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In the following, we first introduce the related works. After that, the proof of Theorem 3.1 is pre-
sented. Finally, more experimental details about the synthetic and real world applications are given.

A A DETAILED DESCRIPTION OF RELATED WORK

A.1 EXPLORATION STRATEGIES IN REINFORCEMENT LEARNING

Reinforcement learning (RL) has emerged as a powerful tool for training intelligent agents to per-
form complex tasks, ranging from playing games like Go to autonomous driving and traffic signal
control tasks (Silver et al., 2016; Tassa et al., 2018; Wei et al., 2018; Kiran et al., 2021). The
success of RL largely depends on the ability of the agent to explore its environment, gather in-
formation and learn from experience. Various exploration strategies have been proposed to tackle
the exploration-exploitation dilemma, especially in deep reinforcement learning (DRL). Traditional
exploration strategies include ϵ-greedy (Sutton & Barto (2018)), upper confidence bounds (Auer
(2002)), Boltzmann exploration (Cesa-Bianchi et al. (2017)) and Thompson sampling (Russo et al.
(2018)). However, the data collection and policy learning process are usually expensive due to hours
of environment interactions, especially in large state spaces and sparse or even deceptive reward en-
vironments where discovering the optimal policy can be highly challenging.

Over recent decades, task-agnostic exploration strategies has been an active research area to tackle
such challenge (Aubret et al., 2019). Existing methods focus on designing appropriate forms of
intrinsic rewards, which can be broadly categorized into three types. (1) the number of times a state
has been visited, which helps to guide the agent towards unexplored regions (Brafman & Tennen-
holtz, 2002; Bellemare et al., 2016; Machado et al., 2020). These count-based methods (Ostrovski
et al., 2017; Zhao & Tresp, 2019) define an empirical count function to record the agent’s behavior
and guide it to rarely visited states. In adaptation of high-dimensional states, Tang et al. (2017)
propose to use domain-dependent hash functions to map states before counting. (2) curiosity about
the environment dynamics, which is usually formalized as prediction errors on the next state (Pathak
et al., 2017; Burda et al., 2018b; Kim et al., 2018). Prediction-based exploration relies on the quality
of state representation, Burda et al. (2018b) show that exploring in raw image space is inefficient and
even random features given by a fixed neural network demonstrate competitiveness. (3) informa-
tion gain, which aims to improve the agent’s knowledge about the environment by maximizing the
mutual information (Duan et al., 2016; Shyam et al., 2019). Recently, information gain is used by
Achiam & Sastry (2017) and Sekar et al. (2020) as an excellent solution to the white-noise problem.
Despite significant advancements in research on task-agnostic exploration strategies, prior methods
pay little attention to the causal structure of the data.

A.2 CAUSAL DISCOVERY

Over the years, several standard causal discovery benchmarks have been developed, including
Bayesian methods (Heckerman, 2013), the Wermuth-Lauritzen algorithm (Lauritzen & Wermuth,
1989), PC (Spirtes et al., 2000) and IG (Verma & Pearl, 1990). These causal methods have been suc-
cessfully applied in a wide range of domains, including biology (Ross, 2021), economics (Emirmah-
mutoglu & Kose, 2011), and social sciences (Blalock, 2017).

Recently, intervention-based causal reasoning (Jaber et al. (2020)) has attracted attention in rein-
forcement learning, which involves actively manipulating variables in a system to observe causal
effects. However, it is infeasible to perform interventions in many real-world scenarios. As a result,
observational causal discovery methods, such as constraint-based (Yu et al. (2016)) and score-based
methods (Zhu et al. (2019)), are used to infer causal relationships from the data in these tasks.

Furthermore, extracting causal knowledge to help intelligent agents make interpretable decisions
has also become a popular trend in task-specific reinforcement learning methods (De Haan et al.,
2019; Ke et al., 2021). Molina et al. (2020) makes use of causal structures to restrict the action
space during exploration. Jaber et al. (2020) involves actively manipulating variables in a system to
observe the causal effects during exploration and Peng et al. (2022) proposes to automatically learn
a hierarchical causal structure for subgoal-based policy training.
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A.3 ACTIVE LEARNING

Active learning is a method describing how to utilize data resources to improve the training effi-
ciency. Typically, a subset of samples that the model mostly unfamiliar with are selected for training
(Settles, 2009). Existing methods for active learning can be categorized into three classes. (1) In
uncertainty approaches, probabilistic learning models such as entropy (Holub et al., 2008; Siddiqui
et al., 2020) or margins (Balcan et al., 2007) are used to define uncertainty of the data. (2) Diver-
sity algorithms choose data that best represent the whole distribution, which formulate the selection
into optimization problems (Elhamifar et al., 2013; Wang et al., 2017) or apply clustering methods
(Nguyen & Smeulders, 2004). (3) The key idea of expected error reduction methods (Roy & Mc-
Callum, 2001) is to select data points that would contribute the largest loss reduction to the model.

B PROOF OF THEOREM 3.1

Recall that we consider solving a linear regression problem under m strong convex and M -smooth.
MSE loss function e(w) in the formulation ∥w⊤x − y∥22 and y = w∗⊤x is minimized by gradient
descent method with

wt+1 = wt − α∇e(wt) (11)

where α is the corresponding stepsize.

Denote wc
t as the network parameters taking causal constraints with respect to wt that dose not

gather causal information. Theorem 3.1 shows that causal exploration gets a prediction error bound
δt times lower at time t, where δ is a density measurement of causal matrix D.

Below, we present a two-step proof for the convergence of causal exploration. Lemma B.1 provides
an upper bound for convergence without using any causal information. Lemma B.2 demonstrates
that utilizing causal structure information results in wc

t being closer to the optimal value w∗ com-
pared to wt at same update steps. Combining Lemma B.1 and Lemma B.2, we derive the conver-
gence rate for causal exploration.
Lemma B.1. Suppose e(w) is m-strongly convex and M -smooth. We have

∥wt − w∗∥ ≤ (1− m

M
)t∥w0 − w∗∥. (12)

Proof. According to gradient descent method (11), we get

∥wt − w∗∥2 = ∥wt−1 − α∇e(wt−1)− w∗∥2

= ∥wt−1 − w∗∥2 − 2α∇e(wt−1)(wt−1 − w∗) + α2∥∇e(wt−1)∥2.

By strong convexity

∇e(w)(w − w∗) ≥ e(w)− e(w∗) +
m

2
∥w − w∗∥2, (13)

we further obtain

∥wt − w∗∥2 ≤ ∥wt−1 − w∗∥2 − 2α(e(wt−1)− e(w∗) +
m

2
∥wt−1 − w∗∥2)

+ α2∥∇e(wt−1)∥2

= ∥wt−1 − w∗∥2 − 2α(e(wt−1)− e(w∗))− αm∥wt−1 − w∗∥2

+ α2∥∇e(wt−1)∥2

≤ ∥wt−1 − w∗∥2 − 2α(e(wt−1)− e(w∗))− αm∥wt−1 − w∗∥2

+ 2α2M(e(wt−1)− e(w∗))

≤ ∥wt−1 − w∗∥2 − αm∥wt−1 − w∗∥2 + 2α(αM − 1)(e(wt−1)− e(w∗)).

(14)

Consider α = 1
M , we get

∥wt − w∗∥2 ≤ (1− m

M
)∥wt−1 − w∗∥2. (15)
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Using the above equation repeatedly, we obtain

∥wt − w∗∥2 ≤ (1− m

M
)∥wt−1 − w∗∥2 ≤ (1− m

M
)2∥wt−2 − w∗∥2

≤ · · · ≤ (1− m

M
)t∥w0 − w∗∥2.

(16)

Lemma B.2. Suppose wc
t ∈ Rn+c and wt ∈ Rn+c are the network parameters with/without causal

structure respectively and w∗ is the optimum. It holds that

∥wc
t − w∗∥2 ≤ δt∥wt − w∗∥2. (17)

Proof. According to the sharing-decomposition schema, we have

wc
t = D ⊙ wt, (18)

where D ∈ {0, 1}(n+c) is the causal matrix. Hence, we rewrite wt as

wt = wc
t + w′

t. (19)

Note that we have wc
t ⊥ w′

t and w∗ = D ⊙ w∗. Then we obtain

∥wt − w∗∥2 = ∥wc
t − w∗ + w′

t∥2

= ∥wc
t − w∗∥2 + ∥w′

t∥2

≥ (1 + ρt)∥wc
t − w∗∥2,

(20)

where ρt ∈ [0,+∞) is the lower bound of the ratio between ∥w′
t∥2 and ∥wc

t −w∗∥2 whose value is
related to the sparsity of causal matrix D. By setting δt =

1
1+ρt

, we complete the proof of Lemma
B.2.

The convexity of e(w) implies

e(wc
t )− e(w∗) ≤ M

2
∥wc

t − w∗∥2. (21)

By applying Lemma B.1 and Lemma B.2 into (21) and denote

δ = max{δ0, δ1, . . . , δt}, (22)

we can obtain Theorem 3.1.

C SYNTHETIC ENVIRONMENT

C.1 MORE EXPERIMENT DETAILS

Implementation Double DQN (Van Hasselt et al., 2016) is used to train the exploration policy
of agents, where both the evaluation network and the target network are three-layer fully connected
networks with relu activations. The corresponding world models are designed as MLPs without/with
activation function in linear/nonlinear module respectively, with 32 and 8 hidden nodes. We use
Adam optimizer and MSE loss to learn above models.

Table 2: Results of different selection methods on online causal discovery.

Method No Sampling Uniform K-center Hardest Coreset
AUC 0.907 ± 0.084 0.892 ± 0.065 0.891 ± 0.175 0.816 ± 0.353 0.969 ± 0.016

Precision 0.953 ± 0.074 0.914 ± 0.079 0.942 ± 0.089 0.892 ± 0.081 0.970 ± 0.064
F1-score 0.831 ± 0.094 0.842 ± 0.104 0.890 ± 0.139 0.852 ± 0.067 0.928 ± 0.096

Time 4.360 ± 2.888 0.880 ± 0.453 0.909 ± 0.414 1.389 ± 0.760 0.379 ± 0.267
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Figure 8: Results on synthtic datasets.

Efficient Causal Discovery To speed up PC algorithm with KCI-test, we design an efficient on-
line causal discovery using selection methods. Tables 2 summarizes the performance of different
sampling methods in our synthetic environments. These exciting experimental results demonstrate
the superiority of the Coreset Selection method we used in improving the efficiency of causal dis-
covery. The selection size k is empirically set as 350 and kept the same among different methods
except for the no sampling method that takes all of the data points.

Causal Exploration Experiments The causal matrix in our synthetic environment is set as a lower
triangular matrix whose elements are generated from uniform distribution [−8, 8]. After that, for
each edge in the graph, we randomly drop it out with a empirically chosen probability 1− p = 0.8.
Besides, the covariance Σ is a diagonal matrix whose elements are randomly generated from [0, 0.1].
For both linear and nonlinear conditions, we have conducted sufficient experiments. Figure 8 shows
the remaining experimental results that are not fully presented in the main body.
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(a)

(b)

(c)

Figure 9: (a)Prediction errors of causal exploration for different β; (b) Performance on underesti-
mation scenarios; (c) Scenarios with structural changes.

In order to enhance the agent’s sensitivity to causal informative data, we design a novel form of
active reward. Here we investigate the impact of β in this new intrinsic reward formulation on causal
exploration which is formulated as rt = rit+βrat in equation (6). Figure 9(a) illustrates the evolution
of prediction error over training time for different values of β. We see that incorporating active
reward for exploration continuously improves the performance of the world model. We set β as 0.5
and 3 for linear and nonlinear environments according to the results in Figure 9(a), respectively.

C.2 GENERALIZATION TO UNDERESTIMATION SCENARIOS

In some data-hungry scenarios, there may be insufficient data for causal discovery, leading to un-
derestimation of the causal structure, which makes continuous data collection and causal structure
correction important components. In other words, the causal structure inferred from causal discovery
algorithms may deviate from the ground truth ones, which is particularly prone to occur under con-
ditions of limited sample size or during the initial stages of exploration. Consequently, we conducts
evaluation of our proposed algorithm’s performance when the estimated causal structure exhibits in-
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sufficiencies or redundancies, a scenario termed ”underestimation”. To highlight the advantages of
our sharing-decomposition schema in addressing such problems, we deliberately provide the agent
with completely wrong causal information. An erroneous causal graph G′ is supplied to the agent
during the initial time steps, namely t < N where N is the period for causal discovery. We intro-
duce perturbations to the true graph G by randomly eliminating or adding edges with a probability
of p′ = 0.8, generating G′. Figure 9(b) shows corresponding performance of causal exploration on
synthetic data. Indeed, the agent exhibits an impressive ability to correct its causal exploration tra-
jectory in the face of misdirection. Nonetheless, it is worth noting that such a schema only serves as
a technique to mitigate the impact of underestimation. The reliability of causal discovery algorithms
is the essential guarantee for causal exploration.

C.3 GENERALIZATION TO SCENARIOS WITH CAUSAL STRUCTURAL CHANGES

In real-world scenarios, causal structure between variables can often change due to sudden distur-
bance. For instance, causal relationships between economic variables like stock prices, interest rates,
and inflation can be subject to rapid changes caused by market crashes or policy changes.

To evaluate the effectiveness of our approach in handling such mutation, we conduct experiments
in a scenario where the causal structure change randomly once. We use our simulation model to
generate the data and compare our method to a non-causal approach. Figure 9(c) illustrates the
advantages of our approach in tackling such a challenging task.

Our sharing-decomposition schema enables the agents to quickly adapt to structural changes and
make appropriate adjustments. This also demonstrates the robustness of our method, which allows
for timely correction of errors in the causal structure. By sharing the same decomposition modules
across different time steps and tasks, our method can effectively leverage previous knowledge and
transfer it to new situations, while also being flexible enough to accommodate changes in the causal
structure. In addition, the ability to adapt to changing causal structures can improve the generaliza-
tion ability of our method, making it more applicable to a wider range of real-world tasks.

In our future research, we plan to expand our work to situations where changes occur within the
model. In these cases, during the model learning phase, it becomes crucial to effectively detect
these changes and promptly update the model. Additionally, when it comes to policy learning, a key
challenge is determining the most suitable model to utilize. We may encounter entirely new models
that have not been encountered before, adding an additional layer of complexity to our research.

D TRAFFIC SIGNAL CONTROL

Following the work in IntelliLight (Wei et al., 2018), the traffic environment in our experiment is a
three-lane intersection. Table 3 gives a detail description.

Table 3: Traffic Dataset Description

Traffic flow setting Directions Arrival Rate (cars/s) Duration (×103 s)Mean Std

Complex traffic East-West 0.211 0.023 216South-North 0.155 0.030

Experiment details and analysis We first purely use prediction-based causal exploration to learn
forward dynamic world models under the same traffic environment in IntelliLight. Then, the agent
learn a policy for traffic signal control task in our learned world models, which avoids the high-
cost interaction with real traffic environment. For consistency and easy comparison, we use the
same DQN network from IntelliLight to train our causal exploration agent. After that, we solve
traffic signal control task in our world model with no environment interaction in a zero-shot manner.
Figure 10 visualizes the prediction errors of different models during the exploration process.

The corresponding causal graph is shown in Figure 6(b). As is illustrated, the state of the traffic
signal at the next time step s4,t is causally linked to the previous state s4,t−1 and action at−1, which
is in line with the definition of traffic signal control tasks. The queue length s2,t is determined by
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previous queue length s2,t−1 and waiting time s3,t−1 plus the traffic state s5,t−1. Factors influencing
the waiting time s3,t include the number of vehicles s1,t−1 and the queue length s2,t−1. These results
align well with the common-sense reasoning.

Figure 10: Prediction errors in traffic light control.

E MORE RESULTS OF MUJOCO TASKS

We adopt the hyperparameters from Table 3 of PPO (Schulman et al., 2017) with a trajectory length
of 2048, an Adam stepsize of 3e-4, a minibatch size of 64, a discount factor (γ = 0.99), a GAE pa-
rameter (λ = 0.95), and a clipping parameter (ϵ = 0.2). Both the actor-critic network and the world
model are 2-(hidden)-layer neural networks, consisting of 256 and 64 hidden nodes respectively.
Activation functions are Tanh and ReLU here. Performance of causal exploration on some other
MuJoCo tasks are provided in Figure 11. Predictions given by world models under causal structural
constraints are more accurate and stable than those of other methods. The learned world model of
causal exploration provides the agent with more information in the following policy learning stage,
resulting in higher scores achieved in a shorter time.

Figure 11: Application to some other MuJoCo tasks.
We also conduct several experiments to test the performance of causal exploration with a different
form of intrinsic reward. To be specific, we formulate our world model as µwc(st,at), σ

2
wc(st,at)

to model the transition probability as p(st+1 | st,at) ∼ N (st+1;µwc , σ2
wc). Then, the negative log-

likelihood is used both for the world model learning and causal exploration, which is a replacement
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Figure 12: Performance of causal exploration with different forms of intrinsic rewards.

for equation (2) and (4), and is formulated as:

L(µwc ,σ2
wc ) =

(st+1 − µwc(st,at))
2

2σ2
wc(st,at)

+
1

2
log σ2

wc(st,at), rit =
η

2
L(µwc ,σ2

wc ). (23)

Corresponding results are shown in Figure 12. However, various forms of intrinsic rewards don’t
exhibit significant differences in performance. In most tasks, the introduction of an additional co-
variance network even lead to performance not as favorable as when directly using regression loss.
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