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Abstract

Summary: We propose a new spectral framework for reliable training, scalable inference and interpretable explan-
ation of the DNA repair outcome following a Cas9 cutting. Our framework, dubbed CRISPRLAND, relies on an unex-
ploited observation about the nature of the repair process: the landscape of the DNA repair is highly sparse in the
(Walsh–Hadamard) spectral domain. This observation enables our framework to address key shortcomings that limit
the interpretability and scaling of current deep-learning-based DNA repair models. In particular, CRISPRLAND reduces
the time to compute the full DNA repair landscape from a striking 5230 years to 1 week and the sampling complexity
from 1012 to 3 million guide RNAs with only a small loss in accuracy (R2R2 � 0.9). Our proposed framework is based
on a divide-and-conquer strategy that uses a fast peeling algorithm to learn the DNA repair models. CRISPRLAND

captures lower-degree features around the cut site, which enrich for short insertions and deletions as well as higher-
degree microhomology patterns that enrich for longer deletions.

Availability and implementation: The CRISPRLAND software is publicly available at https://github.com/UCBASiCS/
CRISPRLand.

Contact: kannanr@eecs.berkeley.edu

1 Introduction

Recent studies on site-specific double-stranded breaks (DSBs) gener-
ated by the RNA-guided DNA endonuclease Cas9 have shown that
the DNA repair outcome following Cas9 cutting is non-random and
consistent across experimental replicates, cell lines and reagent de-
livery methods and highly a function of the DNA sequence around
the cut site (van Overbeek et al., 2016). Follow-up studies have
emerged which employ machine-learning models, such as deep neur-
al networks (Shen et al., 2018), decision trees (Leenay et al., 2019)
and logistic regression (Allen et al., 2019) to train DNA repair mod-
els using a database of DSBs generated in CRISPR-Cas9 experi-
ments. These models take in the DNA sequence of the genome in a
small window surrounding the cut and predict key statistics of the
repair outcome, such as the percentage of cells with in-frame shifts,
insertions and deletions (Fig. 1A).

While initial studies have used the DNA repair models to design
gene knock-out experiments in therapeutically important cell types,
such as T cells (Leenay et al., 2019), as well as gene knock-in experi-
ments, to edit certain genes (Shen et al., 2018), the applicability of
the DNA repair models is severely hindered in a large-scale setting
due to the lack of a reliable, interpretable and scalable machinery to
train and analyze the DNA repair models. Here, we discuss these
shortcomings in detail:

Reliability. Currently, there is no clear mechanism to determine
the number of site-specific CRISPR experiments required for the re-
liable training of DNA repair models. The number of experiments is
typically defined by the total budget invested in the experiments ra-
ther than a principled scientific mechanism backed by theoretical or

computational reasoning. In addition, the location of cut sites (i.e.
the guide RNAs) on the genome are determined either by random se-
lection or enforced by other studies rather than experimental design
procedures tailored to the DNA repair models.

Interpretability. Our understanding of how the current DNA repair
models operate is extremely limited; e.g. we do not have a clear mech-
anism (other than ad hoc interpretation methods for general purpose
deep neural networks) to determine what features or combination of
features enrich for key repair outcomes, such as in-frame shifts, inser-
tions and deletions. A powerful ineterpretable model would enable a
mechanistic understanding of the repair process as well as a set of de-
sign rules for gene knock-out and knock-in experiments.

Scalability. Finally, the DNA repair models are extremely slow in
the inference time. Running these models against the cut sites in the po-
tential coding region on the human genome takes months on a regular
computer. Considering the growing interest in gene editing and knock-
out experiments in various cell types in the resolutions of single cells,
there is a critical need for more scalable methods at the inference time.

Here, we aim to address these problems by a new computational
framework, dubbed CRISPRLAND, which analyzes the landscape of
the DNA repair process in the spectral domain. CRISPRLAND

focuses on the microhomology-mediated end-joining (MMEJ) and
non-homologous end-joining (NHEJ) (Sonoda et al., 2006) repair
processes for which machine-learning models have been recently
developed. The key insight of our framework is that the MMEJ and
NHEJ repair processes can be modeled by a pseudo-Boolean func-
tion x½m� ¼ xðm1;m2; . . . ;mnÞ: Fn

2 ! R, where mi are binary varia-
bles that encode the input DNA sequence of length ‘ surrounding
the cut site, F2 refers to finite field consisting f0, 1g, and x½m� is a
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real-valued outcome of interest, e.g. percentage of insertions
(Fig. 1B).

CRISPRLAND’s approach in analyzing the repair model x½m�
stems from a key theorem (Boros and Hammer, 2002) in mathemat-
ics, which states that any pseudo-Boolean function f ðz1; z2; . . . ; znÞ
can be represented uniquely by a multi-linear polynomial over the
hyper cube ðz1; z2; . . . ; znÞ 2 f�1;þ1gn:

f ðz1; z2; . . . ; znÞ ¼
X
S�½n�

aS
Y
i2S

zi; (1)

where S is a subset of f1; 2; 3; . . . ; ng ¼ ½n� and aS is the Walsh–
Hadamard transform (WHT) coefficient associated with the mono-
mial

Q
i2S zi. For example, the pseudo-Boolean function

f ðz1; z2; z3; z4; z5Þ ¼ 12z1z4 � 3z3 þ 6z1z2z5; (2)

has three monomials with degrees 2, 1 and 3 and WHT coefficients
12, –3 and 6, respectively. Note that, the pseudo-Boolean f ð:Þ in this
example is considered to be sparse since out of 25 ¼ 32 possible
monomials only three of them are active (i.e. have non-zero
coefficient).

If we replace zi with ð�1Þmi such that zi¼1 when mi¼0 and zi ¼
�1 when mi¼1, we have x½m� ¼ f ðð�1Þm1 ; ð�1Þm2 ; . . . ; ð�1Þmn Þ for
m 2 F

n
2 and the WHT X½k� ¼

ffiffiffi
n
p

aS such that supp(k) ¼ S, where
supp(.) indicates the non-zeros coordinates (called the support func-
tion in signal processing). The non-zero WHT coefficients reveal
higher order interactions between the input features that enrich (or
deplete) certain repair outcomes. Our main goal is to efficiently esti-
mate these sparse coefficients from the underlying biological model
and provide the biological interpretations behind them.

To this end, we first formally define the notion of the fitness
landscape (also called landscape in this article) of the DNA repair
process using the pseudo–Boolean function x½m� and then show the
steps to develop CRISPRLAND in order to compute the landscape
based on the recently developed DNA repair models. We, then ana-
lyze the repair landscape in the WHT spectral domain. We observe
that the WHT coefficients aS of the fitness landscape are surprising-
ly sparse and the level of sparsity depends on the type of the repair
outcome. In particular, the landscape in terms of the insertion per-
centage is sparser than that of the in-frame shift percentage and the
rest of the repair outcomes.

1.1 Contributions
The sparsity of the DNA repair outcome in the WHT domain ena-
bles CRISPRLAND to address key shortcomings regarding the train-
ing, inference, and interpretation of the current repair models. First,

CRISPRLAND provides a method to significantly reduce the number
of site-specific gRNAs to fully recover the DNA repair landscape.
The idea is to leverage the sparsity of the landscape in the WHT
spectral domain. Similar analysis has revolutionized sensing systems
in areas, such as medical imaging, radio astronomy and radar/sonar
imaging. Second, CRISPRLAND provides a concrete framework to
explain the black-box machine-learning models by simply inspecting
the non-zero coefficients of the WHT. In particular, it reveals pat-
terns that are indicative of deletions that are mediated by microho-
mologies, i.e. repeating patterns around the cut site. These patterns
are highly difficult to observe using classical interpretation tools in
machine learning since they reflect higher order interactions between
the features. From this perspective, CRISPRLAND serves as a compli-
mentary tool-set to explain deep-learning-based DNA repair models.
Third, the new massive-scale computational algorithm developed in
CRISPRLAND recovers the complete DNA repair landscape expo-
nentially faster compared to the conventional way of repeatedly
querying the machine-learning model. This speedup is achieved by
employing a divide-and-conquer strategy building on concepts from
signal processing and coding theory. Our algorithm allows us to re-
cover a model for the DNA repair outcome through a fast peeling al-
gorithm based on a number of carefully designed input guide RNAs
whose cardinality scales logarithmically with the size of the land-
scape. We show how such design scheme enables CRISPRLAND to
extrapolate the repair landscape in massive scales; a task that is
practically impossible using computers today. CRISPRLAND reduces
the computational complexity to compute the full repair landscape
from a striking 5230 years to 1 week and the sampling complexity
from 1012 to 3 million guide RNAs. Our findings are demonstrated
using the state-of-the-art models trained on recent experimental
datasets from DNA repair in Cas9-mediated DSBs.

2 Repair landscape

We will consider two landscapes of scientific interest, which symbol-
ize two DNA repair outcomes with maximum differences in the
WHT spectral domain. One is the percentage of cells with an inser-
tions and the other one is the fraction of cells with an in-frame shift.
Other DNA repair outcomes, such as deletion percentage, average
indel length, average deletion length and precision can be analyzed
similarly. We will instead provide a summary of those landscapes in
terms of WHT complexity.

2.1 Insertion percentage
In order to compute the fitness landscape of the DNA repair out-
come, we first generate all the different 4‘ possible binary code

Fig. 1. Schematic of the CRISPRLAND framework. (A) A Cas9 induced DSB is illustrated on the genome with the reference sequence surrounding the cut site as well as the three

indels resulting from the DNA repair with their corresponding frequencies predicted by the machine-learning models [inDelphi (Shen et al., 2018), Sprout (Leenay et al., 2019)

and FORECast (Allen et al., 2019)]. The 7-bp deletion indicates a microhomology-mediated deletion. The repeating patterns surrounding the deletion have been italicized for

better visualization. Five key DNA repair outcomes including fraction of cells with an insertion, fraction of cells with an in-frame shift, average length of an indel, precision

and average length of the microhomology-mediate deletions have been calculated. (B) The binary representation of the reference sequence is illustrated and its corresponding

decimal index in the CRISPRLAND framework. The DNA repair landscape (in terms of the percentage of insertions) as well as the spectrum of the landscape is illustrated for

10 000 ordered gRNA sequences evaluated using CRISPRLAND
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words m of length n ¼ 2‘ ordered in a way that two adjacent binary
codes are different only by one bit. We then encode the binary code
words into their corresponding DNA sequences. While various
encoding strategies can be used to encode the DNA sequence into a
binary code; in this article, we use the following encoding: A : 00, T
: 01, C : 10 and G : 11. With this encoding, we can represent a DNA
sequence of length ‘ using a binary code m of length n ¼ 2‘. Other
encoding will result in a similar analysis.

We then construct CRISPR experiments where we introduce a
DSB on the genome at a point exactly in the middle of the DNA se-
quence constructed above. We repeat the same experiment for all
the 4‘ generated DNA sequences and use an already trained repair
model [e.g. inDelphi (Shen et al., 2018), Sprout (Leenay et al., 2019)
or FORECast (Allen et al., 2019)] to find the repair outcome for all
the generated DNA sequences. The outcomes can be obtained ex-
perimentally; however, here, we use a trained repair model as a
proof-of-concept. We compute and store the key summary statistics
(outputs) of the DNA repair outcome including, precision, in-frame
shift percentage, insertion percentage, deletion percentage and indel
length in 4‘-dimensional vectors in the same order as they appear in
the binary code m; we call these vectors the fitness landscape of the
DNA repair outcome. The fitness landscape fully describes the DNA
repair models in terms of the outputs mentioned above. Note that,
the repair landscape inherits the real-world statistics of the repair
data, such as the presence of the protospacer adjacent motif around
the cut site, since the original machine-learning models are trained
on real-world experimental data.

An example of the fitness landscape in terms of the insertion per-
centage is illustrated in Figure 2 for ‘ ¼ 10 in human bone
Osteosarcoma epithelial cells (U2OS). The figure illustrates the
mean-subtracted insertion percentage of the first 100 000; 10 000
and 1000 coordinates of the 410 ¼ 1 048 576-dimensional land-
scape. In order to maintain the minimum input sequence length re-
quirement of the DNA repair outcome prediction models, we
append the DNA sequences from left and right with two fixed short

DNA sequences of length 15. In the next section, we elaborate on
the computational challenges in increasing ‘ to larger values and we
develop a new scheme that enables us to increase ‘ to arbitrarily
larger values and exploring the fitness landscape fully.

We applied the WHT on the resulting 410-dimensional landscape
signal. The result is depicted in Figure 3 in different resolutions. In
order to measure how sparse the WHT transform is, we also plot
the recovery error of the inverse WHT using only the top most com-
ponents of the WHT in terms of the ‘2 norm. Our key observation is
that the WHT transform of the landscape is surprisingly sparse; only
the top-100 coefficients out of the total of 410 coefficients (<0.01%)
suffices to recover the landscape with around 10% error. The spars-
ity in the WHT domain is a consequence of the nature of the repair
process; it would not have appeared in a random landscape, which
would have a fully dense (i.e. flat) WHT spectrum. Our finding in
Figure 3 also suggests a fundamental bound in terms of the number
of samples required to approximate the function x½m�. This suggests
the minimum number of CRISPR experiments required for the reli-
able training of the DNA repair models.

Recent studies have shown that the DNA repair outcome is a
function of the cell type. In other words, if we break the genome at
the very same locations but in two different cell types we get two dif-
ferent repair outcomes. An intriguing question is how such varia-
tions across cell type affect the coefficients in the spectral domain.
We compared the WHT of the fitness landscape of repair models
across three cell types: U2OS, mESC (mouse embryonic stem cell)
and HCT116 (human colon cancer cells) in Figure 4. The index of
the top WHT coefficients stays surprisingly consistent across the cell
types, while the values change. Our analysis on the landscape of the
other repair outcomes (not shown here), such as in-frame shift per-
centage, indel length and precision, also shows the consistency
across the set of top WHT coefficients. Further studies are required
to test and explore this hypothesis; however, our results seem to sug-
gest a shared repair dynamic across cell types with small mechanistic
differences.

Fig. 2. The fitness landscape of DNA repair outcome in U2OS in terms of the insertion percentage. Only the first (A) 100 000, (B) 10 000 and (C) 1000 coordinates of the land-

scape are illustrated for more clarity. Insertion percentages are mean-subtracted. The landscape clearly shows redundant structures in different resolutions

Fig. 3. The WHT of the repair landscape for insertion percentage in U2OS. Only the first (A) 100 000 and (B) 20 000 coordinates of the landscape are illustrated for more clar-

ity. (C) The ‘2 error in recovering the landscape using the top coefficients of the WHT transform is illustrated in U2OS
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Knowing that the landscape of the repair outcome can be recov-
ered using only a small fraction of the WHT coefficients, a natural
question is what biological features the top WHT coefficients corre-
sponds to. The theorem in Equation (1) suggests that each WHT co-
efficient aS corresponds to a monomial defined by S. Table 1
tabulates the index of the top-5 WHT coefficients, their correspond-
ing binary representation, monomial and a short interpretation of
each monomial. Each code in the second column is the binary repre-
sentation of the index written in n ¼ 2‘ ¼ 20 binary digits. The
monomial is obtained based on the pattern of ‘1’s in the binary
code. The repair model x½m� can be written in terms of the first five
monomials as,

x½m� � 13:76z9 � 4:61z9z10 � 3:96z9z10z11z12

þ 2:84z9z12 þ 2:56z10z11z12;
(3)

where zi ¼ ð�1Þmi . Note that, the cut site is in between z10 and z11

and is indicated by a straight line in Table 1, and the sign of the
WHT coefficients indicates the direction of influence.

In order to better understand the interpretation of each mono-
mial, the biological meaning of the first monomial z9 will be
described in details, and the rest follows from the same intuition.
The monomial z9 ¼ ð�1Þm9 only activates when the ninth binary
digit in one. Let us recall our encoding policy mentioned earlier: A :
00, T : 01, C : 10 and G : 11. Based on this encoding, the monomial
z9 only activates when the nucleotide next to the cut site from the 5’
end (we call it location –1) is either a C or a G nucleotide since these
are the nucleotides that their binary code end in the digit 1.
Therefore, this monomial is only asking if the nucleotide at location
–1 is C/G or A/T. We represent this question using the logical

statement fC;Gg^fA;Tg@� 1? where ^ is an OR operator and @
points to a location on the genome. This feature has also shown to
be have a significant correlation with the percentage of insertions
(Leenay et al., 2019; Shen et al., 2018). The rest of the monomials
can be interpreted similarly.

All the top-five monomials showing up in the WHT of the fitness
landscape for the insertion percentage are related to the nucleotides
that are adjacent to the cut site. This shows that the nucleotides
around the cut are sufficient to fully describe the DNA repair land-
scape for the insertion percentage. As the next section shows, this lo-
cality around the cut might not carry over to other landscapes.

2.2 In-frame shift percentage
We conduct a similar landscape analysis for another important re-
pair outcome: the percentage of cells with in-frame shifts. Predicting
the percentage of in-frame shift is another critical problem in design-
ing efficient gene knock-out experiments. The WHT of the repair
landscape for in-frame shifts is illustrated in Figure 5. The non-zero
coordinates (i.e. the support) in the WHT domain is more wide
spread and consists of coefficients that are periodically repeated
along the spectrum. The spectrum is denser than the insertion per-
centage. In particular, more than 10 000 WHT coefficients out of
the total of 410 coefficients (>1%) is required to recover the land-
scape with around 10% error. This suggests that the information
required to estimate the in-frame shift percentage are more wide-
spread and has higher frequency components compared to insertion
percentage, which is more localized to the nucleotides around the
cut site.

Fig. 4. The first 5000 coefficients of WHT of the repair landscape in terms of the percentage of insertion in three cell types: U2OS, mESC and HCT116. The index of large

WHT coefficients is consistent across cell types

Table 1. Top-5 WHT coefficients of the repair landscape for percentage of insertions in U2OS cells

Index Code Monomial Interpretation Coefficient

2048 00 00 00 00 10 j 00 00 00 00 00 z9 fC, Gg^fA, Tg@�1? 13.76

3072 00 00 00 00 11 j 00 00 00 00 00 z9z10 �1 bp? �4.61

3840 00 00 00 00 11 j 11 00 00 00 00 z9z10z11z12 �1 & þ1 bp? �3.96

2304 00 00 00 00 10 j 01 00 00 00 00 z9z12 fC, Gg^fA, Tg@�1 & fT, Gg^fA, Cg@þ1? 2.84

1792 00 00 00 00 01 j 11 00 00 00 00 z10z11z12 þ1 bp? fT, Gg^fA, Cg@�1? 2.56

Note: WHT coefficients correspond to monomials defined by their binary expansions. Each monomial can be easily interpreted as a question regarding the type

of the nucleotides around the cut site.
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The top-five WHT coefficients aS of the repair landscape are
tabulated in Table 2. Similar to the landscape of insertion percent-
age, it can be seen that the first two monomials correspond to
nucleotides that are just next to the cut site. The last two mono-
mials, however, show a new pattern. These two monomials ask
about symmetric patterns that occur around the cut site. These fea-
tures resemble the microhomology patterns, i.e. repeating sequences
around the cut site. Presence of a microhomology pattern is known
to enrich for a deletion outcome (Sonoda et al., 2006). We will show
the effect of macrologies in large-scale experiments in the next
section.

3 Massive-scale landscape extrapolation

We now discuss the computational challenges in finding the full
landscape of the repair outcome when the context sequence length
goes beyond ‘ > 10 and describe an algorithm that uses ideas from
coding theory and signal processing in order to scale to these large
dimensions. Note that, the number of possible DNA sequences of
length ‘ grows exponentially with ‘ as 4‘. Testing a single DNA se-
quence using the inDelphi software (Shen et al., 2018) takes about
0.15 s on a 2.7 GHz Intel Core i5 with 8 G of RAM. Therefore, it
takes around 410 � 0:15 ¼ 157 286 s (close to 2 days) to obtain the
full landscape of the repair outcome of each cell type in silico with
‘ ¼ 10. However, running the same inference problem for a longer
sequence of length ‘ ¼ 20 (i.e. just twice the length of the previous
experiment) takes about 5220 years. This volume of computation
cannot be done on the computers today. Needless to say that, even
with today; s multiplexing technologies, doing as many experiments
is also completely out of picture.

Before talking about our massive-scale algorithm to handle
larger values of ‘, we want motivate that it is in fact necessary to
consider larger values of ‘ to accurately estimate the landscape of
DNA repair outcome. We determine what is the minimum value of ‘

to be considered to accurately estimate the landscape. To this end,
we perform a systemic analysis of DNA repair outcomes as a func-
tion of the window size around the cut site. The aim is to find out
what values of ‘ enables us to capture most of the variation in the re-
pair outcomes.

A window is considered around the cut size with varying length.
The DNA sequence in the window is varied and the maximum range
that the DNA repair outcome changes is monitored as a function of
the window size (nucleotide on each side of the cut) and plotted in
Figure 6. While knowing only the 3 nt around the cut site (window
of length 6) reduces the range of variation for insertion percentage
below 5%, we need to know at least 20 nt (a window of size 40) to
reduce the range of variation for other outcomes below 5%. This
raises the need to develop a computational platform that scales to
such large values of the window size.

While it might seem that we need 4‘¼20 number of experiments
to obtain the full landscape, the actual number of samples required
is much smaller. This is achieved through exploiting the structure of
the landscape, i.e. the landscape of DNA repair outcome is sparse in
the WHT domain. If we approximate the WHT of the landscape
using only K number of non-zeros elements (by keeping only the
top-K coefficients), results from compressed sensing (Baraniuk,
2007; Donoho, 2006) show that only OðK logð4‘ÞÞ (i.e. OðK‘Þ) num-
ber of random samples are sufficient to recover the landscape.
However, achieving an algorithm whose computational complexity
also scales gracefully as the dimensions of the problem grows is chal-
lenging. This is the algorithmic challenge that we tackle in
CRISPRLAND using a divide-and-conquer strategy. The description
of the CRISPRLAND algorithm is provided in Section 4.

We demonstrate that CRISPRLAND approximates the DNA re-
pair landscape in terms of the insertion percentage and in-frame
shifts in U2OS cells with a context window of size ‘ ¼ 20 using only
about 3 million carefully designed gRNAs (samples) from coding
theory. CRISPRLAND designs the input samples using a variant of
the SPRIGHT algorithm (Li et al., 2015) as we will describe in

Fig. 5. (A) The WHT of the repair landscape for in-frame percentage is illustrated in U2OS. (B) The WHT of in-frame percentage is denser than that of the insertion percentage.

This suggests that more number of samples is required to recover the landscape of in-frame percentage compared to insertion percentage

Table 2. Top-5 WHT coefficients of the CRISPR fitness landscape for the in-frame shift percentage in U2OS cells

Index Code Monomial Interpretation Coefficient

2048 00 00 00 00 10 j00 00 00 00 00 z9 fC, Gg^fA, Tg@�1? �3.24

256 00 00 00 00 00 j01 00 00 00 00 z12 fT, Gg^fA, Cg@þ1? 1.50

12 288 00 00 00 11 00 j00 00 00 00 00 z7z8 �2 bp? 1.48

4160 00 00 00 01 00 j00 01 00 00 00 �z8z14 fT, Gg^fA, Cg@-2 & þ2 bp? 1.42

12 480 00 00 00 11 00 j00 11 00 00 00 �z7z8z13z14 �2 & þ2 bp? 1.36

Note: WHT coefficients correspond to monomials defined by their binary expansions. Each monomial can be easily interpreted as a question regarding the type

of the nucleotides around the cut site. The monomials with � sign indicate a microhomology feature, which are identical patterns repeating around the cut site and

enrich for a deletion outcome.
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Section 4. Note that, in general, the DNA sequences of all the
gRNAs suggested by CRISPRLAND might not exactly appear on the
human genome. In those cases, either a sufficiently close gRNA can
be selected or the recovery algorithm can be changed to accommo-
date for the deviation from the designed gRNAs. Obviously, this
will not be a problem when the repair outcomes are derived using an
already trained repair model.

As we will discuss in the next section, CRISPRLAND uses a modi-
fied version of SPRIGHT’s recovery algorithm to find the full land-
scape. Here, we evaluate the generalization performance of
CRISPRLAND using 330 000 unseen samples from the DNA repair
landscape. The results of our prediction algorithm can be seen in
Figure 7. CRISPRLAND predicts the DNA repair outcome of the set
of 330 000 unseen test gRNAs with a very high accuracy (R2 � 0:9)
in both the easier insertion percentage and the harder in-frame shift
percentage landscapes. Given the repair outcome of the 3 million
designed gRNAs (which takes about a week to acquire from
inDelphi’s software), CRISPRLAND requires only few seconds to re-
cover the repair outcome of the queried gRNAs.

4 Materials and methods

Our CRISPRLAND algorithm for learning the landscape for the DNA
repair outcome is based on computing a sparse WHT. WHT is
analogous to Fourier Transform for functions that take Boolean var-
iables. More precisely, let N ¼ 2n for a non-negative integer n, and
let x 2 RN be a vector. We can index the elements of x with an n-
length binary sequence m 2 F

n
2. WHT of x is then defined as follows

Xk ¼
1ffiffiffiffiffi
N
p

X
m2Fn

2

ð�1Þhk;mixm; (4)

where hk;mi ¼
Pn�1

i¼0 kimi with the addition operation being over
F2. Using the coefficients Xk, one can recover the vector x as

xm ¼
1ffiffiffiffiffi
N
p

X
k2Fn

2

ð�1Þhm;kiXk: (5)

WHT can be viewed as recovering a multinomial representation
of a function. Consider a pseudo-Boolean function f : f�1; 1gn !
R that takes n variables with values in f�1; 1g and outputs a real
number. Every such function has a unique expansion of the form

f ðv0; . . . ; vn�1Þ ¼
1ffiffiffiffiffi
N
p

X
k2Fn

2

Xk

Y
i:ki¼1

vi: (6)

Let, xm be the evaluation of this polynomial at vi ¼ ð�1Þmi .
Then the kth Walsh–Hadamard coefficient Xk corresponds to the
coefficient of the multinomial term

Q
i:ki¼1 vi. Hence, WHT can be

seen as recovering the coefficients of multinomial expansion of a
pseudo-Boolean function.

The problem we are interested in is recovering the WHT coeffi-
cients (equivalently, the pseudo-Boolean function) when there is
sparsity in the WHT domain. Methods proposed in compressed
sensing literature can be used to recover a sparse signal in a sample
efficient way (Donoho, 2006). However, the algorithms proposed in
the literature like OMP (Tropp, 2004) or LASSO (Tibshirani, 1996)
requires operations that scale at least linearly with the ambient di-
mension N. On the other hand, our method requires sublinear com-
putational complexity whenever the degrees of freedom K scale sub-
linearly with the ambient dimension N (Li et al., 2015). The key
properties of the CRISPRLAND algorithm are presented in the fol-
lowing theorem.

Theorem 1 [(Li et al., 2015)] Let a 2 ð0; 1Þ be a fixed number. Suppose

N ¼ 2n and assume K ¼ Na. Let x 2 RN be a vector and X 2 RN be its

WHT. Assume that X is K-sparse and support is selected uniformly at

random among all possible ð n
k
Þ subsets of ½n� of size K. Then, there is an

algorithm with the following properties:

1. Sample complexity: algorithm uses OðK log2NÞ samples of x.

2. Computational complexity: total number of operations to success-

fully decode all non-zero WHT coefficients or declare a decoding

failure is OðK log3NÞ.

Fig. 6. The variation of the DNA repair landscape as a function of the window size around the cut site (number of nucleotides from each side of the cut). For all the outcomes,

except for the Insertion Percentage, a window of 20 nt from each side is required to minimize the variation and fully capture the landscape

Fig. 7. The prediction results of CRISPRLAND on 330 000 randomly chosen unseen test CRISPR experiments. The analysis has been done on the sparse insertion percentage

landscape as well as the less sparse in-frame shift percentage landscape. Only 10 000 data points are plotted for more clarity. In both landscapes, CRISPRLAND predicts the

outcomes with very high accuracy
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3. Success probability: probability of recovering X completely

approaches 1 as N grows, where the probability is taken over ran-

domness of selecting the support of X.

This speedup is achieved by employing a divide-and-conquer
strategy, where we break the problem of recovering a K-sparse sig-
nal into K-many smaller problems of recovering 1-sparse signal, and
solve each 1-sparse problem efficiently, and combine the solutions
to each of them to recover the original signal. The recovery algo-
rithm is closely tied to decoding a sparse-graph-code through peel-
ing, and we use techniques from the literature on low-density parity
check (LDPC) codes (Richardson and Urbanke, 2008) and product
codes (Elias, 1954) for deriving our method.

Note that, under the assumptions of the theorem, theoretically,
order of K log ðNÞ samples is required for learning the correct model
by information theoretic arguments (Li et al., 2015). The algorithm
described here, which requires K log2ðNÞ samples is off from order
optimality by only a logarithmic factor. As a matter of fact, the algo-
rithm can be tweaked to be order optimal (Li et al., 2015).
However, that version of the algorithm is not described in this art-
icle as it requires a complex additional step.

The first step of the algorithm is to generate linear mixing of
transform domain coefficients based on the following property.

Property 1 Let x be an N ¼ 2n length vector. Given a shift vector p 2
F

n and a full-rank subsampling matrix H 2 F
b�n
2 , let y be the vector of

length B ¼ 2b, where ym ¼ xmHþp for all m 2 F
b
2. Then, the WHT coeffi-

cients of y satisfy

Yk ¼
ffiffiffiffiffi
B

N

r X
j2FN

2 :jH>¼k

ð�1Þhp;jiXj; (7)

where Xj is the jth WHT coefficient of x.

The above property states that the WHT coefficients Xk are modu-
lated by ð�1Þhp;ki when a shift of p is applied to the indices of x, and
that subsampling of the input signal creates a linear mixing of WHT
coefficients.

Using Property 1, we create linear mixing of coefficients by
choosing C many subsampling matrices H1; . . . ;HC, where each ma-
trix is b�n dimensional. Furthermore, we choose for each subsam-
pling P1; . . . ; PC shift matrices, where each of them is Oð log2NÞ � n
dimensional. The choice of C, the matrices Hi and the delays Pi for
i ¼ 1; . . . ;C are going to be described in the following sections.
Then WHT coefficients are calculated for the shifted-and-sub-
sampled sequences. We give an example below for the linear mixing
resulting from subsampling.

Example 1 Let x be a vector of length 16, and let us define y
ð1Þ
m ¼ 2xH1m

and y
ð2Þ
m ¼ 2xH2m, where

H1 ¼

0 0
0 0
1 0
0 1

0
BB@

1
CCA; H2 ¼

1 0
0 1
0 0
0 0

0
BB@

1
CCA:

From property 1, we see that all the WHT coefficients of x whose binary

index have the same last two digits is hashed to the same bin (underlined

in the following equations) for yð1Þ, i.e. we have

Y
ð1Þ
00 ¼ X0000 þX0100 þX1000 þX1100 ;

Y
ð1Þ
01 ¼ X0001 þX0101 þX1001 þX1101 ;

Y
ð1Þ
10 ¼ X0010 þX0110 þX1010 þX1110 ;

Y
ð1Þ
11 ¼ X0011 þX0111 þX1011 þX1111 :

Similarly, for yð2Þ we get

Y
ð2Þ
00 ¼ X0000 þX0001 þX0010 þX0011;

Y
ð2Þ
01 ¼ X0100 þX0101 þX0110 þX0111;

Y
ð2Þ
10 ¼ X1000 þX1001 þX1010 þX1011;

Y
ð2Þ
11 ¼ X1100 þX1101 þX1110 þX1111:

Under the assumptions of Theorem 1 on sparsity and the support
of the non-zero WHT coefficients of the signal, the linear mixing of
coefficients take a form where they can be solved for through peel-
ing. The following provides an example of such linear mixing.

Example 2 Let x 2 R16 have WHT coefficients equal to

Xk ¼

X0001 if k ¼ 0001;
X0100 if k ¼ 0100;
X0101 if k ¼ 0101;
X1010 if k ¼ 1010;
0 otherwise:

8>>>><
>>>>:

Under the subsampling used in example 1 the WHT coefficients of the

sub-sampled vectors satisfy

Y
ð1Þ
00 ¼ X0100 ; Y

ð2Þ
00 ¼ X0001;

Y
ð1Þ
01 ¼ X0001 þX0101 ; Y

ð2Þ
01 ¼ X0100 þX0101;

Y
ð1Þ
10 ¼ X1010 ; Y

ð2Þ
10 ¼ X1010;

Y
ð1Þ
11 ¼ 0; Y

ð2Þ
11 ¼ 0:

We give the details of peeling algorithm in reference to this ex-
ample in the following section.

4.1 Recovery through peeling with an oracle
The relationship between the measurements and the unknown coef-
ficients can be shown as a bipartite graph. The graph related to the
linear mixing in Example 2 and the recovery of the non-zero coeffi-
cients is illustrated in Figure 8. The unknown coefficients are shown
on the left and referred to as variable nodes, and the measurements
are shown on the right and referred to as check nodes. An edge is
drawn between a variable node and a check node if the unknown co-
efficient related to that variable node contributes to the measure-
ment related to that check node. Each check node can be
categorized into the following three types:

1. Zero-ton: a check node is a zero-ton if it has no non-zero coeffi-

cients (shaded in white in Fig. 8).

2. Single-ton: a check node is a single-ton if it involves only one

non-zero coefficient (shaded in blue in Fig. 8). Specifically, we

refer to the index k and its associated value Xk as the index-

value pair ðk;XkÞ.
3. Multi-ton: a check node is a multi-ton if it contains more than

one non-zero coefficient (shaded in orange in Fig. 8).

To illustrate the peeling algorithm for recovery, we assume that
there exists an ‘oracle’ that informs the decoder exactly which check
nodes are single-tons, and provides the index-value pair for that
single-ton. In Example 2, in the first round of peeling (shown in
Fig. 8A), the oracle informs the decoder that the check nodes corre-
sponding to Y

ð1Þ
00 ; Y

ð1Þ
10 ; Y

ð2Þ
00 and Y

ð2Þ
10 are single-tons with index-

value pairs ð0100;X0100Þ; ð1010;X1010Þ; ð0001;X0001Þ and
ð1010;X1010Þ, respectively. Then the decoder can subtract their con-
tributions from other check nodes, forming new single-tons.
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Therefore, with the oracle information, the peeling decoder repeats
the following steps:

1. select all the edges in the bipartite graph with right degree 1

(identify single-ton bins);

2. remove (peel off) these edges as well as the corresponding pair of

variable and check nodes connected to these edges;

3. remove (peel off) all other edges connected to the variable nodes

that have been removed in Step 2;

4. subtract the contributions of the variable nodes from the check

nodes whose edges have been removed in Step 3.

Decoding is successful if all the edges are removed from the
graph.

In this work, we choose the subsampling matrices uniformly at
random over Fb�n. Other constructions alongside with their theoret-
ical guarantees can be found at Li et al. (2015) and Scheibler et al.
(2015). We chose the random design as it is observed to have super-
ior practical performance in some regimes of interest (Ocal et al.,
2019; Scheibler et al., 2015).

Since the proof of the algorithm follows the same steps as in Li
et al. (2015), we just provide a sketch here and refer the interested
readers to that article. Since the sparsity is uniformly distributed,
each non-zero entry of X is connected to a check node chosen uni-
formly at random in each subsampling group. This results in a left-
regular LDPC code construction, and the proof for recovering the
support X follows the same steps in Li et al. (2015).

In peeling, we recover a variable node (non-zero coefficient of X)
if it is connected to a check node with degree 1, and remove the out-
going edges from that variable node. The density evolution is a
powerful tool in modern coding theory that tracks the average dens-
ity of remaining edges in the graph after ‘ rounds of peeling
(Richardson and Urbanke, 2008). The density evolution equations
for our setting is given by the recursive equation

p‘ ¼ ð1� e�dp‘�1=ðM=KÞÞd�1; (8)

where p0 ¼ 1, and M is the total number of parity check nodes. This
assumes that the depth ‘ neighborhood of the chosen edge is a tree.
We can show similarly to Li et al. (2015) that the depth ‘ neighbor-
hood of a randomly chosen edge is a tree with high probability for
any fixed ‘. On average, an arbitrarily large fraction of edges are
removed if p‘ goes to zero as ‘!1. For p‘ to go to zero, M/K needs
to be greater than a threshold for a fixed d. These thresholds are
shown in Table 3. Then, one can use the standard Doob’s martingale
argument to show that the fraction of non-recovered components
concentrates around its mean (Richardson and Urbanke, 2001).

This guarantees recovery of arbitrarily large fraction of significant
components. Then, an expander-graph argument is used to show
that peeling continues until all of the coefficients are recovered (Li
et al., 2015).

4.2 Replacing the oracle
We now show how to replace the oracle in the peeling algorithm
with a realizable mechanism. This is done by employing Oð log2NÞ
shifts for each subsampling matrix where log ðNÞ shifts are to re-
cover each digit of the location k, and we take Oðlog NÞ samples for
each location for noise averaging. Let UH;pðkÞ be the kth WHT coef-
ficient of the signal obtained by shifting indices of x by p and then
subsampling by H. From Property 1, we have

UH;pðkÞ :¼
ffiffiffiffiffi
B

N

r X
j:jH>¼k

ð�1Þhj;piXj: (9)

Furthermore, let us define the ratio of a WHT coefficient
obtained by using the same subsampling matrix but using two differ-
ent shifts

rA;p;qðkÞ :¼ UA;pþqðkÞ
UA;pðkÞ

: (10)

Assume that for a WHT index k in Equation (9), there is only

one index j such that A>j ¼ k and Xj 6¼ 0 (i.e. the check node corre-
sponding to it is a single-ton). Then, it follows that

UA;pðkÞ ¼
ffiffiffi
B
N

q
ð�1Þhj;piXj. Using q ¼ ei 2 Fn (the vector with all indi-

ces ¼0 except for the ith index, which is ¼1) in Equation (10) yields

rA;p;ei
ðkÞ ¼ ð�1Þhj;pþeiiXj

ð�1Þhj;piXj

¼ ð�1Þhj;eii: (11)

Note that, this value is in f�1;þ1g for all p if there is no noise.
As the value of hj; eii is equal to the ith index of the location j 2 F

n
2,

by using shifts feign�1
i¼0 going through all indices of j, we can recover

Fig. 8. (Left) The connections between the variable nodes (WHT coefficients) and the check nodes (measurements) in Example 1. (Right) Recovering the unknown coefficients

in Example 2. The graph induced by the non-zero coefficients is shown in panel (A). In the first round of peeling, we recover coefficients at indices 0100, 001 and 1010, and get

the graph in panel (B). In two rounds of peeling, all the non-zero elements of the signal are recovered as shown in panel (C)

Table 3. Thresholds for recovery (Li et al., 2015)

Groups 3 4 5 6

M / K 1.2218 1.2949 1.4250 1.5697

Note: M, number of check nodes; K, number of variable nodes (sparsity).
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it. When there is noise, it can be shown that by taking Oðlog NÞ ran-
dom shifts, the probability of detecting the location wrongly can be
made polynomially small (Li et al., 2015).

5 Conclusion and discussion

While much of the body of research in training, testing and inter-
preting image and text models generalize to machine-learning
problems in computational biology, there are yet distinct aspects
in modern biological datasets that require new perspectives and
methodologies. In several of the molecular biology and genomics
datasets, as an example, the data points comprise long sequences
of discrete elements, such as oligonucleotides (Alipanahi et al.,
2015), amino acids (Huang et al., 2016) or mutations (Yang
et al., 2019) that can be represented using binary codes. These
data modalities typically lack the common structures (e.g. invari-
ance, etc.) present in image or text data while exhibiting other
intriguing features.

In this article, we took an important problem in molecular biol-
ogy, i.e. the problem of predicting the DNA repair outcome, as a
model problem and demonstrated how the discreteness of the input
data as well as the structure of the biological process can be
exploited in our CRISPRLAND framework to do efficient training, in-
ference and model interpretation using the ideas from coding theory
and signal processing. The key observation that enables our analysis
is the sparsity of the DNA repair models in the WHT spectral do-
main, which stems from the fact that the output of the model is a
function of at most sparse number of monomials that capture dis-
tinct patterns around the cut site. Note that, both our results as well
as the results in the DNA repair models employed in our work (e.g.
InDelphi) explain more than 75% of the variance in the experimen-
tal data. The remaining unexplained variance due to other covari-
ates, such as chromatin factor [see Leenay et al. (2019)], only
slightly changes the repair landscape.

We demonstrate that CRISPRLAND reduces the time required to
find the DNA repair landscape from thousands of years to couples
of days using a logarithmically less number of site-specific Cas9 cut-
tings on the human genome and thus meets the burgeoning demand
for large-scale CRISPR gene editing studies. Nevertheless, depending
on the scale of the inference task, the window size around the cut
site can be set to adjust the number of gRNAs to achieve a desired
accuracy even in smaller-scale CRISPR experiments.

We speculate that several of the current machine-learning models
trained for problems in computational biology would be sparse in
WHT domain as well. The sparsity can be similarly exploited in
these applications in various aspects including experimental design,
interpretation and fast inference.
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