outperforms their non-normalized counterparts in multi-
agent coordination (Cortés, 2006) and deep learning tasks (Cutkosky & Mehta, 2020). Our work
considers the min-max setting and shows that nSGDA outperforms SGDA as it forces discriminator
and generator to update at same rate.

1.2 BACKGROUND

Generative adversarial networks. Given a training set sampled from some target distribution D, a
GAN learns to generate new data from this distribution. The architecture is comprised of two networks:
a generator that maps points in the latent space Dz to samples of the desired distribution, and a
discriminator which evaluates these samples by comparing them to samples from D. More formally,
the generator is a mapping GV : Rk → Rd and the discriminator is a mapping DW : Rd → R,
where V and W are their corresponding parameter sets. To find the optimal parameters of these two
networks, one must solve a min-max optimization problem of the form

min
V

max
W

EX∼pdata
[log(DW(X))] + Ez∼pz

[log(1−DW(GV(z)))] := f(V,W), (GAN)

where pdata is the distribution of the training set, pz the latent distribution, GV the generator and
DW the discriminator. Contrary to minimization problems where convergence to a local minimum is
required for high generalization, we empirically verify that most of the well-performing GANs do
not converge to a stationary point.
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(a) Each circle corresponds to a specific step-size
configuration ηD/ηG. The best-performing mod-
els have step-size ratios between 10−1 and 1, and
do not converge. As ηD/ηG increases, the models
perform worse but get closer to an equilibrium.

(b) shows that during training, the gradient ra-
tio of a well-performing GAN approximately
stays constant to 1. We also display the im-
ages produced by the model during training.

Figure 1: Gradient ratio against FID score (a) and number of epochs (b) obtained with DCGAN on CIFAR-10.
This ratio is equal to ∥grad(t)

G ∥2/∥grad(0)
G ∥2 + ∥grad(t)

D ∥2/∥grad(0)
D ∥2, where grad

(t)
G (resp. grad

(t)
D ) and

grad
(0)
G (resp. grad(0)

D ) are the current and initial gradients of G (resp. D). Note that ∥ · ∥2 refers to the sum of
all the parameters norm in a network. For all the plots, the models are trained for 100 epochs using a batch-size
64. For (b), the results are averaged over 5 seeds.

Convergence and performance are decorrelated in GANs. We support this observation through
the following experiment. We train a DCGAN (Radford et al., 2015) using Adam and set up the
step-sizes for G and D as ηD, ηG, respectively. Note that D is usually trained faster than G i.e.
ηD ≥ ηG. Figure 1a displays the GAN convergence measured by the ratio of gradient norms and the
GAN’s performance measured in FID score (Heusel et al., 2017). We observe that when ηD/ηG is
close to 1, the algorithm does not converge, but the model produces high-quality samples. On the
other hand, when ηD/ηG ≫ 1, the model converges to an equilibrium; a similar statement has been
proved by Jin et al. (2020) and Fiez & Ratliff (2020) in the case of SGDA. However, the trained GAN
produces low-quality solutions at this equilibrium, so simply comparing the convergence speed of
adaptive methods and SGDA cannot explain the performance obtained with adaptive methods.

SGDA and adaptive methods. The most simple algorithm to solve the min-max (GAN) is SGDA,
which is defined as follows:

W(t+1) = W(t) + ηDM
(t)
W,1, V(t+1) = V(t) − ηGM

(t)
V,1 , (1)

where M
(t)
W,1,M

(t)
V,1 are the first-order momentum gradients as defined in Algorithm 1. While this

method has been used in the first GANs (Radford et al., 2015), most modern GANs are trained with
adaptive methods such as Adam (Kingma & Ba, 2014). The definition of this algorithm for game
optimizations is given in Algorithm 1. The hyperparameters β1, β2 ∈ [0, 1) control the weighting
of the exponential moving average of the first and second-order moments. In many deep-learning
tasks, practitioners have found that setting β2 = 0.9 works for most problem settings. Additionally, it
has been empirically observed that having no momentum (i.e., β1 ≈ 0) is optimal for many popular
GAN architectures (Karras et al., 2020; Brock et al., 2018). Therefore, we only consider the case
where β1 = 0.

Optimizers such as Adam (Algorithm 1) are adaptive since they use a step-size for each parameter that
is different than the magnitude of the gradient g(t)

Y for that parameter up to some constant (such as the
global learning rate), and this step-size updates while training the model. There are three components
that makes the adaptive update differ from the standard SGDA update: 1) the adaptive normalization
by ∥g(t)

Y ∥2, 2) the change of direction from g
(t)
Y /∥g(t)

Y ∥2 to A
(t)
Y /∥A(t)

Y ∥2 and 3) adaptive scaling by

∥A(t)
Y ∥2. In summary, the steps from the standard to the adaptive update, are:

g
(t)
Y

normalization−−−−−−−→
×1/∥g(t)

Y ∥2

g
(t)
Y /∥g(t)

Y ∥2
change of direction−−−−−−−−−−→ A

(t)
Y /∥A(t)

Y ∥2
adaptive scaling−−−−−−−−→
×∥A(t)

Y ∥2

A
(t)
Y (2)

The three components are entangled and it remains unclear how they contribute to the superior
performance of adaptive methods relative to SGDA in GANs.
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Algorithm 1 Adam (Kingma & Ba, 2014) for games. All operations on vectors are element-wise.

Input: initial points W(0),V(0), step-size schedules {(η(t)
G , η

(t)
D )} , hyperparameters {β1, β2, ε}.

Initialize M
(0)
W,1, M(0)

W,2, M(0)
V,1 and M

(0)
V,2 to zero.

for t = 0 . . . T − 1 do
Receive stochastic gradients g(t)

W ,g
(t)
V evaluated at W(t) and V(t).

Update for Y ∈ {W,V}: M(t+1)
Y,1 = β1M

(t)
Y,1 + g

(t)
Y and M

(t+1)
Y,2 = β2M

(t)
Y,2 + g

(t)
Y

2
.

Compute gradient oracles for Y ∈ {V,W}: A(t+1)
Y = M

(t+1)
Y,1 /

√
M

(t+1)
Y,2

+ε.

Update: W(t+1) = W(t) + η
(t)
D A

(t+1)
W , V(t+1) = V(t) − η

(t)
G A

(t+1)
V .

2 NSGDA AS A MODEL TO ANALYZE ADAM IN GANS

In this section, we show that normalized stochastic gradient descent-ascent (nSGDA) is a suitable
proxy to study the learning dynamics of Adam.

To decouple the normalization, change of direction, and adaptive scaling in Adam, we adopt the
grafting approach proposed by Agarwal et al. (2020). At each iteration, we compute stochastic
gradients, pass them to two optimizers A1,A2 and make a grafted step that combines the magnitude
of A1’s step and direction of A2’s step. We focus on the optimizer defined by grafting the Adam
magnitude onto the SGDA direction, which corresponds to omitting the change of direction in (2):

W(t+1) = W(t) + ηD∥A(t)
W ∥2

g
(t)
W

∥g(t)
W ∥2 + ε

, V(t+1) = V(t) − ηG∥A(t)
V ∥2

g
(t)
V

∥g(t)
V ∥2 + ε

, (3)

where A
(t)
V ,A

(t)
W are the Adam gradient oracles as in Algorithm 1 and g

(t)
V , g

(t)
W the stochastic

gradients. We refer to this algorithm as Ada-nSGDA (combining the Adam magnitude and SGDA
direction). There are two natural implementations for nSDGA. In the layer-wise version, Y(t)is a
single parameter group (typically a layer in a neural network), and the updates are applied to each
group. In the global version, Y(t) contains all of the model’s weights.

In Fig. 2a, we see that Ada-nSGDA and Adam appear to have similar learning dynamics in terms
of the FID score. Both Adam and Ada-nSGDA significantly outperform SGDA as well as AdaDir,
which is the alternate case of (3) where we instead graft the magnitude of the SGDA update to the
direction of the Adam update. AdaDir diverged after a single step so we omit it in Fig. 2. These
results show that the adaptive scaling and normalization components are sufficient to recover the
performance of Adam, suggesting that Ada-nSGDA is a valid proxy for Adam

A natural question that arises is how the total adaptive magnitude varies during training. We
empirically investigate this by tracking the layer-wise adaptive magnitudes of the Adam gradient
oracles when training a GAN with Ada-nSGDA, and summarize our key findings here (see Section 4
for complete experimental details). We first train a WGAN-GP (Arjovsky et al., 2017) model, and
find that the adaptive magnitude is bound within a constant range, and that all the layers have
approximately the same adaptive magnitude (Fig. 2 (b,c)). This suggests that the adaptive scaling
component is constant (in expectation) and motivates the use of nSGDA, corresponding to Ada-
nSGDA with a constant adaptive scaling factor. We then train a WGAN-GP model with nSGDA and
we find that nSGDA mostly recovers the FID score obtained by Ada-nSGDA (Fig. 2a).

We also validate this observation for more complicated GAN architectures by repeating this study on
StyleGAN2 (Karras et al., 2019). We find that the adaptive magnitudes also vary within a constant
range, but each layer has its own constant scaling factor. Thus, training StyleGAN2 with nSGDA
and a global normalization fails, but training with nSGDA with a different constant step-size for
each layer yields a performance that mostly recovers that of Ada-nSGDA (Fig 5). These results
suggest that the schedule of the adaptive scaling is not central in the success of Ada-nSGDA in
GANs. Instead, adaptive methods are successful because they normalize the gradients for each layer,
which allows for more balanced updates between G and D as we will show in Section 3. We conduct
more experiments in Section 4 and in Appendix A.
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(a) (b) (c)
Figure 2: (a) shows the FID training curve for a WGAN-GP ResNet, averaged over 5 seeds. We see that Ada-
nSGDA and nSGDA have very similar performance to Adam for a WGAN-GP. (b, c) displays the fluctuations
of Ada-nSGDA adaptive magnitude. We plot the ratio ∥A(t)

Y ∥2/∥A(0)
Y ∥2 for each of the generator’s (b) and

discriminator’s (c) layers. At early stages, this ratio barely increases and remains constant after 10 steps.

3 WHY DOES NSGDA PERFORM BETTER THAN SGDA IN GANS?

In Section 2, we empirically showed that the most important component of the adaptive magnitude is
the normalization, and that nSGDA (an algorithm consisting of this component alone) is sufficient
to recover most of the performance of Ada-nSGDA (and by extension, Adam). Our goal is to
construct a dataset and model where we can prove that a model trained with nSGDA generates
samples from the true training distribution while SGDA fails. To this end, we consider a dataset
where the underlying distribution consists of two modes, defined as vectors u1, u2, that are slightly
correlated (see Assumption 1) and consider the standard GANs’ training objective. We show that a
GAN trained with SGDA using any reasonable1 step-size configuration suffers from mode collapse
(Theorem 3.1); it only outputs samples from a single mode which is a weighted average of u1 and u2.
Conversely, nSGDA-trained GANs learn the two modes separately (Theorem 3.2).

Notation We set the GAN 1-sample loss L(t)
V,W(X, z) = log(D

(t)
W (X)) + log(1−D

(t)
W (G

(t)
V (z))).

We denote g
(t)
Y = ∇YL

(t)
V,W(X, z) as the 1-sample stochastic gradient. We use the asymptotic

complexity notations when defining the different constants e.g. poly(d) refers to any polynomial in
the dimension d, polylog(d) to any polynomial in log(d), and o(1) to a constant ≪ d. We denote
a ∝ b for vectors a and b in Rd if there is a positive scaling factor c > 0 such that ∥a−cb∥2 = o(∥b∥2).

3.1 SETTING

In this section, we present the setting to sketch our main results in Theorem 3.1 and Theorem 3.2. We
first define the distributions for the training set and latent samples, and specify our GAN model and
the algorithms we analyze to solve (GAN). Note that for many assumptions and theorems below, we
present informal statements which are sufficient to capture the main insights. The precise statements
can be found in Appendix B.

Our synthetic theoretical framework considers a bimodal data distribution with two correlated modes:

Assumption 1 (pdata structure). Let γ = 1
polylog(d) . We assume that the modes are correlated. This

means that ⟨u1, u2⟩ = γ > 0 and the generated data point X is either X = u1 or X = u2.

Next, we define the latent distribution pz that GV samples from and maps to pdata. Each sample
from pz consists of a data-point z that is a binary-valued vector z ∈ {0, 1}mG , where mG is the
number of neurons in GV , and has non-zero support, i.e. ∥z∥0 ≥ 1. Although the typical choice of a
latent distributions in GANs is either Gaussian or uniform, we choose pz to be a binary distribution
because it models the weights’ distribution of a hidden layer of a deep generator; Allen-Zhu & Li
(2021) argue that the distributions of these hidden layers are sparse, non-negative, and non-positively
correlated. We now make the following assumptions on the coefficients of z:
Assumption 2 (pz structure). Let z ∼ pz . We assume that with probability 1− o(1), there is only one
non-zero entry in z. The probability that the entry i ∈ [mG] is non-zero is Pr[zi = 1] = Θ(1/mG).

In Assumption 2, the output of GV is only made of one mode with probability 1− o(1). This avoids
summing two of the generator’s neurons, which may cause mode collapse.

1Reasonable simply means that the learning rates are bounded to prevent the training from diverging.
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To learn the target distribution pdata, we use a linear generator GV with mG neurons and a non-linear
neural network with mD neurons:

GV(z) = V z =

mG∑
i=1

vizi , DW(X) = sigmoid
(
a

mD∑
i=1

⟨wi, X⟩3 + b√
d

)
. (4)

where V = [v⊤1 , v
⊤
2 , · · · , v⊤mG

] ∈ RmG×d, z ∈ {0, 1}mG , W = [w⊤
1 , . . . , w

⊤
mD

] ∈ RmD×d, and
a, b ∈ R. Intuitively, GV outputs linear combinations of the modes vi. We choose a cubic activation
as it is the smallest monomial degree for the discriminator’s non-linearity that is sufficient for the
generator to recover the modes u1, u2.2

We now state the SGDA and nSGDA algorithms used to solve the GAN training problem (GAN). For
simplicity, we set the batch-size to 1. The resultant update rules for SGDA and nSGDA are:3

SGDA: at each step t > 0, sample X ∼ pdata and z ∼ pz and update as

W(t+1) = W(t) + ηDg
(t)
W , V(t+1) = V(t) − ηGg

(t)
V , (5)

nSGDA: at each step t > 0, sample X ∼ pdata and z ∼ pz and update as

W(t+1) = W(t) + ηD
g
(t)
W

∥g(t)
W ∥2

, V(t+1) = V(t) − ηG
g
(t)
V

∥g(t)
V ∥2

. (6)

Compared to the versions of SGDA and Ada-nSGDA that we introduced in Section 2, we have the
same algorithms except that we set β1 = 0 and omit ε in (5) and (6). Note that since there is only
one layer in the neural networks we study in this paper, the global-wise and layer-wise versions of
nSGDA are actually the same. Lastly, we detail how to set the optimization parameters for SGDA
and nSGDA in (5) and (6).

Parametrization 3.1 (Informal). When running SGDA and nSGDA on (GAN), we set:

– Initialization: b(0) = 0, and a(0), w
(0)
i (i ∈ [mD]), v

(0)
j (j ∈ [mG]) are initialized with a

Gaussian with small variance.

– Number of iterations: we run SGDA for t ≤ T0 iterations where T0 is the first iteration such
that the algorithm converges to an approximate first order local minimum. For nSGDA, we run for
T1 = Θ̃(1/ηD) iterations.

– Step-sizes: For SGDA, ηD, ηG ∈ (0, 1
poly(d) ) can be arbitrary. For nSGDA, ηD ∈ (0, 1

poly(d) ], and
ηG is slightly smaller than ηD.

– Over-parametrization: For SGDA, mD,mG = polylog(d) are arbitrarily chosen i.e. mD may be
larger than mG or the opposite. For nSGDA, we set mD = log(d) and mG = 2 log(d).

Our theorem holds when running SGDA for any (polynomially) possible number of iterations; after
T0 steps, the gradient becomes inverse polynomially small and SGDA essentially stops updating the
parameters. Additionally, our setting allows any step-size configuration for SGDA i.e. larger, smaller,
or equal step-size for D compared to G. Note that our choice of step-sizes for nSGDA is the one
used in practice, i.e. ηD slightly larger than ηG.

3.2 MAIN RESULTS

We state our main results on the performance of models trained using SGDA (5) and nSGDA (6). We
show that nSGDA learns the modes of the distribution pdata while SGDA does not.

Theorem 3.1 (Informal). Consider a training dataset and a latent distribution as described above
and let Assumption 1 and Assumption 2 hold. Let T0, ηG, ηD and the initialization be as defined in

2Li & Dou (2020) show that when using linear or quadratic activations, the generator can fool the discriminator
by only matching the first and second moments of pdata.

3In the nSGDA algorithm defined in (3), the step-sizes were time-dependent. Here, we assume for simplicity
that the step-sizes ηD, ηG > 0 are constant.
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(a) Relative gradients (b) D weight correlation (c) V learned via SGDA
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0.4

0.6

0.8

(d) V learned via nSGDA

Figure 3: (a) shows the relative gradient updates for SGDA. D first updates its weights while G does not move
until iteration 20, then G moves its weights. (b) shows the correlation for one neuron of D (with maximal
correlation to u2 at initialization) with the modes u1, u2 during the learning process of SGDA. (c, d) shows the
correlations of the neurons of G with the modes when trained with SGDA and nSGDA respectively. This shows
that for SGDA (c), the model ultimately learns the weighted average u1 + u2. For nSGDA, we see from (d) that
one of the neurons (V4) is highly correlated with u1 and another one (V3) is correlated with u2.

Parametrization 3.1. Let t be such that t ≤ T0. Run SGDA on (GAN) for t iterations with step-sizes
ηG, ηD. Then, with probability at least 1− o(1), the generator outputs for all z ∈ {0, 1}mG :

G
(t)
V (z) ∝

{
u1 + u2 if ηD ≥ ηG
ξ(t)(z) otherwise

, (7)

where ξ(t)(z) ∈ Rd is some vector that is not correlated to any of the modes. Formally, ∀ℓ ∈ [2],
cos(ξ(t)(z), uℓ) = o(1) for all z ∈ {0, 1}mG .

A formal proof can be found in Appendix G. Theorem 3.1 indicates that when training with SGDA and
any step-size configuration, the generator either does not learn the modes at all (G(t)

V (z) = ξ(t)(z))
or learns an average of the modes (G(t)

V (z) ∝ u1 + u2). The theorem holds for any time t ≤ T0

which is the iteration where SGDA converges to an approximate first-order locally optimal min-max
equilibrium. Conversely, nSGDA succeeds in learning the two modes separately:
Theorem 3.2 (Informal). Consider a training dataset and a latent distribution as described above
and let Assumption 1 and Assumption 2 hold. Let T1, ηG, ηD and the initialization as defined in
Parametrization 3.1. Run nSGDA on (GAN) for T1 iterations with step-sizes ηG, ηD. Then, the
generator learns both modes u1, u2 i.e., for ℓ ∈ {1, 2},

Pr z∼pz
[G

(T1)
V (z) ∝ uℓ] is non-negligible. (8)

A formal proof can be found in Appendix I. Theorem 3.2 indicates that when we train a GAN with
nSGDA in the regime where the discriminator updates slightly faster than the generator (as done in
practice), the generator successfully learns the distribution containing the direction of both modes.

We implement the setting introduced in Subsection 3.1 and validate Theorem 3.1 and Theorem 3.2
in Fig. 3. Fig. 3a displays the relative update speed η∥g(t)

Y ∥2/∥Y(t)∥2, where Y corresponds to the

parameters of either D or G. Fig. 3b shows the correlation ⟨w(t)
i , uℓ⟩/∥w(t)

i ∥2 between one of D’s
neurons and a mode uℓ and Fig. 3c the correlation ⟨v(t)j , uℓ⟩/∥v(t)j ∥2 between G’s neurons and uℓ.
We discuss the interpretation of these plots to the next section.

WHY DOES SGDA SUFFER FROM MODE COLLAPSE AND NSGDA LEARN THE MODES?

We now explain why SGDA suffers from mode collapse, which corresponds to the case where
ηD ≥ ηG. Our explanation relies on the interpretation of Figs. 3a, 3b, and 3c, and on the updates
around initialization that are defined as followed. There exists i ∈ [mD] such that D’s update is

E[w(t+1)
i |w(t)

i ] ≈ w
(t)
i + ηD

2∑
l=1

E[⟨w(t)
i , ul⟩2]ul . (9)

Thus, the weights of D receive gradients directed by u1 and u2. On the other hand, the weights of G
at early stages receive gradients directed by w

(t)
j :

v
(t+1)
i ≈ v

(t)
i + ηG

∑
j

⟨v(t)i , w
(t)
j ⟩2w(t)

j . (10)
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We observe that the learning process in Figs. 3a & 3b has three distinct phases. In the first phase
(iterations 1-20), D learns one of the modes (u1 or u2) of pdata (Fig. 3b) and G barely updates its
weights (Fig. 3a). In the second phase (iterations 20-40), D learns the weighted average u1 + u2

(Fig. 3b) while G starts moving its weights (Fig. 3a). In the final phase (iterations 40+), G learns
u1 + u2 (Fig. 3c) from D. In more detail, the learning process is described as follows:

Phase 1 : At initialization, w(0)
j and v

(0)
j are small. Assume w.l.o.g. that ⟨w(0)

i , u2⟩ > ⟨w(0)
i , u1⟩.

Because of the ⟨w(t)
i , ul⟩2 in front of u2 in (9), the parameter w(t)

i gradually grows its correlation
with u2 (Fig. 3b) and D’s gradient norm thus increases (Fig. 3a). While ∥w(t)

j ∥ ≪ 1∀j, we have that

v
(t)
i ≈ v

(0)
i (Fig. 3a).

Phase 2: D has learned u2. Because of the sigmoid in the gradient of w(t)
i (that was negligible during

Phase 1) and ⟨u1, u2⟩ = γ > 0, w(t)
i now mainly receives updates with direction u2. Since G did not

update its weights yet, the min-max problem (GAN) is approximately just a minimization problem
with respect to D’s parameters. Since the optimum of such a problem is the weighted average u1+u2,
w

(t)
j slowly converges to this optimum. Meanwhile, v(t)i start to receive some significant signal

(Fig. 3a) but mainly learn the direction u1 + u2 (Fig. 3c), because w(t)
j is aligning with this direction.

Phase 3: The parameters of G only receive gradient directed by u1 + u2. The norm of its relative
updates stay large and D only changes its last layer terms (slope a and bias b).

In contrast to SGDA, nSGDA ensures that G and D always learn at the same speed with the updates:

w
(t+1)
i ≈ w

(t)
i + ηD

⟨w(t)
i , X⟩2X

∥⟨w(t)
i , X⟩2X∥2

, and v
(t+1)
i ≈ v

(t)
i + ηG

∑
j⟨w

(t)
j , v

(t)
i ⟩2w(t)

j

∥
∑

j⟨w
(t)
j , v

(t)
i ⟩2w(t)

j ∥2
(11)

No matter how large ⟨w(t)
i , X⟩ is, G still learns at the same speed with D. There is a tight window

(iteration 25, Fig. 3b) where only one neuron of D is aligned with u1. This is when G can also learn
to generate u1 by “catching up” to D at that point, which avoids mode collapse.

4 NUMERICAL PERFORMANCE OF NSGDA

In Section 2, we presented the Ada-nSGDA algorithm (3) which corresponds to “grafting” the Adam
magnitude onto the SGDA direction. In Section 3, we construct a dataset and GAN model where
we prove that a GAN trained with nSGDA can generate examples from the true training distribution,
while a GAN trained with SGDA fails due to mode collapse. We now provide more experiments
comparing nSGDA and Ada-nSGDA with Adam on real GANs and datasets.

We train a ResNet WGAN with gradient penalty on CIFAR-10 (Krizhevsky et al., 2009) and STL-10
(Coates et al., 2011) with Adam, Ada-nSDGA, SGDA, and nSGDA with a fixed learning rate as done
in Section 3. We use the default architectures and training parameters specified in Gulrajani et al.
(2017) (λGP = 10, ndis = 5, learning rate decayed linearly to 0 over 100k steps). We also train
a StyleGAN2 model (Karras et al., 2020) on FFHQ (Karras et al., 2019) and LSUN Churches (Yu
et al., 2016) (both resized to 128× 128 pixels) with Adam, Ada-nSGDA, SGDA, and nSGDA. We
use the recommended StyleGAN2 hyperparameter configuration for this resolution (batch size = 32,
γ = 0.1024, map depth = 2, channel multiplier = 16384). We use the Fréchet Inception distance
(FID) (Heusel et al., 2017) to quantitatively assess the performance of the model. For each optimizer,
we conduct a coarse log-space sweep over step sizes and optimize for FID. We train the WGAN-GP
models for 2880 thousand images (kimgs) on CIFAR-10 and STL-10 (45k steps with a batch size of
64), and the StyleGAN2 models for 2600 kimgs on FFHQ and LSUN Churches. We average our
results over 5 seeds for the WGAN-GP ResNets, and over 3 seeds for the StyleGAN2 models due to
the computational cost associated with training GANs.

WGAN-GP Figures 4a and 4b validates the conclusions on WGAN-GP from Section 2. We find
that both Ada-nSGDA and nSGDA mostly recover the performance of Adam, with nSGDA obtaining
a final FID of ∼2-3 points lower than Ada-nSGDA. As discussed in Section 2, such performance is
possible because the adaptive magnitude stays within a constant range. In contrast, models trained
with SGDA consistently perform significantly worse, with final FID scores 4× larger than Adam.
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(a) (b) (c) (d)
Figure 4: (a, b) are the final FID scores (5 seeds) for a ResNet WGAN-GP model trained for 45k steps on
CIFAR-10 and STL-10 respectively. (c, d) are the final FID scores (3 seeds) for a StyleGAN2 model trained
for 2600kimgs on FFHQ and LSUN Churches respectively. We use the same constant layer scaling in (d) for
nSGDA as that in (c), which was found by tracking the layer-wise adaptive step-sizes.

(a) (b)
Figure 5: (a) shows the FID curve for the StyleGAN2 model trained for 2600 kimgs on FFHQ. (b) shows the
fluctuations of the Ada-nSGDA adaptive magnitude for each layer over an arbitrary slice of 500 training steps
for the Discriminator. The layers are grouped by common types, e.g. Conv weights and biases, etc.). We find
that although the magnitude for each layer fluctuates, the fluctuations are bounded to some fixed range for each
layer. We show similar behaviour for the Generator in the Appendix.

StyleGAN2 Figures 4c and 4d show the final FID scores when training a StyleGAN2. We find
that Ada-nSGDA recovers most of the performance of Adam, but one difference with WGAN-GP
is that nSGDA does not work if we use the same global learning rate for each layer. As discussed
in Section 2, nSGDA with a different (but constant) step-size for each layer does work, and is able
to mostly recover Ada-nSGDA’s performance (Fig. 5a). To choose the scaling for each layer, we
train StyleGAN2 with Ada-nSGDA on FFHQ-128, track the layer-wise adaptive magnitudes, and
take the mean of these magnitudes over the training run (for each layer). Figure 5b shows that the
fluctuations for each layer are bound to a constant range, validating our assumption of constant
step-sizes. Additionally, the same scaling obtained from training FFHQ seems to work for different
datasets; we used it to train StyleGAN2 with nSGDA on LSUN Churches-128 and recovered similar
performance to training on this dataset with Ada-nSGDA (Fig. 4d).

5 CONCLUSION

Our work addresses the question of which mechanisms in adaptive methods are critical for training
GANs, and why they outperform non-adaptive methods. We empirically show that Ada-nSGDA, an
algorithm composed of the adaptive magnitude of Adam and the direction of SGD, recovers most
of the performance of Adam. We further decompose the adaptive magnitude into two components:
normalization, and adaptive step-size. We then show that the adaptive step size is roughly constant
(bounded fluctuations) for multiple architectures and datasets. This empirically indicates that the
normalization component of the adaptive magnitude is the key mechanism of Ada-nSGDA, and
motivates the study of nSGDA; we verify that it too recovers the performance of Ada-nSGDA. Having
shown that nSGDA is a good proxy for a key mechanism for adaptive methods, we then construct
a setting where we proved that nSGDA –thanks to its balanced updates– recovers the modes of the
true distribution while SGDA fails to do it. The key insight from our theoretical analysis is that the
ratio of the update of D and G must be close to 1 during training in order to recover the modes of the
distribution. This matches the experimental setting with nSGDA, as we find that global norm of the
parameter updates for both D and G are almost equal for optimal choices of learning rates.
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A ADDITIONAL EXPERIMENTS

A.1 EXPERIMENTS WITH STYLEGAN2 AND WGAN-GP

In this section, we put additional curves and images produced by WGAN and StyleGAN2.

(a) (b)

Figure 6: (a) is the FID curve of StyleGAN2 on LSUN-Churches and (b) the FID curve of WGAN
on STL-10. These complement the figures of Section 4.

(a) Layerwise adaptive magnitudes for the Discriminator.

(b) Layerwise adaptive magnitudes for the Generator.

Figure 7: The fluctuations of the Ada-nSGDA adaptive magnitudes for each layer over an arbitrary
slice of 800 training steps for the Disciminator (a) and Generator (b). The layers are grouped by
common types, e.g. Conv weights and biases, etc.). We find that although the magnitude for each
layer fluctuates, the fluctuations are bounded to some fixed range for each layer.
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Figure 8: Images generated by a StyleGAN2 model trained with Adam for 2600 kimgs on FFHQ 128.
Note that this is not convergence.

Figure 9: Images generated by a StyleGAN2 model trained with Ada-nSDGDA for 2600 kimgs on
FFHQ 128. Note that this is not convergence.
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Figure 10: Images generated by a StyleGAN2 model trained with Adam for 2600 kimgs on LSUN
Churches 128. Note that this is not convergence.

Figure 11: Images generated by a StyleGAN2 model trained with Ada-nSDGDA for 2600 kimgs on
LSUN Churches 128. Note that this is not convergence.
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A.2 EXPERIMENTS WITH DCGAN

This section shows that experimental results obtained in Section 4 are also valid for other architectures
such as DCGAN. Indeed, we observe that nSGDA methods compete with Adam and nSGDA work
when the batch size is small. In this section, lnSGDA refers to the layer-wise nSGDA and gnSGDA
to the global nSGDA.

(a) CIFAR-10 (b) LSUN Churches (c) STL-10 (d) Celeba-HQ

Figure 12: FID scores obtained when training a Resnet WGAN-GP using Adam, l-nSGDA, g-nSGDA, and
SGD on different datasets. In all these datasets, l-nSGDA, g-nSGDA and Adam perform approximately as well.
SGDA performs much worse.

(a) CIFAR-10 (b) LSUN Churches (c) STL-10 (d) Celeba-HQ

Figure 13: FID scores obtained when training a DCGAN using Adam, lnSGDA, gnSGDA and SGD on different
datasets. In all these datasets, lnSGDA, gnSGDA and Adam perform approximately as well. As expected, SGDA
performs much worse than the other optimizers. The models are trained with batch-size 64 –which is the usual
batch-size used for DCGAN.

In this section, we display the images obtained when training the Resnet WGAN-GP model from
Section 4.

(a) Adam (b) lnSGDA (c) gnSGDA

Figure 14: CIFAR-10 images generated by a Resnet WGAN-GP model
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(a) Adam (b) lnSGDA (c) gnSGDA

Figure 15: LSUN-Churches images generated by a Resnet WGAN-GP model

(a) Adam (b) lnSGDA (c) gnSGDA

Figure 16: STL-10 images generated by a Resnet WGAN-GP model

(a) Adam (b) lnSGDA (c) gnSGDA

Figure 17: Celeba-HQ images generated by a Resnet WGAN-GP model
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B TECHNICAL STATEMENTS IN THE THEORY SECTION

In this section, we provide the technical version of the statements made in Section 3.

B.1 SETTING

The distribution pdata we consider is more general than Assumption 1 in the main paper.

Assumption 3 (Data structure). Let γ = 1
polylog(d) . The coefficients s1, s2 and modes u1, u2 of the

distribution pdata respect one of the following conditions:

1. Correlated modes: ⟨u1, u2⟩ = γ and the generated data point is either X = u1 or X = u2.

2. Correlated coefficients: P[s1 = s2 = 1] = γ and the modes are orthogonal, ⟨u1, u2⟩ = 0.

We now present a more technical version of Assumption 2.

Assumption 4 (pz structure). Let z ∼ pz . We assume that for i, j ∈ [mG],

Pr[zi = 1] = Θ

(
1

mG

)
, Pr[zi = zj = 1] =

1

m2
Gpolylog(d)

(12)

We set Pr[zi = zj = 1] = 1
m2

Gpolylog(d)
to ensure that that the output of the generator is only made

of one mode with probability 1− o(1).

In the proof, we actually consider a more complicated version of the discriminator

DW(X) = sigmoid

a
∑

i∈[mD]

σ(⟨wi, X⟩) + λb

 , where σ(z) =


z3 if |z| ≤ Λ

3Λ2z − 2Λ3 if z > Λ

3Λ2z + 2Λ3 otherwise
,

(13)

where Λ = d0.2. σ(·) is the truncated degree-3 activation function—it is thus made Lipschitz, which
is only needed in the proof to deal with the case where the generator is trained much faster than the
discriminator. Note that this latter case is uncommon in practice.

We now present the technical version of Parametrization 3.1.

Parametrization B.1. When running SGDA and nSGDA on GAN, we set the parameters as

– Initialization: b(0) = 0, a(0) ∼ N
(
0, 1

mDpolylog(d)

)
, w

(0)
i ∼ N

(
0, 1

dI
)
, v

(0)
j ∼ N

(
0, 1

d2 I
)

for i ∈ [mD], j ∈ [mG].

– Number of iterations: we run SGDA for t ≤ T0 iterations where T0 is the first iteration such that
∥∇E[LV(T0),W(T0)(X, z)]∥2 ≤ 1/poly(d). . For nSGDA, we run for T1 = Θ̃

(
1
ηD

)
iterations.

– Step-sizes: For SGDA, ηD, ηG ∈ (0, 1
poly(d) ). For nSGDA, ηD ∈ (0, 1

poly(d) ], ηG = ηD

polylog(d) .

– Over-parametrization: For SGDA, mD,mG = polylog(d) are arbitrarily chosen i.e. mD may be
larger than mG or the opposite. For nSGDA, we set mD = log(d) and mG = log(d) log log d.

Regarding initialization, the discriminator’s weights are sampled from a standard normal and its bias
is set to zero. The weights of the generator are initialized from a normal with variance 1/d2 (instead of
the 1/d in standard normal). Such a choice is explained as follows. In practice, the target X ∼ pdata
is a 1D image, thus has entries in [0, 1]d and norm O(

√
d). Yet, we sample the initial generator’s

weights from N (0, Id/d) in this case. In our case, since ∥ui∥2 = 1, the target X = s1u1 + s2u2 has
norm O(1). Therefore, we scale down the variance in the normal distribution by a factor of 1/d to
match the configuration encountered in practice. Therefore, we also set λ = 1√

dpolylog(d)
in (13) to

ensure that the weights and the bias in the discriminator learn at the same speed.
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Remark: In our theory, we consider the global version of nSGDA; ∥g(t)
W ∥2 in the update refers to

∥g(t)
W ∥2 = ∥g(t)

a ∥2 + ∥g(t)
b ∥2 + ∥g(t)

W ∥2, where g
(t)
a is the stochastic gradient with respect to a, g(t)

b

with respect to b and g
(t)
W with respect to W.

B.2 MAIN RESULTS

We state now the technical version of Theorem 3.1 and Theorem 3.2.
Theorem B.1 (SGDA suffers from mode collapse). Let T0, ηG, ηD and the initialization as defined
in Parametrization B.1. Let t be such that t ≤ T0. Run SGDA for t iterations with step-sizes ηG, ηD.
Then, with probability at least 1− o(1), for all z ∈ {0, 1}mG , we have:

G
(t)
V (z) = α(t)(z)(u1 + u2) + ξ(t)(z),

where α(t)(z) ∈ R and ξ(t)(z) ∈ Rd and for all ℓ ∈ [2], |⟨ξ(t)(z), uℓ⟩| = o(1)∥ξ(t)(z)∥2 for every
z ∈ {0, 1}mG .

In the specific case where ηD =
√
dηG

polylog(d) , the model mode collapses i.e. ∥ξ(T0)(z)∥2 = o(α(T0)(z)).

Theorem 3.1 indicates that with SGDA and any step-size configuration, the generator either does not
learn the modes at all – when α(t)(z) = 0, G

(t)
V (z) = ξ(t)(z) – or learns an average of the modes –

when α(t)(z) ̸= 0, G
(t)
V (z) ≈ α(t)(z)(u1 + u2).

Theorem B.2 (nSGDA recovers modes separately). Let T1, ηG, ηD and the initialization as defined
in Parametrization B.1. Run nSGDA for T1 iterations with step-sizes ηG, ηD. Then, the generator
learns both modes u1, u2 i.e., for ℓ ∈ {1, 2}

Pr z∼pz

(∥∥ G
(T1)

V (z)

∥G(T1)

V (z)∥2

− uℓ

∥∥
2
= o(1)

)
= Ω̃(1).

C NOTATIONS

Let us also write τb = λ as the scaling factor of the bias. We can easily observe that at every step, all
of w(t)

i and v
(t)
i lies in the span of {w(0)

j , v
(0)
j , u1, u2}. Therefore, let us denote

w
(t)
i =

∑
j∈[mD]

α(wi, wj , t)
w

(0)
j

∥w(0)
j ∥2

+
∑

j∈[mG]

α(wi, vj , t)
v
(0)
j

∥v(0)j ∥2
+
∑
j∈[2]

α(wi, uj , t)
uj

∥uj∥

and v
(t)
i as α(vi, ∗, t), where α(∗, ∗, ∗) ∈ R.

Let us denote

f(X) = a

 ∑
i∈[mD]

σ(⟨wi, X⟩)

+ τbb

as the function in discriminator without going through sigmoid, and define h(X) =∑
i∈[mD] σ(⟨wi, X⟩).

Gradient The gradient of L(X, z) is given as:

∇aL(X, z) = −Sigmoid(−f(X))h(X) + Sigmoid(f(G(z)))h(G(z))

∇bL(X, z) = −Sigmoid(−f(X)) + Sigmoid(f(G(z)))

∇wiL(X, z) = −Sigmoid(−f(X))aσ′(⟨wi, X⟩)X + Sigmoid(f(G(z)))aσ′(⟨wi, G(z)⟩)G(z)

∇viL(X, z) = −1zi=1 Sigmoid(f(G(z)))a
∑

j∈[mD]

σ′(⟨wi, G(z)⟩)wi

We use a(t), b(t), w
(t)
i , v

(t)
i to denote the value of those weights at iteration t.
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We use a = b± c for c ∈ R∗ to denote: (1). a ∈ [b− c, b+ c] if a, b ∈ R, (2). ∥a− b∥2 ≤ c if a, b
are vectors.

For simplicity, we focus on the case when all Pr[zi = 1] are equal. The other cases can be proved
similarly (by replacing the 1/mG factor in the generators update by the exact value of Pr[zi = 1]).

D INITIALIZATION CONDITIONS AND THREE REGIME OF LEARNING

We first show the following Lemma regarding initialization:

Let

Ai,ℓ =
1

2
σ′(⟨w(0)

i , uℓ⟩) sign(⟨w(0)
i , uℓ⟩)

and

Bi,j =
1

mG
σ′(⟨w(0)

i , v
(0)
j ⟩) sign(⟨w(0)

i , v
(0)
j ⟩)

and
Ci,ℓ = σ′(⟨v(0)i , uℓ⟩)

Let A = maxi∈[mD],ℓ∈[2] Ai,ℓ, B = maxi∈[mD],j∈[mG] Bi,j , C = maxi∈[mG],ℓ∈[2] Ci,ℓ, we have:
Using a corollary of Proposition G.1 in Allen-Zhu & Li (2020):

Lemma D.1. For every ηD, ηG > 0, we have that: with probability at least 1− o(1), we have that:
A = polyloglog(d)√

d
, B = polyloglog(d)

dmG
. Moreover, with probability at least 1− o(1), one and only one

of the following holds:

1. (Discriminator trains too fast): ηGB < 1
polylog(d)ηDA;

2. (Balanced discriminator and generator): ηGB > 1
polylog(d)ηDA, ηDA > ηGB(1 +

1
polyloglog(d) );

3. (Generator trains too fast): ηDA < ηGB(1− 1
polyloglog(d) ).

This Lemma implies that in case 2, ηG = Θ̃(
√
d)ηB .

We will show the following induction hypothesis for each case. Intuitively, in case one we have the
following learning process: (too powerful D).

1. At first D starts to learn, then because of the learning rate of G is too small, so D just
saturate the loss to make the gradient to zero.

In case two we have: (“balanced” D and G but still not enough).

1. At first D starts to learn one uj in each of the neuron.

2. However, the generator still could not catch up immediate after D learns one uj , so D starts
to a mixture of u1, u2 in its neurons since u1, u2 are positively correlated.

3. After that G starts to learn, however since D already stuck at the mixtures of u1, u2, so G is
only able to learn mixtures of u1, u2 as well.

In case three we have: (Too powerful G)

1. G starts to learn without D learning any meaningful signal yet, so G aligns its outputs with
the (close to random) weights of D and just pushes the discriminator to zero. In this case, G
simply learns something random to fool D instead of learning the signals.

Moreover, similar to Lemma D.1, we also have the following condition regarding the gap between
the top one and the second largest one in terms of correlation:
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Lemma D.2. Let
iD, ℓD = argmax

i∈[mD],ℓ∈[2]

Ai,ℓ

Let
iG, jG = argmax

i∈[mD],j∈[mG]

Bi,j

Then with probability at least 1− o(1) over the random initialization, the following holds:

∀i, ℓ ̸= iD, ℓD : AiD,ℓD ≥ Ai,ℓ

(
1 +

1

polyloglog(d)

)
∀i, j ̸= iG, jG : BiG,jG ≥ Bi,j

(
1 +

1

polyloglog(d)

)
and

A =
Θ(
√

log log(d))√
d

, B,C =
Θ(
√

log log(d))

d

For simplicity, we also define i∗ = iD.

E CRITICAL LEMMA

The proof heavily relies on the following Lemma about tensor power method, which is a corollary of
Lemma C.19 in Allen-Zhu & Li (2020).
Lemma E.1. For every δ ∈ (0, 0.1), every C > 10 , for every sequence of xt, yt > 0 such that

x0 > (1 + 10δ)y0, suppose there is a sequence of St ∈ [0, C] such that for η ∈
(
0, 1

poly(C/δ)

)
:

xt+1 ≥ xt + ηStx
2
t

yt ≤ yt + ηSt(1 + δ)y2t

For every τ > 0, let T0 be the first iteration where xt > τ , then we must have:

yT0
≤ y0

poly(δ)

Moreover, if all St ≥ H for some H > 0, then T0 ≤ O
(

1
ηHx0

)
.

Similar to the Lemma above, one can easily show the following auxiliary Lemma:
Lemma E.2. Suppose there are sequences at, bt ∈ Rd such that a0, b0 > 0 with a0 < 0.82b0.
Suppose there exists a sequence of Ct ∈ (0, d) such that

at+1 ≤ at − ηDCtbt

bt+1 ≥ bt − 1.0000001ηDCtat

Then we must have that for every t ≤ T where T is the first iteration such that aT ≤ 0, then the
following holds:

at = a0 −Θ

η
∑

s≤t−1

Cs


∑
s≤t

|atCtηD| ≤ 0.49b0

Moreover, if in addition that a0 < 1
C b0 for any C > 100, then we must have:∑

s≤t

|atCtηD| ≤ 10

C
b0
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In the end, we have the following comparison Lemma, whose proof is obvious:
Lemma E.3. Suppose at, bt > 0 satisfies that a0, b0 ≤ 1, and the update of at, bt is given as: For
some values C > 0 and Ct ∈ [0,poly(d)]:

at+1 = at + ηDCt (14)

bt+1 = bt + ηD

[
1

C
, 1

]
× Ct (15)

Then let T be the first iteration where aT ≥ 2C, we must have:

bT ∈ [1, 2C + 1]

Using this Lemma, we can directly prove the following Lemma:

Lemma E.4. For every ηD, ηG ∈
(
0, 1

poly(d)

]
such that ηG = ηDΓ for Γ = Θ̃(

√
d), suppose there

are vectors pt, qi,t ∈ Rd (i ∈ [mG]) and a value at ∈ R, H > 0 satisfies that for a sequence
of Hi,t ∈ [H, 1] for i ∈ [mG], Gt = Θ̃(

∑
i∈[mG] Hi,t), a value τ = Õ(d−0.5), and a vector

βt ∈ span{u1, u2} with ∥βt∥2 = O(1): For all i ∈ [mG] and t ≥ 0:

∥qi,0∥2 = Θ̃(d−0.49), ∥p0∥2 = logΘ(1)(d), 0 < a0 ≤ 0.819∥p0∥2
⟨qi,0, p0⟩

∥qi,0∥2, ∥pi,0∥2
≥ 1− o(1)

pt = pt − ηD
∑

i∈[mG]

Gi,tatσ
′(⟨pt, qi,t⟩)qi,t + Õ(ηDatγt)βt

at = at − ηD
∑

i∈[mG]

Gi,tσ(⟨pt, qi,t⟩)± Õ(ηDγt)

qi,t =

qi,t + ηGHi,tat

σ′(⟨pt, qi,t⟩) +
∑

j∈[mG]

γi,j,tσ
′(⟨pt, qj,t⟩)

 pt ± ηG|at|Õ (τ∥qi,t∥2)2


In addition, we have: γi,j,t = Õ(1), and

max
i∈[mG]

∥qi,t∥2 ∈
(
0,

1

polylog(d)

]
∪[polylog(d),+∞) =⇒ ∀i, j ∈ [mG], Hi,t = Θ̃(Gt), γi,j,t = Θ̃(1)

Then we must have that: let T be the first iteration where aT ≤ 0, we have: for every t ≤ T : there is
a scaling factor ℓt = Θ(1) such that

∥pt − ℓtp0∥2 ≤ o(1)∥p0∥2, ∥Πspan{u1,u2,p0}⊥(pt − p0)∥2 ≤ d−0.6∥p0∥2

Moreover, for every i, j ∈ [mG], ∥qi,t∥2 = Θ̃(∥qj,t∥2) and ∥qi,T ∥2 ≥ Θ̃(
√
Γ), and as long as

maxi∈[mG] ∥qi,t∥2 ≥ polylog(d), we have that at∥qi,t∥2 ≥ polylog(d).

Moreover,
∥Πspan{u1,u2,p0}⊥(qi,t − qi,0)∥2 ≤ d−0.6∥qi,t∥2

proof of Lemma E.4. For simplicity we consider the case when H = Ω̃(1), the other cases follow
similarly.

To proof this result, we maintain the following decomposition of pt and qi,t as:

pt = α(t)p0 + β(t) + γ(t)

Where β(t) ∈ span{u1, u2} and γ(t)⊥span{u1, u2, p0}. Note that α(0) = 1, β(0) = γ(0) = 0.

qi,t = α(i, t)p0 + β(i, t) + γ(i, t)
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Where β(i, t) ∈ spanu1, u2 and γ(i, t)⊥span{p0, u1, u2}.

We maintain the following induction hypothesis (which we will prove at the end): For some µ =
0.00001 and C1 = d−0.1, C2 = d−0.6, we have:

1. Through out the iterations, α(t) ≥ 0.5 and ∥β(t)∥2 ≤ 0.5(1 − µ)C1, ∥γ(t)∥2 ≤ 0.5(1 −
µ)C2.

2. α(i, t) ∈ (0, Õ
√
Γ) and ∥β(i, t)∥2 ≤ C1α(i, t) + ∥β(i, 0)∥2, ∥γ(i, t)∥2 ≤ C2α(i, t) +

∥γ(i, 0)∥2

The induction hypothesis implies that through out the iterations, ⟨qi,t, pt⟩ = Ω̃(∥qi,t∥2).
We can now write down the update of at, α′s, β′s and γ′s as:

at+1 = at − ηD

 ∑
i∈[mG]

Gi,tσ(⟨pt, qi,t⟩)± Õ(1)

 (16)

α(t+ 1) = α(t)− ηDat
∑

i∈[mG]

Gi,tσ
′(⟨pt, qi,t⟩)α(i, t) (17)

β(t+ 1) = β(t)− ηDat
∑

i∈[mG]

Gi,tσ
′(⟨pt, qi,t⟩)β(i, t)± Õ(ηD|at|) (18)

γ(t+ 1) = γ(t)− ηDat
∑

i∈[mG]

Gi,tσ
′(⟨pt, qi,t⟩)γ(i, t) (19)

By the induction hypothesis, we know that

σ′(⟨pt, qj,t⟩) ≥ Ω̃

(
∥qj,t∥22 ×

Λ2

Γ

)

Moreover, we have that let hi,t :=
(
σ′(⟨pt, qi,t⟩) +

∑
j∈[mG] Θ̃(σ′(⟨pt, qj,t⟩))

)
α(i, t+ 1) =

(
α(i, t) + ηGHi,tathi,t(1± Õ(τ2Λ2/Γ)α(t)

)
(20)

β(i, t+ 1) =
(
β(i, t) + ηGHi,tathi,t

(
β(t)± Õ(τ2Λ2/Γ)

))
(21)

γ(i, t+ 1) =
(
α(i, t) + ηGHi,tathi,t

(
γ(t)± Õ(τ2Λ2/Γ)

))
(22)

From these formula, we can easily that as long as (1). α(t) ≥ 0.5 and ∥β(t)∥2 ≤ 0.5(1 −
µ)C1, ∥γ(t)∥2 ≤ 0.5(1 − µ)C2, (2). C1, C2 = Ω̃(τ2Λ2/Γ), we must have that α(i, t) > 0 and
∥β(i, t)∥2 ≤ C1α(i, t)+ ∥β(i, 0)∥2, ∥γ(i, t)∥2 ≤ C2α(i, t)+ ∥γ(i, 0)∥2. Therefore, it remains to
only prove (1) in the induction hypothesis. Moreover, it is easy to observe that α(i, t) = Θ̃(α(j, t))
for all i, j ∈ [mG] and all t.

Now, we divide the update process into two stages:
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Before all ∥qi,t∥2 = Ω(Λ). Let’s call these iterations [T1] Let us consider Ti,1 such that for all
t ∈ [Ti,1] when qi,t = O(Λ) and at = Ω(1). In these iterations, by the update rule, we have

qi,t = qi,t + Ω̃(ηG)σ
′(⟨pt, qi,t⟩)pt ± Õ(ηGτ

2∥qi,t∥22)

By the induction hypothesis, we can simplify the update as:

⟨qi,t, p0⟩ ≥ ⟨qi,t, p0⟩+ Ω̃ (ηGσ
′(⟨qi,t, p0⟩))

Therefore, we know that Ti,1 ≤ Õ
(

d0.49

ηG

)
and

∑
t≤Ti,1

σ′(⟨qi,t, p0⟩),
∑

t≤Ti,1

σ′(⟨qi,t, pt⟩) ≤ Õ

(
Λ

ηG

)
(23)

Together with the induction hypothesis, the fact that α(i, t) = Θ̃(α(j, t)), the fact that σ(⟨pt, qi,t⟩) =
Θ̃(σ′(⟨pt, qi,t⟩)∥qi,t∥2) and update formula Eq equation 16 equation 31 equation 18 equation 19, we
know that for all t ≤ max{Ti,1}:

at = a0 ± Õ

(
ηDΛ2

ηG

)
= a0 ± Õ(d−0.01) (24)

α(t) = α(0)± Õ

(
ηDΛ2

ηG

)
= α(0)± Õ(d−0.01) (25)

∥β(t)∥2 ≤ Õ

(
ηDΛ2

ηG

)
C1 + Õ

(
ηD∥β(i, 0)∥2Λ

ηG

)
≤ Õ(d−0.01)C1 (26)

∥γ(t)∥2 ≤ Õ

(
ηDΛ2

ηG

)
C2 + Õ

(
ηD∥γ(i, 0)∥2Λ

ηG

)
≤ Õ(d−0.01)C2 (27)

When all ∥qi,t∥2 = Ω(Λ): In this case, since ∥p0∥2 = ω(1), we know that ⟨pt, qi,t⟩ = ω(Λ), so
σ(⟨pt, qi,t⟩) acts on the linear regime, which means that:

σ(⟨pt, qi,t⟩) = (1± o(1))3Λ2⟨pt, qi,t⟩, σ′(⟨pt, qi,t⟩) = (1± o(1))3Λ2

Therefore, we know that:

at+1 ≤ at − (1− o(1))ηD

 ∑
i∈[mG]

Gi,t3Λ
2∥qi,t∥2

α(t)∥p0∥2 (28)

α(t+ 1)∥p0∥2 ≥ α(t)∥p0∥2 − (1 + o(1))ηD

 ∑
i∈[mG]

Gi,t3Λ
2∥qi,t∥2

 at (29)

Now, using the fact that a0 ≤ 0.819α(0) and with Eq equation 24 and Eq equation 25, apply
Lemma E.2 we have that until at ≤ 0,∑

t

ηD

 ∑
i∈[mG]

Gi,t3Λ
2∥qi,t∥2

 at ≤ 0.49∥p0∥2 (30)

Plug in to the update rule:

α(t+ 1) = α(t)± (1 + o(1))ηDat
∑

i∈[mG]

Gi,t3Λ
2α(i, t) (31)

= α(t)± (1 + o(1))ηDat
∑

i∈[mG]

Gi,t3Λ
2 ∥qi,t∥2
∥p0∥

(32)
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∥β(t+ 1)∥2 ≤ ∥β(t)∥2 + (1 + o(1))ηDat

 ∑
i∈[mG]

Gi,t3Λ
2β(i, t) + Õ(1)

 (33)

≤ ∥β(t)∥2 + ηD(1 + o(1))at

 ∑
i∈[mG]

Gi,t3Λ
2 ∥qi,t∥2C1

∥p0∥2
+ Õ(1)

 (34)

≤ ∥β(t)∥2 + ηD(1 + o(1))at

 ∑
i∈[mG]

Gi,t3Λ
2 ∥qi,t∥2C1

∥p0∥2

 (35)

∥γ(t+ 1)∥2 ≤ ∥γ(t)∥2 + ηD(1 + o(1))at
∑

i∈[mG]

Gi,t3Λ
2γ(i, t) (36)

≤ ∥γ(t)∥2 + ηD(1 + o(1))at
∑

i∈[mG]

Gi,t3Λ
2 ∥qi,t∥2C2

∥p0∥2
(37)

We directly complete the proof of the induction hypothesis using Eq equation 30.

Now it remains to prove that ∥qi,T ∥2 = Ω(
√
Γ). Compare the update rule of qi,t and at we have:

at+1 = at − Θ̃(ηD)Gt

 ∑
i∈[mG]

Λ2∥qi,t∥2

 (38)

and ∑
i∈[mG]

∥qi,t+1∥2 = ∥qi,t∥2 + Θ̃(ηG)GtΛ
2at (39)

We can directly conclude that ∥qi,t∥2 ≤ Õ
(√

Γ
)

and ∥qi,T ∥2 = Ω̃(
√
Γ) .

Lemma E.5. For every ηD, ηG ∈
(
0, 1

poly(d)

]
such that ηG = ηDΓ for Γ ≥ Ω̃(

√
d), suppose for

sufficiently large C = poly(log(d)mD) there are vectors {qi,t}i∈[mG], {pi}i∈[mD] in Rd such that
∥pi∥2 = 1, ⟨pi, pi′⟩ ≤ Õ(1/

√
d) for i, i′, values Hi,j,t, Gi,t ∈

[
1
C2 , C

2
]

and a value a0 ≥ 0 satisfies
that:

a0 =
1

polylog(d)
, ∥qj,0∥2 = Θ̃(Λ); qj,0 =

∑
i∈[mD]

aipi + ξj , ai ≥ 0, ∥ξi∥2 ≤ 1

C
∥qj,0∥2

(40)

at+1 = at − ηD

Hi,j,t

∑
i∈[mD],j∈[mG]

σ(⟨pi, qj,t⟩)

 (41)

qi,t+1 = qi,t + ηGatGi,t

∑
j∈[mD]

(
σ′(⟨pj , qi,t⟩)

(
pj ±

1

C

))
(42)

Then we must have: within T = Õ
(√

Γ
ηG

)
many iterations, we must have that at ≤ 0 and

maxj∈[mG] ∥qj,T ∥2 = Θ̃(
√
Γ). Moreover, for every t ≤ T , we have: for every j ∈ [mG],∑

i∈[mD]

σ(⟨pi, qj,t⟩) = Ω

(
max

i∈[mD]
σ′(⟨pi, qj,t⟩)∥qj,t∥2

)
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and

max
i∈[mD]

⟨pi, qj,t⟩ ≥
(
1− 1

C0.2

)
∥qj,t∥2

Proof of Lemma E.5. Let us denote ri,t = maxj∈[mD]{⟨pj , qi,t⟩}.

By the update rule, we can easily conclude that:

ri,t+1 = ri,t + ηGGi,t

(
1− 1

C0.5

)
σ′(ri,t)

On the other hand, let us write qi,t =
∑

j∈[mD] αi,j,tqj + ξi,t, where αi,j,t ≥ 0. We know that:

∥ξi,t+1∥2 ≤ ∥ξi,t∥2 + ηGGi,t
mD

C
σ′(ri,t) (43)

By the comparison Lemma E.3 we can easily conclude that for every t,

∥ξi,t∥2 ≤ 1

C0.5
ri,t

This implies that: there exists values ut ∈ [1/C2, C2] such that

at+1 = at − ηDut

∑
i∈[mG]

σ(ri,t) (44)

Comparing this with the update rule of ri,t, we know that for every t with at ≥ 0, we must have:

ri,t = Õ
(√

Γ
)
, ri,T = Θ̃(

√
Γ)

Lemma E.6 (Auxiliary Lemma).

For every g > 0 we must have: Sigmoid(−gx− b)x is a decreasing function of x as long as gx > 1
and gx+ b > 0.
Lemma E.7. For at, bt, ct, dt ∈ Rd be defined as: a0, c0, d0 = 1

polylog(d) , |bt| ≤ O(log d) and
|bt| ≤ min{atc3t , atd3t}.

at+1 = at + ηD
1

2

((
1± 1

polylog(d)

)
Sigmoid(−atc

3
t − bt)c

3
t +

(
1± 1

polylog(d)

)
Sigmoid(−atd

3
t − bt)d

3
t

)
(45)

ct+1 = ct + ηD
3

2

((
1± 1

polylog(d)

)
Sigmoid(−atc

3
t − bt)c

2
tat

)
(46)

dt+1 = dt + ηD
3

2

((
1± 1

polylog(d)

)
Sigmoid(−atd

3
t − bt)d

2
tat

)
(47)

Then we have: for every t ∈
(

polylog(d)
ηD

, poly(d)
ηD

]
, we must have:

at =

√
2

3

(
1± 1

polylog(d)

)
ct (48)

ct =

(
1± 1

polylog(d)

)
dt (49)

Proof of Lemma E.7. By the update formula, we can easily conclude that for t ≤ poly(d)
ηD

, we have

that at, ct, dt ∈
[

1
polylog(d) ,polylog(d)

]
. This implies that for every t ∈

[
polylog(d)

ηD
, poly(d)

ηD

]
, we

have that
atc

3
t , atd

3
t ∈ [1, O(log d)]
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Apply Lemma E.6 we have that: As long as at > 3(ct + dt), we must have that

Sigmoid(−atc
3
t−bt)c

3
t+Sigmoid(−atd

3
t−bt)d

3
t < Sigmoid(−atc

3
t−bt)c

2
tat+Sigmoid(−atd

3
t−bt)d

2
tat

This implies that
at+1

3
− at

3
< ct+1 + dt+1 − ct − dt

Note that initially, a0, c0, d0 = 1
polylog(d) . This implies that when t ≥ polylog(d)

ηD
, we must have that

at ≤ 4(ct + dt), therefore ct + dt = Ω(1). Similarly, we can prove that at ≥ 0.1min{ct, dt}.

as long as ct > dt, we must have:

Sigmoid(−atc
3
t − bt)c

2
tat < Sigmoid(−atd

3
t − bt)d

2
tat

Which implies that:

ct+1

1 + 1/ polylog(d)
− ct

1 + 1/ polylog(d)
< dt+1 − dt (50)

Note that initially, c0, d0 = 1
polylog(d) and when t ≥ polylog(d)

ηD
, ct + dt = Ω(1). This implies that

for every t ∈
[
polylog(d)

ηD
, poly(d)

ηD

]
, we have: ct =

(
1± 1

polylog(d)

)
dt. Which also implies that

ct, dt ≤ O(log d).

Similarly, we can prove the bound for at.

F INDUCTION HYPOTHESIS

F.1 CASE 1: BALANCED GENERATOR AND DISCRIMINATOR

In this section we consider the case 2 in Lemma D.1. Here we give the induction hypothesis to prove
the case of balanced generator and discriminator, this is the most difficult case and other cases are
just simple modification of this one. Without loss of generality (by symmetry), let us assume that
a(0) > 0 and a(0) = 1

polylog(d) (this happens with probability 1− o(1)).

We divide the training into five stages: For a sufficiently large C = polylog(d)

1. Stage 1: Before one of the α(wi, uj , t) ≥ 1/C. Call this exact iteration TB,1.

2. Stage 2: After TB,1, before TB,2 = TB,1 +
1

ηD2
√

log(d)
.

3. Stage 3: After TB,2, before one of the α(vi, uj , t) ≥ d−0.49. Call this exact iteration TB,3.

4. Stage 4: After TB,3, before a(t) ≤ Õ
(

1
Λ2d1/4

)
. Call this exact iteration TB,4.

5. Stage 5: After TB,4, until convergence.

We maintain the following things about α and a, b during each stage:

Stage 1 : We maintain: For every t ≤ TB,1:

1. (B.1.0). For all but the i∗ ∈ [mD], and for all j ∈ [mG] (Below ∗ can be wi′ , vj′ , uℓ for
every i′ ∈ [mD], j′ ∈ [mG] and ℓ ∈ [2]).

∀∗ ≠ u1, u2 : |α(wi, ∗, t)− α(wi, ∗, 0)| ≤
1

d0.9
, |α(wi, uℓ, t)− α(wi, uℓ, 0)| ≤

C√
d
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2. (B.1.1). For all j ∈ [mG]:

|α(vj , ∗, t)− α(vj , ∗, 0)| ≤
polyloglog(d)

d

|α(vj , uℓ, t)| ≤
1

d

3. (B.1.2). For i∗ = i, we have that: for all ∗ ≠ u1, u2:

|α(wi, ∗, t)− α(wi, ∗, 0)| ≤
1

d0.9

4. (B.1.3). a and b remains nice:

a(t) ∈ (1− 1/C, 1 + 1/C)a0, |b(t)| ≤
1

C

Stage 2 : For every t ∈ [TB,1, TB,2].

1. (B.1.0), (B.1.1), (B.1.2) still holds.
2. (B.2.1): For i = i∗, we have:

a(t), α(wi, uℓ, t) = Θ̃(1)

Stage 3 : For every t ∈ [TB,2, TB.3].

1. (B.1.0), (B.1.2) still holds.
2. (B.3.2): For every j ∈ [mG]: For ∗ ≠ wi∗ , u1, u2, we have:

|α(vj , ∗, t)− α(vj , ∗, 0)| ≤
C3

√
d
∥v(t)j ∥2

and

α(vi, uℓ, t) ≥ −O

(
1

d

)
Moreover, let α(t) := maxj∈[mG],ℓ∈[2]⟨v

(t)
j , uℓ⟩, we have that:

|α(vj , wi∗ , t)| ≤ polyloglog(d)α(t), |⟨v(t)j , uℓ⟩| ≤ O(α(t))

3. (B.3.3): Balanced update: for every X ,

Sigmoid
(
−a(t)⟨w(t)

i∗ , X⟩3 − b(t)
)
∈
[

1√
dpolylog(d)

,
1

polylog(d)

]
Sigmoid

(
b(t)
)

and

Sigmoid
(
−a(t)⟨w(t)

i∗ , u1⟩3 − b(t)
)
=

(
1± 1

polylog(d)

)
Sigmoid

(
−a(t)⟨w(t)

i∗ , u2⟩3 − b(t)
)

Stage 4 : For every t ∈ [TB,3, TB.4].

1. (B.3.1), (B.3.2) still holds.
2. (B.4.1) for i = i∗, we have that for all ∗ ≠ u1, u2, wi:

|α(wi, ∗, t)− α(wi, ∗, 0)| ≤
C√
d

For all ∗ ∈ [u1, u2, wi]:
α(wi, ∗, t) = Θ(α(wi, ∗, TB,3))

3. For every i, j ∈ [mG]: ∥v(t)i ∥2 = Θ̃(∥v(t)j ∥2) and after t = TB,4, we have that for every

i ∈ [mG], ∥v(t)i ∥2 = Θ̃(d1/4).

4. |a(t)|, |b(t)| = O(log(d)).
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Stage 5 : For every t ∈ [TB,4, T0].

1. For every i ∈ [mD],
|α(wi, ∗, TB,4)− α(wi, ∗, t)| ≤ d−0.1

2. For every i ∈ [mG],
|α(vi, ∗, TB,4)− α(vi, ∗, t)| ≤ d0.2

3. |a(t)| ≤ Õ
(

1
Λ2d1/4

)
, and for every z:

⟨w(t)
i∗ , G(t)(z)⟩ = Ω̃(d1/4)

F.2 CASE 2: GENERATOR IS DOMINATING

We now consider another case where the generator’s learning rate dominates that of the discriminator.
This corresponds to case 3 in Lemma D.1. In this case, we divide the learning into four stages: For a
sufficiently large C = 2

√
log d:

1. Before α(vjG , wiG , t) ≥ d−0.49. Call this iteration TG,1.

2. After TG,1, before α(vjG , wiG , t) ≥ Λ. Call this iteration TG,2.

3. After iteration TG,2, before at ≤ 0. Call this iteration TG,3.

4. After TG,3.

We maintain the following induction hypothesis:

Stage 1 : In this stage, we maintain the following induction hypothesis: Let α(t) := α(vjG , wiG , t),
for every t ≤ TG,1:

1. (G.1.1). For all i ∈ [mD], and for all j ∈ [mG]:

|α(wi, ∗, t)− α(wi, ∗, 0)| ≤
C√
d

2. (G.1.2). For all j ∈ [mG], for all ∗ ≠ wiG :

|α(vj , ∗, t)− α(vj , ∗, 0)| ≤
C√
d
α(t)

Stage 2 : In this stage, we maintain: for every t ∈ [TG,1, TG,2]

1. (G.2.1). For every i ∈ [mD], we have:

|α(wi, ∗, t)− α(wi, ∗, 0)| ≤
1

C

2. (G.2.2). For every j ∈ [mG], α(vi, wiG , t) ≥ d−0.49.

3. For every i ∈ [mG], we have: for every ∗ ≠ wiG :

|α(vi, ∗, t)− α(vi, ∗, 0)| ≤
2

C
|α(vi, wiG , t)|

Stage 3 : In this stage, we maintain: For every t ∈ [TG,2, TG,3]:

1. (G.2.1), (G.2.2) still holds.

2. For every i ∈ [mG], we have: for every ∗ = vr or ∗ = uℓ:

|α(vi, ∗, t)− α(vi, ∗, 0)| ≤
2

C
∥v(t)i ∥2
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Stage 4 : In this stage, we maintain: For every t ∈ [TG,3, T1]:

1. (G.2.1) still holds.
2. For every i ∈ [mG], we have:

|α(vi, ∗, t)− α(vi, ∗, TG,3)| ≤
1

C
∥v(TG,3)

i ∥2

3. |αt| = Õ

(
1

Λ2
√

ηG/ηD

)
, ∥v(t)i ∥2 = Θ̃(

√
ηG/ηD), and for all z ̸= 0,∑

i∈[mD] h(G
(t)(z)) = Θ̃(Λ2

√
ηG/ηD).

G PROOF OF THE LEARNING PROCESS IN BALANCED CASE

For simplicity, we are only going to prove the case when u1⊥u2 and Pr[s1 = s2 = 1] = γ. The
other case can be proved identically.

G.1 STAGE 1

In this stage, by the induction hypothesis we know that ∥v(t)i ∥2 ≤ Õ(1/
√
d). Therefore, the update

of w(t)
i can be approximate as:

Lemma G.1. For every t ≤ TB,1, we know that: when the random samples are (X, z):

w
(t+1)
i = w

(t)
i + ηDa(0)

(
1± 1

polylog(d)

)
3

2
⟨w(t)

i , X⟩2X ± ηDÕ

(
1

d1.5

)
(51)

Moreover, we have that if zi = 1:

v
(t+1)
i = v

(t)
i + ηGa

(0) 3

2

(
1± 1

polylog(d)

) ∑
j∈[mD]

(
⟨w(0)

j , G(t)(z)⟩ ± 1

C0.5d

)2

w
(t)
j (52)

= v
(t)
i + ηGa

(0) 3

2

(
1± 1

polylog(d)

) ∑
j∈[mD]

(
⟨w(0)

j , G(t)(z)⟩ ± 1

C0.5d

)2

w
(0)
j ± ηGO

(
1

C0.5d2

)
(53)

Taking expectation of the above Lemma, we can easily conclude that:

E[w(t+1)
i ] = E[w(t)

i ] + ηDa(0)
(
1± 1

polylog(d)

)
3

4

(
⟨w(t)

i , u1⟩2u1 + ⟨w(t)
i , u2⟩2u2 +Θ(γ)⟨w(t)

i , u1 + u2⟩2(u1 + u2)
)

(54)

± ηDÕ

(
1

d1.5

)
(55)

and

E[⟨w(0)
j , G(t)(z)⟩2 | zi = 1] = ⟨w(0)

j , v
(t)
i ⟩2 ±O

 1

mG polylog(d)

∑
i∈[mG]

|⟨w(0)
j , v

(t)
i ⟩|

2

(56)

Therefore, let ζt = maxi∈[mG],j∈[mD]⟨v
(t)
i , w

(0)
j ⟩, Υt = maxj∈[mD],ℓ∈[2]⟨w

(t)
j , uℓ⟩, we have that:

E[Υt+1] = Υ + ηDa(0)
3

4

(
1± 1

polylog(d)

)
Υ2

t (57)

E[ζt+1] = ζt + ηGa
(0) 3

2mG

(
1± 1

polylog(d)

)
ζ2t (58)
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Proof of Lemma G.1. By the gradient formula, we have:

∇wi
L(X, z) = −Sigmoid(−f(X))aσ′(⟨wi, X⟩)X + Sigmoid(f(G(z)))aσ′(⟨wi, G(z)⟩)G(z)

∇viL(X, z) = −1zi=1 Sigmoid(f(G(z)))a
∑

j∈[mD]

σ′(⟨wi, G(z)⟩)wi

At iteration t, by induction hypothesis, we have that a(t) = a(0)(1± 1/C).

Moreover, by the induction hypothesis again, we have hat |f(X)| = Õ(d−1.5) and ∥G(z)∥2 ≤
O(d−0.5). Together with ∥w(t)

i ∥2 = Õ(1), this implies that

∥ Sigmoid(f(G(z)))aσ′(⟨wi, G(z)⟩)G(z)∥2 = Õ(d−1.5)

This proves the update formula for w(t)
i . As for vi, we observe that by the induction hypothesis

and notice that w.h.p. over the randomness of initialization, |⟨v(0)i , uℓ⟩| ≤ log d
d , therefore, we can

conclude that

⟨w(t)
j , G(t)(z)⟩ = ⟨w(0)

j , G(t)(z)⟩ ± Õ

(
1

d1.35

)
±O

(
log d

Cd

)
= ⟨w(0)

j , G(t)(z)⟩ ± 1

C0.5d
(59)

Note that by induction hypothesis, ∥w(t)
j − w

(0)
j ∥2 ≤ 1

C and ⟨w(0)
j , G(t)(z)⟩ ≤ mG(C0.1+log d)

d . This
implies that

⟨w(t)
j , G(t)(z)⟩2w(t)

j =

(
⟨w(0)

j , G(t)(z)⟩ ± 1

C0.5d

)2

w
(t)
j (60)

=

(
⟨w(0)

j , G(t)(z)⟩ ± 1

C0.5d

)2

w
(0)
j +O

(
1

C0.5d2

)
(61)

Now, apply Lemma E.4 and the fact that w.p. 1− o(1), ζ0 = polyloglog(d)
d , we have that:

Lemma G.2. ∑
t≤T1

ηGζ
2
t ≤ O

(
mG polyloglog(d)

a(0)d

)
(62)

In the end, we can show the following Lemma:

Lemma G.3. When t = TB,1, we have that: for both ℓ ∈ [2],

α(wi∗ , uℓ, t) =
1

polylog(d)

Proof of Lemma G.3. By the update formula in Eq equation 54, and the fact that Pr[X = u1+u2] ≥
1

polylog(d) and the induction hypothesis, we know that for i = i∗, for t ≤ TB,1 we have that:

α(wi, uℓ, t+ 1) ≥ α(wi, uℓ, t) + Ω̃(ηD)×
(
α(wi, u3−ℓ, t)−

1

d

)2

This implies that at the end of Stage 1, when α(wi, u3−ℓ, t) ≥ 1
C , we must have α(wi, uℓ, t) ≥ Ω̃(1)

as well.
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G.2 STAGE 2 AND STAGE 3

At this stage, by the induction hypothesis, we can approximate the function value as:

∑
i∈[mD]

σ
(
⟨w(t)

i , X⟩
)
= ⟨w(t)

i∗ , X⟩3 ± Õ

(
1

d1.5

)
(63)

∣∣∣∣∣∣
∑

i∈[mD]

σ
(
⟨w(t)

i , G(t)(z)⟩
)∣∣∣∣∣∣ ≤ Õ

(
∥G(t)(z)∥2

)3
≤ Õ

(
1

d1.45

)
(64)

Therefore, at this stage, we can easily approximate the update of W (t)
D as:

Lemma G.4. When the sample is (X, z), we have: for every t ∈ (TB,1, TB,3], the following holds:

a(t+1) = a(t) + ηD

(
1± Õ

(
1

d

))
Sigmoid

(
−a(t)⟨w(t)

i∗ , X⟩3 − b(t)
)
⟨w(t)

i∗ , X⟩3 (65)

± ηDÕ

(
1

d1.45

)
Sigmoid

(
b(t)
)

(66)

w
(t+1)
i = w

(t)
i + 3ηD

(
1± Õ

(
1

d

))
Sigmoid

(
−a(t)⟨w(t)

i , X⟩3 − b(t)
)
a(t)⟨w(t)

i , X⟩2X (67)

± ηDÕ

(
1

d1.45

)
Sigmoid

(
b(t)
)

(68)

b(t) = b(t) + ηDτb

(
1± Õ

(
1

d

))
Sigmoid

(
−a(t)⟨w(t)

i∗ , X⟩3 − b(t)
)

(69)

− ηDτb

(
1± Õ

(
1

d1.45

))
Sigmoid

(
b(t)
)

(70)

Moreover, the update formula also let us bound a(t), α(wi∗ , u1, t) as:

Lemma G.5. Let αt, at be updated as: for t = TB,2, αt = α(wi∗ , u1, t) and at = a(t), such that

at+1 = at + ηG Sigmoid(−atα
3
t − bt)α

3
t

αt+1 = αt +
3

2
ηGat Sigmoid(−atα

3
t − bt)α

2
t

Where bt be updated as: for t = TB,2, bt = b(t) and update as:

bt+1 = bt − ηDτb Sigmoid(bt)

Then we have: for every t ∈ [TB,2, TB,3]

at =

(
1± 1

polylog(d)

)
a(t), αt =

(
1± 1

polylog(d)

)
α(wi∗ , u1, t)

Sigmoid(b(t)) =

(
1± 1

polylog(d)

)
Sigmoid(bt)

Moreover, when t = TB,3, we have: at ≤ 0.819αt.
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Proof of Lemma G.5. By the update formula in Lemma G.4 and the bound in induction hypothesis
(B.3.3), we can simplify the update of a(t), b(t) and α(wi, uℓ, t) as: for i = i∗, when X = uℓ:

a(t+1) = a(t) + ηD

(
1± 1

polylog(d)

)
Sigmoid

(
−a(t)α(wi, uℓ, t)

3 − b(t)
)
α(wi, uℓ, t)

3

(71)
α(wi, uℓ, t+ 1) = α(wi, uℓ, t) (72)

+ 3ηD

(
1± 1

polylog(d)

)
Sigmoid

(
−a(t)α(wi, uℓ, t)

3 − b(t)
)
a(t)α(wi, uℓ, t)

2

(73)

b(t) = b(t) − ηDτb

(
1± 1

polylog(d)

)
Sigmoid

(
b(t)
)

(74)

�By the last inequality, we know that when Sigmoid(b(t)) >
(
1 + 1

polylog(d)

)
Sigmoid(bt), then b(t)

must be decreasing faster than bt, otherwise if Sigmoid(b(t)) >
(
1− 1

polylog(d)

)
Sigmoid(bt), then

bt must be decreasing faster than b(t), which proves the bound of b(t). Moreover, the update formula
of bt also gives us that for every t ≤ poly(d), we have: |bt| = O(log d). This implies that for every
Z:

Sigmoid(Z + b(t)) =

(
1± 1

polylog(d)

)
Sigmoid(Z + bt)

To obtain the bound of a(t) and α(w∗
i , u1, t), notice that when X = u1 + u2, we have that:

Sigmoid
(
−a(t)(α(wi, u1, t) + α(wi, u2, t))

3 − b(t)
)
≤ min

ℓ∈[2]
Sigmoid

(
−a(t)α(wi, uℓ, t)

3 − b(t)
)

Therefore, we can conclude:

E[a(t+1)] = a(t) (75)

+ ηD
1

2

(
1± 1

polylog(d)

)∑
ℓ∈[2]

Sigmoid
(
−a(t)α(wi, uℓ, t)

3 − bt

)
α(wi, uℓ, t)

3


(76)

E[α(wi, uℓ, t+ 1)] = α(wi, uℓ, t) (77)

+
3

2
ηD

(
1± 1

polylog(d)

)
Sigmoid

(
−a(t)α(wi, uℓ, t)

3 − bt

)
a(t)α(wi, uℓ, t)

2

(78)

Using Lemma G.3 we can conclude that

α(wi∗ , uℓ, TB,1) =
1

polylog(d)

and now apply Lemma E.7, we have: a(t) = Θ(α(wi∗ , u1, t)) and

α(wi∗ , u1, t) = [α(wi∗ , u1, t)]

(
1± 1

polyloglog(d)

)
This implies that:

E[a(t+1)] = a(t) + ηD

(
1± 1

polylog(d)

)(
Sigmoid

(
−a(t)α(wi, u1, t)

3 − bt

)
α(wi, uℓ, t)

3
)

(79)
E[α(wi, u1, t+ 1)] = α(wi, u1, t) (80)

+
3

2
ηD

(
1± 1

polylog(d)

)
Sigmoid

(
−a(t)α(wi, u1, t)

3 − bt

)
a(t)α(wi, u1, t)

2

(81)
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Apply Lemma E.7 again, we know that when

a(t)α(wi, u1, t)
3 >

(
1± 1

polylog(d)

)
atα

3
t

We must have that a(t) ≥ at and α(wi, u1, t) > αt. Therefore, apply Lemma E.6 we know that in
this case:

Sigmoid
(
−a(t)α(wi, u1, t)

3 − bt

)
α(wi, uℓ, t)

3 ≤ Sigmoid(−atα
3
t − bt)α

3
t

and

Sigmoid
(
−a(t)α(wi, u1, t)

3 − bt

)
a(t)α(wi, u1, t)

2 ≤ Sigmoid(−atα
3
t − bt)atα

2
t

Combine this with the update rule we can directly complete the proof.

The Lemma G.5 immediately implies that the α(wi∗ , uℓ, t) will be balanced after a while:
Lemma G.6. We have that for every t ∈ [TB,2, TB,3], the following holds:

α(wi∗ , u1, t) = [α(wi∗ , u1, t)]

(
1± 1

polyloglog(d)

)
and

α(wi∗ , u1, t) ≥ log0.1(d)

Using Lemma G.6, we also have the Lemma that approximate the update of v(t)i as:

Lemma G.7. Let us define α(t) := maxj∈[mG],ℓ∈[2]⟨v
(t)
j , uℓ⟩. For every t ∈ [TB,2, TB,3], we have:

for j ̸= i∗:

⟨w(t)
j , G(t)(z)⟩2w(t)

j = ⟨w(t)
j , G(t)(z)⟩2w(0)

j ± C2

d0.5
⟨w(t)

j , G(t)(z)⟩2 (82)

For j = i∗:

⟨w(t)
j , G(t)(z)⟩2w(t)

j = ⟨w(t)
j , G(t)(z)⟩2

(
w

(0)
j + α(wj , u1, t)u1 + α(wj , u2, t)u2

)
± C

d0.9
⟨w(t)

j , G(t)(z)⟩2

(83)

Now, for ⟨w(t)
j , G(t)(z)⟩ we have: For j ̸= i∗:

Ez[⟨w(t)
j , G(t)(z)⟩2 | zi = 1] =

(
1± 1

polylog(d)

)(
⟨w(0)

j , v
(t)
i ⟩ ± C2

√
d
α(t)

)2

± α(t)2

polylog(d)
(84)

For j = i∗:

Ez[⟨w(t)
j , G(t)(z)⟩2 | zi = 1] =

(
1± 1

polyloglog(d)

)
α(wi∗ , u1, t)

2
〈
(u1 + u2), v

(t)
i

〉2
(85)

± α(t)2

polyloglog(d)
α(wi∗ , u1, t)

2 (86)

Moreover, the update of Sigmoid can be approximate as:

Sigmoid
(
f (t)

(
G(t)(z)

))
=

(
1± Õ

(
1

d1.45

))
Sigmoid

(
b(t)
)
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Proof of Lemma G.7. The first half of the lemma regarding w
(t)
j follows trivially from the induction

hypothesis, we only need to look at ⟨w(t)
j , G(t)(z)⟩.

We know that for j ̸= i∗, we have that by the induction hypothesis,

⟨w(t)
j , G(t)(z)⟩ = ⟨w(0)

j , G(t)(z)⟩ ± Õ

(
1

d1.35

)
±O

(
CmGα(t)√

d

)
(87)

For j = i∗, we have that

⟨w(t)
j , G(t)(z)⟩ = ⟨w(0)

j , G(t)(z)⟩+ α(wj , u1, t)⟨u1, G
(t)(z)⟩+ α(wj , u2, t)⟨u2, G

(t)(z)⟩ ± Õ

(
1

d1.35

)
(88)

= α(wj , u1, t)⟨u1 + u2, G
(t)(z)⟩ ± 1

polyloglog(d)
α(wj , u1, t)α(t)∥z∥1 ± Õ

(
1

d1.35

)
(89)

= α(wj , u1, t)⟨u1 + u2, v
(t)
i ⟩ ± Õ

(
1

d1.35

)
±O(α(wj , u1, t)α(t))(∥z∥1 − 1)

(90)

Taking expectation we can complete the proof.

With Eq equation 82 and Eq equation 83 in lemma G.7, together with the induction hypothesis, we
immediately obtain
Lemma G.8. For every t ∈ [TB,2, TB,3], we have that: for every i ∈ [mG]:

v
(t)
i = v

(TB,2)
i +

∑
ℓ∈[2]

α
(t)
i,ℓuℓ +

∑
j∈[mD]

β
(t)
i,jw

(0)
j ± ξi,t (91)

Where α
(t)
i,ℓ , β

(t)
i,j > 0 and α

(t)
i,ℓ = (1± o(1))α

(t)
i,3−ℓ; ∥ξi,t∥22 ≤ Õ(1/d)

(∑
ℓ,j(α

(t)
i,ℓ )

2 + (β
(t)
i,j )

2
)

We now can immediately control the update of v(t)i using the following sequence:
Lemma G.9. Let vt be defined as: for t = TB,2

vt = max
i∈[mG]

⟨v(t)i , u1 + u2⟩
(
1 +

1

polyloglog(d)

)
and the update of vt is given as: for αt defined as in Lemma G.5

vt+1 = vt +
3

mG
Sigmoid(bt)α

2
t v

2
t

Then we must have: for every t ∈ [TB,2, TB,3]:

max
i∈[mG]

⟨v(t)i , u1 + u2⟩ ≤ vt (92)

On the other hand, if for t = TB,2,

vt = max
i∈[mG]

⟨v(t)i , u1 + u2⟩
(
1− 1

polyloglog(d)

)
Then we must have: for every t ∈ [TB,2, TB,3]:

max
i∈[mG]

⟨v(t)i , u1 + u2⟩ ≥ vt (93)
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Proof of Lemma G.9. In the setting of Lemma G.7, let us define beta(t) := maxj∈[mG]⟨v
(t)
j , u1+u2⟩.

We have that:

β(t+ 1) = β(t) + ηGαt

(
1± 1

polylog(d)

)
3

mG
β(t)2 ± 1

polyloglog(d)
α(t)2 (94)

By the induction hypothesis we know that for all j ∈ [mG], ℓ ∈ [2]:

⟨v(t)j , uℓ⟩ ≥ ⟨v(0)j , uℓ⟩ −O

(
1

d

)
≥ − log log2 d

d
(95)

This implies that β(t) ≥ α(t)− log log2(d)√
d

and β(TB,2) ≥ 1
d , α(TB,2) ≤ polyloglog(d)√

d
. This implies

that:

β(t+ 1) = β(t) + ηGαt

(
1± 1

polyloglog(d)

)
3

mG
β(t)2 (96)

This completes the proof by applying Lemma E.1.

Now, by the comparison Lemma E.1, we know that one of the following event would happen
(depending on the initial value of vt at iteration TB,2):

Lemma G.10. With probability 1− o(1), one of the following would happen:

1. TB,3 ≥ T0.

2. TB,3 < T0, moreover, at iteration TB,3, we have that Sigmoid(bt) ≥ 1
polylog(d) .

In the end, we can easily derive an upper bound on the sum of Sigmoid as below, which will be used
to prove the induction hypothesis.

Lemma G.11. For every t ∈ (TB,1, TB,3], we have that: for every X, z:∑
t∈(TB,1,TB,3]

ηD Sigmoid
(
a(t)⟨w(t)

i∗ , X⟩3 + b(t)
)
= Õ(1) (97)

∑
t∈(TB,1,TB,3]

ηDτb

(
b(t)
)
≤ Õ(1) (98)

We will also show the following Lemma regarding all the v
(t)
i at iteration TB,3:

Lemma G.12. For all i ∈ [mG], if we are in case 2 in Lemma G.10, we have that:

⟨v(t)i , u1⟩, ⟨v(t)i , u2⟩ = Ω̃(d−0.49) (99)

Proof of Lemma G.12. Since with probability at least 1/ poly(d), zi = zj = 1, so we have: By the
update Lemma G.7 of v, we know that for all j ∈ [mG]: Let α(t) be defined as in Lemma G.7:

E[α(vj , uℓ, t+ 1)] ≥ α(vj , uℓ, t) + ηG
1

polylog(d)

(
α(t)− Õ

(
1

d

))2

± Õ

(
1

d0.8

)
α(t)2 (100)

E[α(vj , uℓ, t+ 1)] ≤ α(vj , uℓ, t) + ηG polylog(d)α(t)2 (101)

By Lemma G.10 we know that α(t) = Θ̃(d−0.49) at iteration t = TB,3, which implies what we want
to prove.
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G.3 STAGE 4 AND 5

In Stage 4 we can easily calculate that by induction hypothesis, for every i ∈ [mG] and for every
j ∈ [mD], j ̸= i∗:

|⟨v(t)i , w
(t)
j ⟩| ≤ Õ

(
∥v(t)i ∥2√

d

)

Let
Si,t = Ez

[
Sigmoid

(
a(t)σ

(
⟨w(t)

i∗ , G(t)(z)⟩
)
+ b(t)

)
| zi = 1

]
Note that by induction hypothesis, |a(t)|, b(t) = O(log(d)). Which implies that as long as
maxi∈[mG] ∥v

(t)
i ∥2 ≤ 1

polylog(d) or for all i ∈ [mG], a(t)σ′(⟨v(t)i , wi∗⟩) ≥ Ω̃(log(d)), we have
that: for all z, z′ we have that:

Sigmoid
(
a(t)σ

(
⟨w(t)

i∗ , G(t)(z)⟩
)
+ b(t)

)
= Θ(1)× Sigmoid

(
a(t)σ

(
⟨w(t)

i∗ , G(t)(z′)⟩
)
+ b(t)

)
We can immediately obtain the following Lemma:

Lemma G.13. The update of v(t)i is given as:

E[v(t+1)
i ] = v

(t)
i + Θ̃(ηG)a

(t)Si,t

σ′(⟨w(t)
i∗ , v

(t)
i ⟩+

∑
j∈[mG]

γi,j,tσ
′(⟨w(t)

i∗ , v
(t)
j ⟩)

w
(t)
i ± Õ

(
∥v(t)i ∥2√

d

)2


(102)

Where γi,j,t > 0; γi,j,t = Θ̃(1) if maxi∈[mG] ∥v
(t)
i ∥2 ≤ 1

polylog(d) or for all i ∈ [mG],

a(t)σ′(⟨v(t)i , wi∗⟩) ≥ Ω̃(log(d)), and γi,j,t = Õ(1) otherwise.

Here the additional σ′(⟨w(t)
i∗ , v

(t)
j ⟩) part comes from Pr[zi, zj = 1] = 1

polylog(d) . The remaining part
of this stage follows from simply apply Lemma E.4.

In stage 5, we bound the update of a(t), b(t) as:

Let
St = Ez

[
Sigmoid

(
a(t)σ

(
⟨w(t)

i∗ , G(t)(z)⟩
)
+ b(t)

)]
In this stage, with the induction hypothesis, we can easily approximate the sigmoid as:
Lemma G.14. For t ≥ TB,4, the sigmoid can be approximate as: For every X, z

Sigmoid(−f (t)(X)) =

(
1± 1

polylog(d)

)
Sigmoid(−b(t))

Sigmoid(f (t)(G(t)(z))) =

(
1± 1

polylog(d)

)
Sigmoid

(
a(t)σ

(
⟨w(t)

i∗ , G(t)(z)⟩
)
+ b(t)

)
Then by the update rule, we can easily conclude that:

Lemma G.15. For t ≥ TB,4, the update of a(t), b(t) is given as:

a(t+1) = a(t) + Õ(ηD) Sigmoid
(
−b(t)

)
− Ω̃(ηD)StΛ

2d1/4

E[b(t+1)] = b(t) + ηDτb

(
1± 1

polylog(d)

)
Sigmoid

(
−b(t)

)
− ηDτb

(
1± 1

polylog(d)

)
St

This Lemma, together with the induction hypothesis, implies that:
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Lemma G.16. We have: ∑
t≥TB,4

St ≤ Õ

(
1

ηDτbΛ2d1/4

)
(103)

∑
t≥TB,4

Sigmoid(b(t)) ≤ Õ

(
1

ηDτb

)
(104)

Proof of Lemma G.16. Let us denote R =
∑T0

t=TB,4
Sigmoid

(
−b(t)

)
and Q =

∑T0

t=TB,4
St

Sum the update up for t = TB,4 to T0, we have that:

a(T0) − a(TB,4) = Õ(ηD)R− Ω̃(ηD)QΛ2d1/4 (105)

E[b(T0)]− b(TB,4) = Θ(ηDτb)R−Θ(ηDτb)Q (106)

By the induction hypothesis that |a(t)| ≤ Õ(1)
Λ2d1/4 and |bt| = Õ(1), we have that:

|Õ(ηD)R− Ω̃(ηD)QΛ2d1/4| ≤ Õ(1)

Λ2d1/4
(107)

|Θ(ηDτb)R−Θ(ηDτb)Q| ≤ Õ(1) (108)

Thus, we have:

Ω̃(ηD)QΛ2d1/4 ≤ Õ(ηD)R+
Õ(1)

Λ2d1/4
≤ Õ(ηD)

(
1

ηDτb
+Q

)
+

Õ(1)

Λ2d1/4
(109)

Therefore we have that Ω̃(ηD)QΛ2d1/4 ≤ Õ
(

1
ηDτb

+ 1
ηDΛ2d1/4

)
, which implies that

Q ≤ Õ

(
1

ηDτbΛ2d1/4

)
Similarly, we can show that

R ≤ Õ

(
1

ηDτb
+Q

)
≤ Õ

(
1

ηDτb
+

1

(Λ2d1/4)2
+

1

Λ2d1/4
R

)
(110)

This implies that R ≤ Õ
(

1
ηDτb

)
.

G.4 PROOF OF THE INDUCTION HYPOTHESIS AND THE FINAL THEOREM

The final theorem follows immediately from the induction hypothesis (v part) together with
Lemma G.8.

Now it remains to prove the induction hypothesis. We will assume that all the hypothesises are true
until iteration t, then we will prove that they are true at iteration t+ 1.

Stage 1 .

To prove the induction hypothesis at Stage 1, for w, we have that by Lemma G.1, we know that: for
∗ ≠ u1, u2,

|α(wi, ∗, t+ 1)− α(wi, ∗, t)| ≤ ηDÕ

(
1

d1.5

)
(111)
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By T1 ≤ O
( √

d
ηDa(0)

)
we can conclude that

|α(wi, ∗, t+ 1)− α(wi, ∗, 0)| ≤ ηDÕ

(
1

d1.5

)
×O

( √
d

ηDa(0)

)
≤ 1

d0.9
(112)

On the v part, again by Lemma G.1, we know that for ∗ /∈ {wj}j∈[mD]:

|α(vi, ∗, t)− α(vi, ∗, 0)| ≤ ηG

(
1

C0.5d2

)
×O

( √
d

ηDa(0)

)
≤ 1

d
(113)

On the other hand, we know that for wj :

|α(vi, wj , t+ 1)− α(vi, wj , t)| ≤ ηG

(
1 +

1

polylog(d)

)
3

2mG
ζ2t (114)

Apply Lemma G.2 we complete the proof using Lemma E.3.

As for the a(t), b(t) part, we know that:

|a(t+1) − a(t)| ≤ O
(
ηDmDΥ3

t

)
, |b(t)| ≤ τbηDT1 (115)

Combine with the update rule of Υ in Eq equation 57, we complete the proof.

Stage 2 and 3 For the w part, we know that by Lemma G.4, we have that for every ∗ ≠ u1, u2

|α(wi, ∗, t+ 1)− α(wi, ∗, t)| ≤ ηDÕ

(
1

d1.45

)
Sigmoid(b(t)) (116)

Now, by Lemma G.11 we have that: ∑
t∈(TB,1,TB,3]

ηDτb

(
b(t)
)
≤ Õ(1)

This implies that

|α(wi, ∗, t+ 1)− α(wi, ∗, TB,1)| ≤ ηDÕ

(
1

d1.45

)
× 1

ηbηD
≤ 1

d0.9

For the v part for t ≤ TB,2, since TB,2 − TB,1 = Õ(do(1)/ηD), we can easily prove it for t ≤ TB,2

as in stage 1. On the other hand, for t ∈ (TB,2, TB,3]: By Lemma G.7 and Lemma G.6, we have that
define

α(t) := max
j∈[mG],ℓ∈[2]

⟨v(t)j , uℓ⟩, β(t) := max
j∈[mG],j′∈[mG],j ̸=j′;i∈[mD],i̸=i∗

|⟨v(t)j , w
(0)
i ⟩|+|⟨v(t)j , v

(0)
j′ ⟩|

We have that:

E[α(t+ 1)] ≥ α(t) + ηGΩ

(
1

mG

)
Sigmoid(b(t))α(t)2 log0.1(d) (117)

and

E[β(t+ 1)] ≤ β(t) + ηGO

(
1

mG

)
Sigmoid(b(t))

(
β(t)2 +

C2

√
d
α(t)2

)
(118)

By Lemma D.2 and Lemma E.1 we can show that β(t) = O
(
β(0) + C2

√
d
α(t)

)
, which complete the

proof that for all ∗ ≠ wi∗ , u1, u2:

|α(vj , ∗, t)| ≤
C3

√
d
∥v(t)j ∥2

.
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Stage 4 and 5 At stage 4 we simply use Lemma E.4, the only remaining part is to show that
|b(t)| = O(log(d)). To see this, we know that by the update formula:

∇bL(X, z) = −Sigmoid(−f(X)) + Sigmoid(f(G(z)))

By our induction hypothesis, we know that a(t)
(∑

i∈[mD] σ(⟨w
(t)
i , X⟩)

)
> 0

and a(t)
(∑

i∈[mD] σ(⟨w
(t)
i , G(z)⟩)

)
> 0 . Therefore, b < O(log(d)) is immediate. Now it remains

to show that b > −O(log d): By the update formula, we have:

−b(t+1) ≤ −b(t) + ηDτb
∑

i∈[mG]

Si,t

and by Lemma G.13 and the proof in Lemma E.4, we have that:∑
i∈[mG]

⟨v(t+1)
i , w

(0)
i∗ ⟩ ≥

∑
i∈[mG]

⟨v(t)i , w
(0)
i∗ ⟩+ a(t)Ω̃(ηG)

 ∑
i∈[mG]

Si,t

 ∑
i∈[mG]

σ′(⟨v(t)i , w
(0)
i∗ ⟩)


(119)

Compare this two updates we can easily obtain that |b(t)| = O(log(d)).

At stage 5, we have that since |a(t)| = Õ
(

1
d1/4Λ2

)
: For every j ∈ [mG], i ∈ [mD]

∥v(t+1)
j − v

(t)
j ∥2 ≤ Õ(ηG)StΛ

2 × 1

Λ2d1/4
(120)

∥w(t+1)
i − w

(t)
i ∥2 ≤ Õ(ηD) Sigmoid(−b(t))

1

d1/4Λ2
(121)

Apply Lemma G.16 we have that:

∥v(t+1)
j − v

(TB,4)
j ∥2 ≤ Õ(ηG)×

1

d1/4
× 1

ηDτbΛ2d1/4
≤ d0.15 (122)

∥w(t+1)
i − w

(TB,4)
i ∥2 ≤ Õ(ηD)

1

d1/4Λ2
× 1

ηDτb
≤ 1

d0.1
(123)

Which proves the induction hypothesis.

H PROOF OF THE LEARNING PROCESS IN OTHER CASES

We now consider other cases, in case 1 of Lemma D.1, the proof is identical to case 2, the only
difference is at Stage 3, we have that TB,3 > T0.

In case 2, the Stage 1 is identical to the Stage 1, 2, 3 in the balanced case. For Stage 3, its identical to
Stage 4 in the balanced case (the only difference is to apply Lemma E.5 and the case 2 of Lemma E.2
instead of Lemma E.4). For Stage 4, its identical to Stage 5 in the balanced case.

At Stage 2, by the induction hypothesis, we know that for j ̸= iG, we have that |⟨v(t)j , w
(t)
j ⟩| ≤

Õ
(

1
C ∥v(t)j ∥2

)
. Thus, we can approximate the update of w, v as:

w
(t+1)
i = w

(t)
i ± Õ(ηD

∑
j∈[mG]

∥v(t)j ∥22)Λ (124)

v
(t+1)
j = v

(t)
j + Θ̃(ηG

∑
j∈[mG]

∥v(t)j ∥22)w
(0)
iG

± 1

C2
Θ̃(ηG

∑
j∈[mG]

∥v(t)j ∥22) (125)

Using the fact that ηG ≥ Ω̃(
√
d)ηD in case 3 we immediately proves the induction hypothesis.

The proof of the theorem follows immediately from the induction hypothesis on v in this case v only
learns noises (linear combinations of w(0)

i ).
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I NORMALIZED SGD

In this section we look at the update of normalized SGD.

Let us define:
i∗1 = argmax

i∈[mD]

{⟨w(0)
i , u1⟩}

i∗2 = argmax
i∈[mD]

{⟨w(0)
i , u2⟩}

Let us define:
g∗j = argmax

i∈[mD]

{⟨v(0)j , w
(0)
i ⟩}

Then we first show the following Lemma about initialization:
Lemma I.1. With probability at least 1−o(1) over the randomness of the initialization, the following
holds:

1. For all ℓ ∈ [2], for all i ∈ [mD] such that i ̸= i∗ℓ , we have:

⟨w(0)
i∗ℓ

, uℓ⟩ ≥
(
1− 1

polyloglog(d)

)
⟨w(0)

i , uℓ⟩

2. For all j ∈ [mG], we have that for all i ∈ [mD] such that i ̸= g∗j ,

⟨v(0)j , w
(0)
g∗
j
⟩ ≥

(
1− 1

log4(d)

)
⟨v(0)j , w

(0)
i ⟩

3. {g∗j }j∈[mG] = [mD].

We now divide the training stage into two: For a sufficiently large C = polylog(d), consider the case
when ηG = ηD ∗ C−0.6.

1. Stage 1: When both α(wi∗1 , u1, t), α(wi∗2 , u2, t) ≤ 1
C0.95 . Call this iteration TN,1.

2. Stage 2: After TN,1, before T1

I.1 INDUCTION HYPOTHESIS

We will use the following induction hypothesis: for a

Stage 1: for every t ≤ TN,1: Let α(t) := maxℓ∈[2] α(wi∗ℓ
, uℓ, t), β(t) := maxi∈[mG] α(vi, wg∗

i
, t).

1. Domination: For every i ∈ [mG], we have:

|α(vi, ∗, t)− α(vi, ∗, 0)| ≤ min

{
1

C
α(t), β(t)

}
For every i ∈ [mD], i ̸= i∗1, i

∗
2, we have that for ∗ ≠ u1, u2:

|α(wi, ∗, t)− α(wi, ∗, 0)| ≤
1

C
α(t)

and
|α(wi, u1, t)|, |α(wi, u2, t)| ≤ α(t)

For i∗1, we have that for every ∗ ≠ u1,

|α(wi∗1
, ∗, t)− α(wi∗1

, ∗, 0)| ≤ 1

C
α(t)

For i∗2, we have that for every ∗ ≠ u2,

|α(wi∗2
, ∗, t)− α(wi∗2

, ∗, 0)| ≤ 1

C
α(t)
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2. (N.1.2): Growth rate: we have that for every i ∈ [mD]

α(wi∗ℓ
, uℓ, t) ∈

(
Ω

(
1

mD

)
, 1

)
ηDt

and for every i ∈ [mG]:

α(vi, wg∗
i
, t) ∈

(
Ω

(
1

m2
G

)
, 1

)
ηGt

Therefore by our choice of ηD, ηG we have that β(t) ∈ C−0.6
[

1
log5 d

, log5 d
]
× α(t).

3. a(t) = [0.5, 1]a(0), |b(t)| ≤ 1
d0.1 .

Stage 2: We maintain: For every t ∈ [TN,1, T1]:

1. (N.1.2) still holds.

2. α(wi∗ℓ
, uℓ, t) ∈

[
1
C ,polylogloglog(d)

]
, β(t) ∈ C−0.6

[
1

log5 d
, log5 d

]
× α(t), a(t) =

Ω(α(wi∗ℓ
, uℓ, t)).

3. wi’s are good: For every i ̸= i∗1, i
∗
2, for every ∗:

|α(wi, ∗, t)− α(wi, ∗, 0)| ≤
1

C
α(t)

and for ℓ ∈ [2]: for every ∗ ≠ uℓ, we have:

|α(wi, ∗, t)− α(wi, ∗, 0)| ≤
1

C
α(t)

4. vi’s are good: For every i ∈ [mG] and every j ∈ [mD], j ̸= g∗i :

⟨v(t)i , w
(t)
g∗
i
⟩ ≥ C0.9|⟨v(t)i , w

(t)
j ⟩|

and for g∗i ̸= i∗ℓ , we have that:

⟨v(t)i , w
(t)
g∗
i
⟩ ≥ C0.9|⟨v(t)i , uℓ⟩|

For g∗i = iℓ , we have that ⟨v(t)i , uℓ⟩ ≥ − 1
C0.5 β(t)

I.2 STAGE 1 TRAINING

With the induction hypothesis, we can show the following Lemma:

Lemma I.2. For t ≤ TN,1, for εt := (α(t)+d−0.5)2

C1.5 + C0.5(α(t) + d−0.5)3, when the sample is
X ∈ {u1, u2}, the update of w(t)

i can be approximate as:

w
(t+1)
i = w

(t)
i + ηD

(
1± 1

polylog(d)

)
σ′(⟨w(t)

i , X⟩)X ± εt√∑
j∈[mD] σ

′(⟨w(t)
j , X⟩)2∥X∥22

(126)

Which can be further simplified as:

E[⟨w(t+1)
i , uℓ⟩] = ⟨w(t)

i , uℓ⟩+ ηD
1

2

(
1± 1

polylog(d)

)
σ′(⟨w(t)

i , uℓ⟩)± εt√∑
j∈[mD] σ

′(⟨w(t)
j , uℓ⟩)2

± ηDγ

(127)

When z = ei, the update of v can be approximate as: For δt := O
(

1
C0.94 (β(t) +

1
d )

2
)
:

v
(t+1)
i = v

(t)
i + ηG

(
1± 1

polylog(d)

) ∑
j∈[mD] σ

′(⟨v(t)i , w
(0)
j ⟩)w(0)

j ± δt

∥
∑

j∈[mD] σ
′(⟨v(t)i , w

(0)
j ⟩)w(0)

j ∥2
(128)

Where we have:
⟨v(t)i , w

(t)
j ⟩ = ⟨v(t)i , w

(0)
j ⟩ ± 1

C0.9
β(t)

42



Under review as a conference paper at ICLR 2023

Proof of the update Lemma I.2. By the induction hypothesis, We have that:

⟨v(t)i , w
(t)
j ⟩ = ⟨v(t)i , w

(0)
j ⟩+ ⟨v(t)i , w

(t)
j − w

(0)
j ⟩ (129)

= ⟨v(t)i , w
(0)
j ⟩+ ⟨v(0)i , w

(t)
j − w

(0)
j ⟩+ ⟨v(t)i − v

(0)
i , w

(t)
j − w

(0)
j ⟩ (130)

= ⟨v(t)i , w
(0)
j ⟩ ± Õ

(
1√
d
α(t)

)
±O

(
1

C0.94
β(t)

)
(131)

= ⟨v(t)i , w
(0)
j ⟩ ± 1

C0.9
β(t) (132)

Here we use the fact that ∥w(0)
j − w

(t)
j ∥2 ≤ O

(
1

C0.95

)
from the induction hypothesis.

Consider the update of wi, we have that: at stage 1, we must have |f(X)|, |f(G(z))| ≤ 1
polylog(d) .

Therefore,

∇wiL(X, z) =

(
1± 1

polylog(d)

)
a(t)σ′(⟨w(t)

i , X⟩)X − a(t)σ′(⟨w(t)
i , G(t)(z)⟩)G(t)(z) (133)

By the induction hypothesis, we have that by β(t) ≤ α(t), it holds that:

∥σ′(⟨w(t)
i , G(t)(z)⟩)G(t)(z)∥2 ≤ O

(
α(t)

C
+

1

C
√
d

)2

m2
G ×mG

(
1√
d
+

α(t)

C

)
≤ ϵt

On the other hand, we must have that when X = uℓ, we have(
1± 1

polylog(d)

)
σ′(⟨w(t)

i∗ℓ
, X⟩) ≥

(
1

mD
α(t) +

1√
d

)2

≥ polylog(d)ϵt (134)

This completes the proof of the wi part. For vi part the proof is the same using the fact that
∥w(0)

j − w
(t)
j ∥2 ≤ O

(
1

C0.95

)
from the induction hypothesis.

I.3 STAGE 2 TRAINING

In this stage, we can maintain the following simple update rule: For wi:

Lemma I.3. For every t ∈ (TN,1, T1], we have that: for every i ∈ [mD], for i = i∗ℓ :

E[w(t+1)
i ] = w

(t)
i +Θ(ηD)uℓ ± ηD

1

C1.501
± ηDγ

and for i ̸= i∗1, i
∗
2,

E[w(t+1)
i ] = w

(t)
i ± ηD

1

C1.501
± ηDγ

For vi:

E[v(t+1)
i ] = v

(t)
i +

(
1± 1

polylog(d)

)
1

mG
ηG

w
(t)
g∗
i

∥w(t)
g∗
i
∥2

± ηG
1

C1.5
(135)

Proof of Lemma I.3. This Lemma can be proved identically to Lemma I.2: By the induction hypoth-
esis, we have

|⟨w(t)
i , v

(t)
j ⟩| ≤ log5 β(t) (136)

Therefore,

∥σ′(⟨w(t)
i , G(t)(z)⟩)v(t)j ∥2 ≤ C0.01β(t)3 ≤ 1

C1.51
α(t)2
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Which implies that:

w
(t+1)
i = w

(t)
i + ηD

σ′(⟨w(t)
i , X⟩)X ± 1

C1.51α(t)2√∑
j∈[mD](σ

′(⟨w(t)
j , X⟩)2∥X∥22 +

∑
j∈[mD]

(
σ′(⟨w(t)

j , X⟩)2
)3 (137)

Where
∑

j∈[mD]

(
σ′(⟨w(t)

j , X⟩)2
)3

comes from the gradient of a(t). By the induction hypothesis

we have that a(t) = Ω(α(wi∗ℓ
, uℓ, t)), so we have

w
(t+1)
i = w

(t)
i +Θ(ηD)

σ′(⟨w(t)
i , X⟩)X ± 1

C1.51α(t)2√∑
j∈[mD](σ

′(⟨w(t)
j , X⟩)2∥X∥22

(138)

On the other hand, by the induction hypothesis, for ℓ ∈ 2[: For i = i∗ℓ : ⟨w∗
i , uℓ⟩ ≥ 1

mD
α(t), and for

i ̸= i∗1, i
∗
2: |⟨w∗

i , X⟩| ≤ O
(
1
Cα(t)

)
.

This implies that: for i = i∗ℓ :

E[w(t+1)
i ] = w

(t)
i +Θ(ηD)uℓ ± ηD

1

C1.5
± ηDγ

and for i ̸= i∗1, i
∗
2,

E[w(t+1)
i ] = w

(t)
i ± ηD

1

C1.5
ηDγ

Where the additional γ factor comes from the case when X = u1 + u2 or X = 0.

On the other hand, we also know that:∑
i∈[mD]

σ′(⟨w(t)
i , v

(t)
j ⟩)w(t)

i (139)

= σ′(⟨w(t)
g∗
j
, v

(t)
j ⟩)w(t)

g∗
j
±mD

(
1

C0.9

)2

⟨w(t)
g∗
j
, v

(t)
j ⟩2 polylogloglog(d) (140)

= σ′(⟨w(t)
g∗
j
, v

(t)
j ⟩)w(t)

g∗
j
± σ′(⟨w(t)

g∗
j
, v

(t)
j ⟩) 1

C1.6
(141)

Notice that ∥w(t)
i ∥2 = Ω(1) so we complete the proof.

I.4 PROOF OF THE INDUCTION HYPOTHESIS

Now it remains to prove the induction hypothesis:

Stage 1: In this stage, we will use the update Lemma I.2. By the induction hypothesis we know
that for X = uℓ,

⟨w(t)
j , X⟩ = α(wj , uℓ, t) + α(wj , wj , 0)

〈
w

(0)
j

∥w(0)
j ∥2

, uℓ

〉
±O

(
1

C0.5
√
d

)
(142)

This implies that ∑
j

σ′(⟨w(t)
j , X⟩)2∥X∥22 ≥

(
1

mD
α(t) +

1√
d

)2

Now, apply Lemma I.2 we know that:

α(t+ 1) ≥ α(t) + Ω

(
1

mD

)
ηD (143)

∀∗ ≠ u1, u2 : |α(wi, ∗, t+ 1)| ≤ |α(wi, ∗, t)|+ ηD
ϵt(

1
mD

α(t) + 1√
d

) ≤ |α(wi, ∗, t)|+ ηD
1

C1.4

(144)
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Compare these two updates we can prove the bounds on wj for ∗ ≠ u1, u2. For ∗ = u1, u2, we can
see that: By Lemma I.2, there exists St,ℓ ∈ (0,poly(d)] such that for ℓ ∈ [2] such that for every
i ∈ [mD]:∑

i∈[mD]

⟨w(t)
i , uℓ⟩4 =

1

S2
t,ℓ

(145)

E[⟨w(t+1)
i , uℓ⟩] = ⟨w(t)

i , uℓ⟩+ ηD

(
1± 1

polylog(d)

)
St,ℓ⟨w(t)

i , uℓ⟩2 ± ηD
1

polylog(d)
(146)

Apply Lemma E.4 and Lemma I.1 we can complete the proof that

|α(wi, u1, t)|, |α(wi, u2, t)| ≤ α(t), α(wiℓ , uℓ, t) ≥
ηD
3mD

and at iteration t = TN,1, we have that: for all i ̸= i∗1, i
∗
2, for all ℓ ∈ [2]

|α(wi, uℓ, t)| ≤
1

C
α(t)

Moreover, when i = iℓ∗ , |α(wi, u3−ℓ, t)| ≤ 1
Cα(t)

The v part can be proved similarly: We have that there exists St,i ∈ (0,poly(d)] where i ∈ [mG]
such that:∑

j∈[mD]

⟨v(t)i , w
(0)
j ⟩4 =

1

S2
t,i

(147)

E[⟨v(t+1)
i , w

(0)
j ⟩] = ⟨v(t)i , w

(0)
j ⟩+ ηG

1

mG

(
1± 1

polylog(d)

)
St,i⟨v(t)i , w

(0)
j ⟩2 ± ηG

log5(d)

C
(148)

Apply Lemma E.4 and Lemma I.1, we have that

|α(vi, wj , t)| ≤ β(t), α(vi, wg∗
i
, t) ≥ ηG

3m2
G

. Moreover, at iteration t = TN,1, for all i ∈ [mG], j ∈ [mD], j ̸= g∗i :

|⟨v(t)i , w
(0)
j ⟩| ≤ C−0.95⟨v(t)i , w

(0)
g∗
i
⟩

Similarly, we can show that for all ∗ ≠ wj , |α(vi, ∗, t)| ≤ β(t) and at iteration t = TN,1:

|α(vi, ∗, t)| ≤
1

C0.95
β(t)

Using the fact that ∥w(t)
j − w

(0)
j ∥2 ≤ 1

C0.94

⟨v(t)i , w
(t)
j ⟩ = ⟨v(t)i , w

(0)
j ⟩+ ⟨v(t)i , w

(t)
j − w

(0)
j ⟩ = ⟨v(t)i , w

(0)
j ⟩ ± β(t)

C0.93
(149)

Notice that ⟨v(t)i , w
(t)
j ⟩ ≥ β(t)C−0.01 so we show that at iteration t = TN,1:

|⟨v(t)i , w
(t)
j ⟩| ≤ C−0.91⟨v(t)i , w

(t)
g∗
i
⟩

Similarly, we can show that for every ℓ ∈ [2],

|⟨v(t)i , w
(t)
j ⟩| ≤ C−0.91⟨v(t)i , uℓ⟩
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Stage 2: It remains to prove that for all t ∈ [TN,1, TN,2], we have that

|⟨v(t)i , w
(t)
j ⟩| ≤ C−0.9⟨v(t)i , w

(t)
g∗
i
⟩

The rest of the induction hypothesis follows trivially from Lemma I.3. (for the relationship between
a(t) and α(wi∗ℓ

, uℓ, t) we can use Lemma E.3).

To prove this, we know that by the update formula:

⟨v(t+1)
i , w

(t+1)
j ⟩ = ⟨v(t+1)

i , w
(t)
j ⟩+ ⟨v(t+1)

i , w
(t+1)
j − w

(t)
j ⟩ (150)

= ⟨v(t)i , w
(t)
j ⟩+ ⟨v(t+1)

i − v
(t)
i , w

(t)
j ⟩+ ⟨v(t+1)

i , w
(t+1)
j − w

(t)
j ⟩ (151)

Taking expectation, we have that

E[⟨v(t+1)
i , w

(t+1)
j ⟩] = ⟨v(t)i , w

(t)
j ⟩+ ηG

(
1± 1

polylog(d)

)
1

mG

⟨w(t)
g∗
i
, w

(t)
j ⟩

∥w(t)
g∗
i
∥2

± ηG
1

C1.409
(152)

+
∑
ℓ∈[2]

ηD
2
⟨v(t+1)

i , uℓ⟩1j=i∗ℓ
± ηD

1

C1.501
(153)

and

E[⟨v(t+1)
i , uℓ⟩] = ⟨v(t)i , uℓ⟩+ ηG

(
1± 1

polylog(d)

)
1

mG

⟨w(t)
g∗
i
, uℓ⟩

∥w(t)
g∗
i
∥2

± ηG
1

C1.5
(154)

by the induction hypothesis we know that for every t ≤ TN,2, we have that ⟨w(t)
j , w

(t)
j−1⟩ ≤ 1

C0.95 and

∥w(t)
j ∥2 = [Ω(1),polylogloglog(d)], we know that: when j = g∗i

E[⟨v(t+1)
i , w

(t+1)
j ⟩] ≥ ⟨v(t)i , w

(t)
j ⟩+ ηG

1

2mG polylogloglog(d)
(155)

When j ̸= g∗i : using the fact that ηG = ηDC−0.6, we have:

E[|⟨v(t+1)
i , w

(t+1)
j ⟩|] ≤ |⟨v(t)i , w

(t)
j ⟩|+ ηG

1

C0.9001
(156)

When i∗ℓ ̸= g∗i , we have that:

E[|⟨v(t+1)
i , uℓ⟩|] ≤ |⟨v(t)i , uℓ⟩|+ ηG

1

C0.95
(157)

Thus we complete the proof.

I.5 PROOF OF THE FINAL THEOREM

To prove the final theorem, notice that by Lemma I.3, we have that for every t ∈ (TN,1, T1], for
i = i∗ℓ :

E[w(t+1)
i ] = w

(t)
i +Θ(ηD)uℓ ± ηD

1

C1.501
± ηDγ

Together with the induction hypothesis, this implies that when ∥w(t)
i ∥2 ≥ log log log(d), we have

that ⟨w(t)
i , uℓ⟩ ≥ (1 − o(1))∥w(t)

i ∥2. Together with the update formal of v(t)j we know that when
g∗j = i∗ℓ , we have that

E[v(t+1)
j ] = v

(t)
j +

(
1± 1

polylog(d)

)
1

mG
ηG

w
(t)
g∗
j

∥w(t)
g∗
j
∥2

± ηG
1

C1.5
(158)

Together with the induction hypothesis, we know that when ∥w(t)
i ∥2 = polyloglog(d), we have that:

⟨v(t)j , uℓ⟩ ≥ (1− o(1))∥v(t)j ∥2. This proves the theorem.
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