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The supplementary material contains additional information on the information-theoretic thresholds
for exact community recovery with correlated SBMs, as well as full proofs for the results in the main
document. Sections A - E prove our main results in detail.

A Notation

Recall that the underlying vertex set is V = [n] := {1, 2, . . . , n}. We denote by Sn the set of
permutations of [n]. Recall that V+ := {i ∈ [n] : σi = +1} and V− := {i ∈ [n] : σi = −1} denote
the vertices in the two communities.

Let E := {{i, j} : i, j ∈ [n], i ̸= j} denote the set of all unordered vertex pairs. We will use (i, j),
(j, i), and {i, j} interchangeably to denote the unordered pair consisting of i and j. Given σ, we
also define the sets E+(σ) := {(i, j) ∈ E : σiσj = +1} and E−(σ) := {(i, j) ∈ E : σiσj = −1}.
In words, E+(σ) is the set of intra-community vertex pairs, and E−(σ) is the set of inter-community
vertex pairs. Note in particular that E+(σ) and E−(σ) partition E .

We next introduce some notation pertaining to the construction of the correlated SBMs. Let A be
the adjacency matrix of G1, let B be the adjacency matrix of G2, and let B′ be the adjacency matrix
of G′

2. Note that, by construction, we have that B′
i,j = Bπ∗(i),π∗(j) for every i, j. By the construction

of the correlated SBMs, we have the following probabilities for every (i, j) ∈ E :

P
((
Ai,j , B

′
i,j

)
= (1, 1)

∣∣σ) = {s2p if σi = σj ,

s2q if σi ̸= σj ;

P
((
Ai,j , B

′
i,j

)
= (1, 0)

∣∣σ) = {s(1− s)p if σi = σj ,

s(1− s)q if σi ̸= σj ;

P
((
Ai,j , B

′
i,j

)
= (0, 1)

∣∣σ) = {s(1− s)p if σi = σj ,

s(1− s)q if σi ̸= σj ;

P
((
Ai,j , B

′
i,j

)
= (0, 0)

∣∣σ) = {1− p(2s− s2) if σi = σj ,

1− q(2s− s2) if σi ̸= σj .

For brevity, for i, j ∈ {0, 1} we write

pij := P
((
A1,2, B

′
1,2

)
= (i, j)

∣∣σ) if σ1 = σ2

and
qij := P

((
A1,2, B

′
1,2

)
= (i, j)

∣∣σ) if σ1 ̸= σ2.

For an event A, we denote by 1 (A) the indicator of A, which is 1 if A occurs and 0 otherwise.
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B Exact graph matching for correlated SBMs: achievability

In this section we prove Theorem 3.1 in the main text. Recall that our objective is to find the ground
truth permutation π∗. To this end, we study an estimator π̂ which maximizes the number of agreeing
edges in the two graphs, that is, the number of pairs of vertices connected in both. In other words,
letting A denote the adjacency matrix of G1 and B denote the adjacency matrix of G2, the estimator
is given by

π̂(G1, G2) ∈ argmax
π∈Sn

∑
(i,j)∈E

Ai,jBπ(i),π(j). (1)

When this estimator is not uniquely defined, that is, when the argmax set above is not a singleton,
π̂(G1, G2) is chosen to be an arbitrary element of the argmax set.

Definition B.1 (Lifted permutation). For a permutation π ∈ Sn on the vertices, define the corre-
sponding lifted permutation τ : E → E on vertex pairs as τ((i, j)) := (π(i), π(j)). As a shorthand,
we write τ = ℓ(π), and thus also τ∗ := ℓ(π∗) and τ̂ := ℓ(π̂).

Note that if a permutation π maps two vertices to each other, then the lifted permutation τ =
ℓ(π) maps this (unordered) pair of vertices to itself; that is, if π(1) = 2 and π(2) = 1, then
τ((1, 2)) = (2, 1) = (1, 2). Observe that there is a one-to-one mapping between permutations on
vertices (i.e., Sn) and lifted permutations. For this reason, finding the ground truth permutation π∗
is equivalent to finding the ground truth lifted permutation τ∗. Similarly, conditioning on π∗ is
equivalent to conditioning on τ∗.

Using this notation, we can rewrite (1) as

π̂(G1, G2) ∈ argmax
π∈Sn

∑
e∈E

AeBτ(e), (2)

where τ = ℓ(π), and Ae = Ai,j if e = (i, j). For a lifted permutation τ define

X(τ) :=
∑
e∈E

AeBτ∗(e) −
∑
e∈E

AeBτ(e) =
∑

e∈E:τ(e)̸=τ∗(e)

(
AeBτ∗(e) −AeBτ(e)

)
.

Observe that X(τ∗) = 0 and that π̂(G1, G2) ∈ argminπ∈Sn
X(ℓ(π)). Therefore this estimator is

correct—that is, π̂(G1, G2) = π∗—if for every lifted permutation τ ̸= τ∗ we have that X(τ) > 0.
Conditioning on π∗ we thus have that

P(π̂ ̸= π∗) ≤ P(∃π ̸= π∗ : X(ℓ(π)) ≤ 0) = E [P (∃π ̸= π∗ : X(ℓ(π)) ≤ 0 |π∗)] ,

so a union bound implies that

P(π̂ ̸= π∗) ≤ E

 ∑
π∈Sn:π ̸=π∗

P (X(ℓ(π)) ≤ 0 |π∗)

 .

To proceed, we shall bound the terms in the summation on the right hand side by studying the
probability generating function (PGF) of X(τ) for any fixed lifted permutation τ . More specifically,
we will study the PGF of X(τ) given both π∗ (equivalently, τ∗) and the community labeling σ.

B.1 Probabilistic bounds for X(τ)

In this section, we establish large-deviations-type probability bounds for the event that τ̂ = τ , where
τ is a fixed lifted permutation. In our analysis we derive probability bounds which hold pointwise
given any community labeling σ and ground truth lifted permutation τ∗. We then derive simpler
expressions for the bounds that hold when the two communities are approximately balanced.

To make these ideas more formal, we begin by defining some notation. Recall that given σ, the set
E+(σ) is the set of intra-community vertex pairs, while E−(σ) is the set of inter-community vertex
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pairs. Given σ and τ∗, for a fixed lifted permutation τ we also define the quantities
M+(τ) :=

∣∣{e ∈ E+(σ) : τ(e) ̸= τ∗(e)
}∣∣ ,

M−(τ) :=
∣∣{e ∈ E−(σ) : τ(e) ̸= τ∗(e)

}∣∣ ,
Y +(τ) :=

∑
e∈E+(σ):τ(e)̸=τ∗(e)

AeBτ∗(e),

Y −(τ) :=
∑

e∈E−(σ):τ(e) ̸=τ∗(e)

AeBτ∗(e).

In words, M+(τ) is the number of mismatched intra-community vertex pairs. Furthermore, Y +(τ)
is the number of mismatched intra-community vertex pairs which contribute to the alignment score
of the ground truth lifted permutation τ∗ = ℓ(π∗). We have analogous interpretations for the inter-
community quantities M−(τ) and Y −(τ). Note that in addition to τ , these quantities depend on σ
and τ∗ as well; however, we suppress this in the notation for simplicity. Observe also that M+(τ) and
M−(τ) are deterministic functions of σ, τ∗, and τ . On the other hand, given σ and τ∗, and fixing τ ,
the quantities Y +(τ) and Y −(τ) are random variables, since they depend on the two graphs G1 and
G2 as well.

Given a community labeling σ and the ground truth lifted permutation τ∗, for a fixed lifted permutation
τ we shall study the PGF

Φτ (θ, ω, ζ) := E
[
θX(τ)ωY +(τ)ζY

−(τ)
∣∣∣σ, τ∗] .

Remark B.2. Since our goal is to bound the probability of the event {X(τ) ≤ 0}, it is perhaps
more natural to study simply the PGF of X(τ), rather than the joint PGF of X(τ), Y +(τ), and
Y −(τ). However, the success of the former approach requires that s2(α + β)/2 > 2, which is
suboptimal. For a tighter analysis, one must condition on the typical behavior of Y +(τ) and Y −(τ),
which in turn requires us to consider the joint PGF. This idea was previously used to show that the
information-theoretic threshold can be achieved in the graph matching problem for Erdős-Rényi
graphs [6, 11].

The next lemma provides a useful bound for Φτ for any σ and τ∗; we defer its proof to Section B.3.
Lemma B.3. Given a community labeling σ and the ground truth lifted permutation τ∗, the following
holds. Fix π ∈ Sn and let τ = ℓ(π). For any constants ϵ ∈ (0, 1) and 1 ≤ ω, ζ ≤ 3, it holds for all n
large enough that

Φτ
(
1/
√
n, ω, ζ

)
≤ exp

(
−(1− ϵ)s2

(
αM+(τ) + βM−(τ)

) log n
n

)
. (3)

We remark that (3) bounds the probability generating function for the specific value θ = 1/
√
n. This

choice is somewhat arbitrary; the proof of Lemma B.3 shows that the bound holds for all θ smaller
than some positive function of ϵ, α, β, and s, and larger than log(n)/n. Similarly, the requirement
that ω, ζ ≤ 3 is arbitrary; we expect that, with a careful analysis, one could even let ω and ζ be slowly
increasing functions of n.

To apply Lemma B.3 later on, we need to compute/estimate M+(τ) and M−(τ). To this end, given
σ and π∗, for non-negative integers k1 and k2, let Sk1,k2

denote the set of lifted permutations ℓ(π)
where π incorrectly matches k1 vertices in V+ and incorrectly matches k2 vertices in V−. That is,
define

Sk1,k2 := {ℓ(π) : |{i ∈ V+ : π(i) ̸= π∗(i)}| = k1 and |{i ∈ V− : π(i) ̸= π∗(i)}| = k2} .
Note that Sk1,k2

is defined given σ and π∗; however, for simplicity we omit these from the notation.
The next lemma employs simple counting arguments to compute M+(τ) and M−(τ) for τ ∈ Sk1,k2

.
In essence, it shows how to go from mismatches in the vertex permutation π to mismatches in the
lifted permutation τ = ℓ(π). We note that a variant of this result in a related but slightly different
setting was stated (without proof) in [9]; we present the details for completeness.
Lemma B.4. Fix π ∈ Sn and let τ = ℓ(π). Given σ and π∗, let k1 and k2 be such that τ ∈ Sk1,k2

.
Then we have that

M+(τ) =

(
k1
2

)
+ k1(|V+| − k1) +

(
k2
2

)
+ k2(|V−| − k2)−

∣∣E+
tr

∣∣ ; (4)

M−(τ) = k1|V−|+ k2|V+| − k1k2 −
∣∣E−

tr

∣∣ , (5)
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where

E+
tr :=

{
(u, v) ∈ E+(σ) : π(u) = π∗(v), π(v) = π∗(u)

}
,

E−
tr :=

{
(u, v) ∈ E−(σ) : π(u) = π∗(v), π(v) = π∗(u)

}
.

That is, E+
tr is the set of vertex pairs from the same community which are transposed under π

compared to π∗, and an analogous description holds for E−
tr. Moreover, we have the bounds∣∣E+

tr

∣∣ , ∣∣E−
tr

∣∣ ≤ (k1 + k2)/2.

Proof. Let e = (i, j). Observe first that if π(i) = π∗(i) and π(j) = π∗(j), then also τ(e) = τ∗(e),
and hence this pair does not contribute to M+(τ) or M−(τ). Thus in order for e = (i, j) to contribute
to M+(τ) or M−(τ), we must have either π(i) ̸= π∗(i) or π(j) ̸= π∗(j).

We start by deriving (4). Let us first consider the contribution to M+(τ) from pairs of vertices in V+.
The number of pairs of vertices i, j ∈ V+ such that π(i) ̸= π∗(i) and π(j) ̸= π∗(j) is

(
k1

2

)
, while

the number of pairs of vertices i, j ∈ V+ such that one is correctly matched by π and the other is
incorrectly matched is k1(|V+| − k1). These give the first two terms in (4). However, not all of
these pairs of vertices have τ(e) ̸= τ∗(e). Specifically, if i, j ∈ V+ are such that π(i) = π∗(j) and
π(j) = π∗(i), then both i and j are mismatched (and hence counted above), yet τ(e) = τ∗(e) (and
hence should not be counted). This leads to the subtraction in (4). The contribution to M+(τ) from
pairs in V− is analogous.

We now turn to deriving (5). The number of pairs where i ∈ V+ and j ∈ V− such that π(i) ̸= π∗(i)
is k1 |V−|. Similarly, the number of pairs where i ∈ V+ and j ∈ V− such that π(j) ̸= π∗(j)
is k2 |V+|. Here we have double-counted pairs i ∈ V+ and j ∈ V− such that π(i) ̸= π∗(i) and
π(j) ̸= π∗(j); there are k1k2 such pairs. Thus the number of pairs i ∈ V+ and j ∈ V− such that
π(i) ̸= π∗(i) or π(j) ̸= π∗(j) is k1|V−|+ k2|V+| − k1k2. However, not all of these pairs of vertices
have τ(e) ̸= τ∗(e). Specifically, if i ∈ V+ and j ∈ V− are such that π(i) = π∗(j) and π(j) = π∗(i),
then both i and j are mismatched (and hence counted above), yet τ(e) = τ∗(e) (and hence should
not be counted). This leads to the subtracted term in (5).

Finally, the total number of transpositions (of π compared to π∗) satisfies 2
(∣∣E+

tr

∣∣+ ∣∣E−
tr

∣∣) ≤ k1+k2,
since each transposition involves two mismatched vertices and k1 + k2 is the total number of
mismatched vertices. This leads to the bounds

∣∣E+
tr

∣∣ , ∣∣E−
tr

∣∣ ≤ (k1 + k2)/2 as desired.

The combinatorial formulas (4) and (5) are somewhat unwieldy to use directly. Fortunately, we can
derive relatively simple linear lower bounds when the two communities are approximately balanced.
To formalize this idea, we first introduce the following “nice" event.
Definition B.5 (Balanced communities). For ϵ > 0 define the event

Fϵ :=
{(

1− ϵ

2

) n

2
≤ |V+|, |V−| ≤

(
1 +

ϵ

2

) n

2

}
.

Note that whether or not Fϵ holds depends only on the community labels σ. Also, since the
community labels are i.i.d. uniform, we have for any fixed ϵ > 0 that P (Fϵ) = 1− o(1) as n → ∞.

Now fix ϵ > 0 and a lifted permutation τ . Our next goal is to find simple lower bounds for M+(τ)
and M−(τ), given community labels σ such that Fϵ holds, and given τ∗. To this end, let k1 and k2
be such that τ ∈ Sk1,k2

. We distinguish two cases:

• Case 1: both k1 and k2 are small; specifically, k1 ≤ ϵ
2 |V+| and k2 ≤ ϵ

2 |V−|.
• Case 2: either k1 or k2 is large; specifically, either k1 ≥ ϵ

2 |V+| or k2 ≥ ϵ
2 |V−|.

We start with the first case, when k1 ≤ ϵ
2 |V+| and k2 ≤ ϵ

2 |V−|.
Lemma B.6. Fix ϵ > 0. Given community labels σ such that Fϵ holds, let k1 and k2 be such that
k1 ≤ ϵ

2 |V+| and k2 ≤ ϵ
2 |V−|. Given σ and π∗, let τ be a lifted permutation such that τ ∈ Sk1,k2 .

For all n large enough we have the following bounds:

M+(τ) ≥ (1− ϵ)
n

2
(k1 + k2), (6)

M−(τ) ≥ (1− ϵ)
n

2
(k1 + k2). (7)
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Proof. For n sufficiently large, we have the following lower bound for M+(τ):

M+(τ)
(a)

≥ k1(|V+| − k1) + k2(|V−| − k2)−
k1 + k2

2

(b)

≥
(
1− ϵ

2

)
(k1|V+|+ k2|V−|)−

k1 + k2
2

(c)

≥
((

1− ϵ

2

)2 n

2
− 1

)
(k1 + k2)

(d)

≥ (1− ϵ)
n

2
(k1 + k2),

where (a) follows from ignoring positive terms in the formula (4) and bounding
∣∣E+

tr

∣∣ by (k1+k2)/2,
(b) uses the upper bounds k1 ≤ ϵ

2 |V+| and k2 ≤ ϵ
2 |V−|, (c) uses the lower bounds |V+|, |V−| ≥

(1− ϵ/2)n/2, which hold on the event Fϵ, and finally (d) uses (1− ϵ/2)2 > 1− ϵ and the fact that
n is sufficiently large. Turning to M−(τ), we have the following lower bound:

M−(τ)
(e)

≥ k1|V−|+ k2|V+| − k1k2 −
k1 + k2

2
= k1

(
|V−| −

k2
2

− 1

2

)
+ k2

(
|V+| −

k1
2

− 1

2

)
(f)

≥
(
1− ϵ

2

)
(k1|V−|+ k2|V+|)

(g)

≥
(
1− ϵ

2

)2 n

2
(k1 + k2) ≥ (1− ϵ)

n

2
(k1 + k2),

where (e) follows from bounding
∣∣E−

tr

∣∣ by (k1 + k2)/2 in the formula (5), (f) uses k1 + 1 ≤ ϵ|V+|
and k2 + 1 ≤ ϵ|V−|, and finally (g) uses the lower bounds |V+|, |V−| ≥ (1− ϵ/2)n/2, which hold
on the event Fϵ.

Combining these estimates with Lemma B.3, the following lemma bounds the conditional probability
that the estimate π̂ has k1 mismatches in V1 and k2 mismatches in V2, for small k1 and k2.
Lemma B.7. Fix constants α, β > 0, s ∈ [0, 1], and ϵ ∈ (0, 1) such that s2(α + β)/2 >

(1 + ϵ) (1− ϵ)
−2. Given σ, let k1 and k2 be such that k1 ≤ ϵ

2 |V+| and k2 ≤ ϵ
2 |V−|. For all

n large enough we have that

P (τ̂ ∈ Sk1,k2
|σ, τ∗)1 (Fϵ) ≤ n−ϵ(k1+k2). (8)

Proof. Let τ ∈ Sk1,k2 . We then have that

P (τ̂ = τ |σ, τ∗)
(a)

≤ P (X(τ) ≤ 0 |σ, τ∗) = P
(
n−X(τ)/2 ≥ 1

∣∣∣σ, τ∗)
(b)

≤ Φτ
(
1/
√
n, 1, 1

) (c)

≤ exp

(
−(1− ϵ)s2

(
αM+(τ) + βM−(τ)

) log n
n

)
,

where (a) is due to the observation made earlier that τ̂ is a minimizer of X(τ), and X(τ∗) = 0; (b)
is due to Markov’s inequality; and (c) follows from Lemma B.3, for all n large enough.

The estimate above allows us to bound the probability of interest via a union bound. To do this, we
need to estimate |Sk1,k2 |. Since there are k1 + k2 mismatched vertices in total, there are at most(

n
k1+k2

)
ways to choose the set of mismatched vertices (this is a loose upper bound, since this formula

disregards how many mismatched vertices there are of each community). The number of possible
permutations on the mismatched vertices is at most (k1 + k2)!. Therefore

|Sk1,k2
| ≤

(
n

k1 + k2

)
(k1 + k2)! =

n!

(n− k1 − k2)!
≤ nk1+k2 .

Thus a union bound implies that

P (τ̂ ∈ Sk1,k2
|σ, τ∗) ≤ |Sk1,k2

| max
τ∈Sk1,k2

P (τ̂ = τ |σ, τ∗)

≤ max
τ∈Sk1,k2

exp

(
(k1 + k2) log n− (1− ϵ)s2

(
αM+(τ) + βM−(τ)

) log n
n

)
. (9)

On the event Fϵ, provided that n is large enough, and k1 ≤ ϵ
2 |V+| and k2 ≤ ϵ

2 |V−|, we may use the
bounds in Lemma B.6 to bound the exponent in (9) from above by{

1− (1− ϵ)2s2 (α+ β) /2
}
(k1 + k2) log n ≤ −ϵ(k1 + k2) log n,

where the second inequality follows from the assumption that s2(α + β)/2 > (1 + ϵ)(1 − ϵ)−2.
Plugging this into (9) we have thus obtained (8).

5



Next, we consider the second case, when either k1 or k2 is large; specifically, either k1 ≥ ϵ
2 |V+| or

k2 ≥ ϵ
2 |V−|. Our goal is to obtain lemmas analogous to Lemmas B.6 and B.7 in this case as well.

Lemma B.8. Fix π ∈ Sn and let τ = ℓ(π). Fix ϵ > 0. Given community labels σ such that Fϵ holds,
and given π∗, let k1 and k2 be such that τ ∈ Sk1,k2

. For all n large enough we have the following
bounds:

M+(τ) ≥ (1− ϵ)
n

4
(k1 + k2), (10)

M−(τ) ≥ (1− ϵ)
n

4
(k1 + k2). (11)

Proof. On the event Fϵ, we have that

M+(τ) ≥
(
k1
2

)
+ k1(|V+| − k1) +

(
k2
2

)
+ k2(|V−| − k2)−

k1 + k2
2

= k1

(
|V+| −

k1 + 2

2

)
+ k2

(
|V−| −

k2 + 2

2

)
(h)

≥ 1

2
(k1(|V+| − 2) + k2(|V−| − 2))

(i)

≥ (1− ϵ)
n

4
(k1 + k2),

where (h) is due to k1 ≤ |V+| and k2 ≤ |V−|, and (i) uses |V+| − 2 ≥ (1 − ϵ/2)|V+| and
|V−| − 2 ≥ (1− ϵ/2)|V−|, as well as |V+|, |V−| ≥ (1− ϵ/2)n/2, which all hold on the event Fϵ for
all n large enough. For M−(τ), we can use identical arguments to obtain (11).

Note that Lemma B.8 makes no assumptions on k1 or k2; however, the obtained lower bounds are
smaller by a factor of 1/2 compared to the bounds obtained in Lemma B.6 when k1 and k2 are both
small. The bounds in Lemma B.8 are used to obtain the following result, which is the analogue of
Lemma B.7.
Lemma B.9. Fix constants α, β > 0, s ∈ [0, 1], and ϵ ∈ (0, 1) such that s2(α + β)/2 >

(1 + ϵ) (1− ϵ)
−2. There exists δ = δ (α, β, s, ϵ) > 0 such that the following holds. Given σ,

let k1 and k2 be such that either k1 ≥ ϵ
2 |V+| or k2 ≥ ϵ

2 |V−|. For all n large enough we have that

P (τ̂ ∈ Sk1,k2
|σ, τ∗)1(Fϵ) ≤ n−δ(k1+k2). (12)

Due to the additional factor of 1/2 in the lower bounds for M+(τ) and M−(τ) in Lemma B.8
(compared to Lemma B.6), one could replicate the proof of Lemma B.7 to show that if s2(α+β)/2 >
2, then (12) holds for appropriate δ. In order to prove an achievability result for the correct threshold
s2(α + β)/2 > 1, we employ a more careful analysis in which we condition on typical values of
Y +(τ) and Y −(τ). Similar ideas were used in previous work on achieving the information-theoretic
threshold for exact recovery in correlated Erdős-Rényi graphs [6, 11]. Since the proof of Lemma B.9
is more involved, we defer it to Section B.4.

B.2 Proof of Theorem 3.1

The proof of Theorem 3.1 now readily follows from Lemmas B.7 and B.9.

Proof of Theorem 3.1. By assumption we have that s2(α + β)/2 > 1. Let ϵ > 0 be sufficiently
small so that s2(α+ β)/2 > (1 + ϵ)(1− ϵ)−2, and hence the conditions of Lemmas B.7 and B.9 are
satisfied. Let δ be given by Lemma B.9 and let γ := min {ϵ, δ}.

We first argue that we may assume that the event Fϵ holds. We have that
P (π̂ ̸= π∗) = P (τ̂ ̸= τ∗) = E [P (τ̂ ̸= τ∗ |σ, τ∗)] ≤ E [P (τ̂ ̸= τ∗ |σ, τ∗)1 (Fϵ)] + P (Fc

ϵ ) .

Since the community labels are i.i.d. uniform, we have that P (Fc
ϵ ) → 0 as n → ∞, and thus it

remains to be shown that E [P (τ̂ ̸= τ∗ |σ, τ∗)1 (Fϵ)] → 0 as n → ∞.

If τ̂ ̸= τ∗, then π̂ must have some incorrectly matched vertices (since π̂ is a permutation, it cannot
have just a single mismatched vertex); in other words, we must have that τ̂ ∈ Sk1,k2 for some k1 and
k2 satisfying k1 + k2 ≥ 2. Thus by Lemmas B.7 and B.9 we have that

P (τ̂ ̸= τ∗ |σ, τ∗)1 (Fϵ) =
∑

k1,k2:k1+k2≥2

P (τ̂ ∈ Sk1,k2
|σ, τ∗)1 (Fϵ) ≤

∑
k1,k2:k1+k2≥2

n−γ(k1+k2).
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Note that there are ℓ+ 1 different pairs (k1, k2) such that k1 + k2 = ℓ. Therefore

∑
k1,k2:k1+k2≥2

n−γ(k1+k2) ≤
∞∑
ℓ=2

(ℓ+ 1)n−γℓ = n−2γ
∞∑
ℓ=0

(ℓ+ 3)n−γℓ ≤ Cn−2γ

for some finite constant C depending only on γ (and hence only on α, β, and s). Putting together the
previous two displays and taking an expectation we obtain that

E [P (τ̂ ̸= τ∗ |σ, τ∗)1 (Fϵ)] ≤ Cn−2γ ,

which concludes the proof.

B.3 Generating function analysis: Proof of Lemma B.3

B.3.1 Cycle decomposition of the PGF

We begin by presenting a convenient representation of X(τ) as a sum of independent random
variables (conditioned on σ and τ∗), based on an appropriate cycle decomposition. Let C be the cycle
decomposition of the lifted permutation τ−1

∗ ◦ τ , and note that the pairs for which τ∗(e) = τ(e) are
the fixed points of τ−1

∗ ◦ τ . We can then write

X(τ) =
∑

e∈E:τ(e)̸=τ∗(e)

(
AeBτ∗(e) −AeBτ(e)

)
=

∑
C∈C:|C|≥2

∑
e∈C

(
AeBτ∗(e) −AeBτ(e)

)
=:

∑
C∈C:|C|≥2

XC(τ).

Note that
(
τ∗ ◦ τ−1

∗ ◦ τ
)
(e) = τ(e), and hence {τ(e)}e∈C = {τ∗(e)}e∈C . Therefore XC(τ) is a

function of
{(

Ae, Bτ∗(e)

)}
e∈C

= {(Ae, B
′
e)}e∈C . Given σ and τ∗, these only depend on the entries

of the adjacency matrix of the parent graph corresponding to pairs e ∈ C, as well as the sampling
variables corresponding to pairs e ∈ C. Thus, due to the disjointness of cycles, the random variables
{XC(τ)}C∈C:|C|≥2 are mutually independent (given σ and τ∗). This implies, in particular, that for
any θ ∈ R we have that

E
[
θX(τ)

∣∣∣σ, τ∗] = ∏
C∈C:|C|≥2

E
[
θXC(τ)

∣∣∣σ, τ∗] .
A similar factorization holds for Φτ , which is the PGF of interest. First, define

Y +
C (τ) :=

∑
e∈C∩E+(σ):τ(e) ̸=τ∗(e)

AeBτ∗(e),

Y −
C (τ) :=

∑
e∈C∩E−(σ):τ(e)̸=τ∗(e)

AeBτ∗(e).

Again due to the disjointness of cycles, the triples
{(

XC(τ), Y
+
C (τ), Y −

C (τ)
)}

C∈C:|C|≥2
are mutually

independent (given σ and τ∗), so we have the factorization

Φτ (θ, ω, ζ) =
∏

C∈C:|C|≥2

E
[
θXC(τ)ωY +

C (τ)ζY
−
C (τ)

∣∣∣σ, τ∗] =:
∏

C∈C:|C|≥2

Φτ
C(θ, ω, ζ). (13)

Given the factorization in (13), a key intermediate goal is to bound Φτ
C for C such that |C| ≥ 2. This

is accomplished by the following lemma.

Lemma B.10. Given σ and τ∗, the following holds. Fix a lifted permutation τ , and let C be a cycle
in τ−1

∗ ◦ τ such that |C| ≥ 2. Then for any constants ϵ ∈ (0, 1) and 1 ≤ ω, ζ ≤ 3, it holds for all n
large enough that

Φτ
C

(
1√
n
, ω, ζ

)
≤ exp

(
−(1− ϵ)s2

(
α
∣∣C ∩ E+(σ)

∣∣+ β
∣∣C ∩ E−(σ)

∣∣) log n
n

)
. (14)
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The proof can be found in Section B.3.2. We remark that prior literature studying similar PGFs in
different contexts (correlated Erdős-Rényi graphs or correlated Gaussian matrices) was able to derive
exact expressions for the PGF of a cycle due to the i.i.d. structure of the model considered [5, 6, 11].
Deriving exact formulae for the PGF of a cycle in correlated stochastic block models is significantly
more challenging due to the heterogeneity induced by different community labels in the cycle.
Specifically, if the elements of the cycle are labelled differently, one obtains different formulae for
the PGFs, even if the number of inter-community and intra-community edges within the cycle are
the same. The proof of Lemma B.10 instead focuses on establishing simple, recursive bounds for
the PGF, which ultimately leads to the right hand side in (14). We expect that this technique may
be useful more generally in heterogeneous random graphs with independent structure, such as those
generated from the Chung-Lu model [4].

We now prove Lemma B.3, which follows readily from Lemma B.10.

Proof of Lemma B.3. Using (13) and (14), we have the bound

Φτ (θ, ω, ζ) ≤ exp

−(1− ϵ)s2
log n

n

∑
C∈C:|C|≥2

(
α
∣∣C ∩ E+(σ)

∣∣+ β
∣∣C ∩ E−(σ)

∣∣) .

Since the cycles of C partition E = E+(σ) ∪ E−(σ), we have that∑
C∈C:|C|≥2

∣∣C ∩ E+(σ)
∣∣ = ∣∣E+(σ)

∣∣− ∑
C∈C:|C|=1

∣∣C ∩ E+(σ)
∣∣

=
∣∣{e ∈ E+(σ) : τ(e) ̸= τ∗(e)}

∣∣
= M+(τ).

Similarly, ∑
C∈C:|C|≥2

∣∣C ∩ E−(σ)
∣∣ = M−(τ),

and the desired result immediately follows.

B.3.2 Bounding the PGF of a cycle: Proof of Lemma B.10

In the following we assume that σ and τ∗ are given. We also fix a lifted permutation τ , as well
as a cycle C in τ−1

∗ ◦ τ with |C| ≥ 2. We enumerate the elements of C by e1, . . . , e|C|, where(
τ−1
∗ ◦ τ

)
(ek) = ek+1 for every k ∈ {1, . . . , |C| − 1}, and

(
τ−1
∗ ◦ τ

) (
e|C|

)
= e1. For convenience

of notation, we also define e|C|+1 := e1, so that
(
τ−1
∗ ◦ τ

)
(ek) = ek+1 for every 1 ≤ k ≤ |C|.

Observe that, by applying τ∗ to both sides of this equality, we have that

τ(ek) =
(
τ∗ ◦ τ−1

∗ ◦ τ
)
(ek) = τ∗ (ek+1) . (15)

Additionally, for 1 ≤ k ≤ |C|, we set λk := +1 if ek ∈ E+ (σ) and λk := −1 if ek ∈ E− (σ).
Observe that for every i, j ∈ {0, 1} and 1 ≤ k ≤ |C| we have that

P
((
Aek , Bτ∗(ek)

)
= (i, j)

∣∣σ, τ∗) = P
((
Aek , B

′
ek

)
= (i, j)

∣∣σ, τ∗) = {pij if λk = +1,

qij if λk = −1.
(16)

Moreover, note that, given σ and τ∗, the random pairs
{(

Aek , Bτ∗(ek)

)}|C|
k=1

=
{(

Aek , B
′
ek

)}|C|
k=1

are mutually independent. Next, for 1 ≤ k ≤ |C|, define the random variables

Xk :=

k∑
ℓ=1

AeℓBτ∗(eℓ) −AeℓBτ(eℓ),

Y +
k :=

k∑
ℓ=1

1 (λℓ = +1)AeℓBτ∗(eℓ),

Y −
k :=

k∑
ℓ=1

1 (λℓ = −1)AeℓBτ∗(eℓ).
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In particular, by construction we have that X|C| = XC(τ), Y +
|C| = Y +

C (τ), and Y −
|C| = Y −

C (τ). Due
to (15), as well as using Bτ∗(e) = B′

e for every e ∈ E , we may also write these quantities as

Xk =

k∑
ℓ=1

AeℓBτ∗(eℓ) −AeℓBτ∗(eℓ+1) =

k∑
ℓ=1

AeℓB
′
eℓ

−AeℓB
′
eℓ+1

,

Y +
k =

k∑
ℓ=1

1 (λℓ = +1)AeℓB
′
eℓ
,

Y −
k =

k∑
ℓ=1

1 (λℓ = −1)AeℓB
′
eℓ
.

From the display above we also have that the increments satisfy

Xk −Xk−1 =


1 if

(
Aek , B

′
ek

)
= (1, 1), B′

ek+1
= 0,

−1 if
(
Aek , B

′
ek

)
= (1, 0), B′

ek+1
= 1,

0 else;
(17)

Y +
k − Y +

k−1 =

{
1 if λk = +1 and

(
Aek , B

′
ek

)
= (1, 1),

0 else;
(18)

Y −
k − Y −

k−1 =

{
1 if λk = −1 and

(
Aek , B

′
ek

)
= (1, 1),

0 else.
(19)

Note, in particular, that none of these increments depend on Aek+1
. Next, for 1 ≤ k ≤ |C| and

i, j,m ∈ {0, 1}, define the PGF

ϕk,ij,m (θ, ω, ζ) := E
[
θXkωY +

k ζY
−
k

∣∣∣σ, τ∗, (Ae1 , B
′
e1

)
= (i, j), B′

ek+1
= m

]
,

where we note that ϕ|C|,ij,m is only defined when j = m, since e|C|+1 ≡ e1. The following
proposition relates these PGFs to Φτ

C , which is the PGF of interest.
Proposition B.11. Consider the setting described above. We then have that

Φτ
C (θ, ω, ζ) =


∑

i,j∈{0,1}
pijϕ|C|,ij,j(θ, ω, ζ) if λ1 = +1,∑

i,j∈{0,1}
qijϕ|C|,ij,j(θ, ω, ζ) if λ1 = −1.

Proof. First, recall that e|C|+1 ≡ e1, so conditioning on
(
Ae1 , B

′
e1

)
is the same as conditioning

on
(
Ae1 , B

′
e1

)
and B′

e|C|+1
. The claim then follows from the definition of Φτ

C by conditioning on(
Ae1 , B

′
e1

)
and recalling the probabilities in (16).

The usefulness of defining the PGFs {ϕk,ij,m}1≤k≤|C|;i,j,m∈{0,1} is that we can compute them
recursively in k in a straightforward manner. To see this, let 2 ≤ k ≤ |C| − 1 and first consider the
case of m = 0. By conditioning on

(
Aek , B

′
ek

)
and using the tower rule, we have that

ϕk,ij,0 (θ, ω, ζ) = E(Aek
,B′

ek
)

[
E
[
θXk−1+(Xk−Xk−1)ωY +

k−1+(Y +
k −Y +

k−1)ζY
−
k−1+(Y −

k −Y −
k−1)∣∣∣σ, τ∗, (Ae1 , B

′
e1

)
= (i, j), B′

ek+1
= 0,

(
Aek , B

′
ek

)]]
.

With the additional conditioning on
(
Aek , B

′
ek

)
, the increments (Xk −Xk−1), (Y +

k − Y +
k−1), and

(Y −
k − Y −

k−1) are now deterministic. Indeed, from (17) we see that, since B′
ek+1

= 0, the increment
Xk −Xk−1 is equal to 1 if

(
Aek , B

′
ek

)
= (1, 1), otherwise it is zero. Similar statements can be made

about the other increments based on (18) and (19). Pulling the contributions from the increments out
and putting everything together, we have that

ϕk,ij,0 =

{
(p00 + p10)ϕk−1,ij,0 + (p01 + p11θω)ϕk−1,ij,1 if λk = +1,

(q00 + q10)ϕk−1,ij,0 + (q01 + q11θζ)ϕk−1,ij,1 if λk = −1.
(20)
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Repeating similar arguments for the case m = 1 gives the following recursion for 2 ≤ k ≤ |C| − 1:

(
ϕk,ij,0

ϕk,ij,1

)
=



(
p00 + p10 p01 + p11θω

p00 + p10θ
−1 p01 + p11ω

)(
ϕk−1,ij,0

ϕk−1,ij,1

)
if λk = +1,

(
q00 + q10 q01 + q11θζ

q00 + q10θ
−1 q01 + q11ζ

)(
ϕk−1,ij,0

ϕk−1,ij,1

)
if λk = −1.

(21)

The appropriate part of the recursion also holds for k = |C|, noting that ϕ|C|,ij,m is only defined
for j = m. To complete the description of the recursion, we have to also give the initial conditions,
which are the PGFs for k = 1. These can be computed as follows:

ϕ1,ij,m =



θ−1 if (i, j) = (1, 0),m = 1,

θω if (i, j) = (1, 1),m = 0, λ1 = +1,

θζ if (i, j) = (1, 1),m = 0, λ1 = −1,

ω if (i, j) = (1, 1),m = 1, λ1 = +1,

ζ if (i, j) = (1, 1),m = 1, λ1 = −1,

1 else.

(22)

To analyze the recursion (21), we first derive a useful relation between ϕk,ij,1 and ϕk,ij,0, as stated in
the following lemma. Define

R := max

{
1 + 2s

1− s

(
p10
p00

)
,
1 + 2s

1− s

(
q10
q00

)}
, (23)

and note that R = O(log(n)/n) for every fixed s ∈ [0, 1]. (Since p10 and q10 each contain a factor
of (1− s), this holds also for s = 1.)

Lemma B.12. Consider the setting described above. Then for any 2 ≤ k ≤ |C| − 1, i, j ∈ {0, 1},
1 ≤ ω, ζ ≤ 3, and θ satisfying 0 < θ ≤ 1−R, we have that

ϕk,ij,1 ≤
(
1 +Rθ−1

)
ϕk,ij,0. (24)

Proof. Our proof is by induction on k. We first check that the base case holds for all i, j ∈ {0, 1}.
For (i, j) = (0, 0) or (i, j) = (0, 1), we may take the base case to be k = 1. Indeed, in these cases
we have, from (22), that ϕ1,ij,0 = ϕ1,ij,1 = 1, so (24) holds. For (i, j) = (1, 0) or (i, j) = (1, 1), we
shall take the base case to be k = 2.

Consider now the case of (i, j) = (1, 0). From (21) and (22) we then have that

ϕ2,10,0 =

{
p00 + p10 + p01θ

−1 + p11ω if λ2 = +1,

q00 + q10 + q01θ
−1 + q11ζ if λ2 = −1;

(25)

ϕ2,10,1 =

{
p00 + p10θ

−1 + p01θ
−1 + p11θ

−1ω if λ2 = +1,

q00 + q10θ
−1 + q01θ

−1 + q11θ
−1ζ if λ2 = −1.

First consider the case of λ2 = +1. Using ω ≤ 3, we have that ϕ2,10,1 ≤ p00 + p10θ
−1 + p01θ

−1 +
3p11θ

−1. Now using p11 = s
1−sp10 and simplifying, we have that ϕ2,10,1 ≤ p00 + p01θ

−1 +
1+2s
1−s p10θ

−1. By expanding the product it can be verified that

p00 + p01θ
−1 +

1 + 2s

1− s
p10θ

−1 ≤
(
1 +

(1 + 2s)p10
(1− s)p00

θ−1

)
ϕ2,10,0,

which concludes the check of (24) in this case. Analogously, if λ2 = −1, then

ϕ2,10,1 ≤
(
1 +

(1 + 2s)q10
(1− s)q00

θ−1

)
ϕ2,10,0,

concluding the check of the base case for (i, j) = (1, 0).
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Finally, consider the case of (i, j) = (1, 1). From (21) and (22) we then have that

ϕ2,11,0 =


p00θω + p10θω + p01ω + p11θω

2 if λ1 = λ2 = +1,

q00θω + q10θω + q01ω + q11θζω if λ1 = +1, λ2 = −1,

p00θζ + p10θζ + p01ζ + p11θζω if λ1 = −1, λ2 = +1,

q00θζ + q10θζ + q01ζ + q11θζ
2 if λ1 = λ2 = −1;

(26)

ϕ2,11,1 =


p00θω + p10ω + p01ω + p11ω

2 if λ1 = λ2 = +1,

q00θω + q10ω + q01ω + q11ζω if λ1 = +1, λ2 = −1,

p00θζ + p10ζ + p01ζ + p11ζω if λ1 = −1, λ2 = +1,

q00θζ + q10ζ + q01ζ + q11ζ
2 if λ1 = λ2 = −1.

Now if λ1 = +1, then we have that ϕ2,11,1 = θωϕ2,10,1 and ϕ2,11,0 = θωϕ2,10,0, so (24) follows
from the previous paragraph. If λ1 = −1, then we have that ϕ2,11,1 = θζϕ2,10,1 and ϕ2,11,0 =
θζϕ2,10,0, so (24) again follows from the previous paragraph.

Now that we have fully checked all base cases, we turn to the inductive step. Suppose that λk = +1;
the other case where λk = −1 is similar (with {pij} replaced with {qij} and ω replaced with ζ).
From the recursion (21), we have that (24) is equivalent to(

p00 + p10θ
−1
)
ϕk−1,ij,0 + (p01 + p11ω)ϕk−1,ij,1

≤
(
1 +Rθ−1

)
((p00 + p10)ϕk−1,ij,0 + (p01 + p11θω)ϕk−1,ij,1) ,

which in turn is equivalent to(
p01 + p11ω −

(
1 +Rθ−1

)
(p01 + p11θω)

)
ϕk−1,ij,1

≤
((
1 +Rθ−1

)
(p00 + p10)−

(
p00 + p10θ

−1
))

ϕk−1,ij,0.

Note that the coefficient on the left hand side satisfies

p01 + p11ω −
(
1 +Rθ−1

)
(p01 + p11θω) ≤ p11ω ≤ 3p11,

so it suffices to show that

3p11ϕk−1,ij,1 ≤
((
1 +Rθ−1

)
(p00 + p10)−

(
p00 + p10θ

−1
))

ϕk−1,ij,0.

By the induction hypothesis we have that ϕk−1,ij,1 ≤
(
1 +Rθ−1

)
ϕk−1,ij,0, so it suffices to show

that
3
(
1 +Rθ−1

)
p11 ≤

(
1 +Rθ−1

)
(p00 + p10)−

(
p00 + p10θ

−1
)
. (27)

The assumption θ ≤ 1− R implies that 1 + Rθ−1 ≤ θ−1. Using this and also that p11 = s
1−sp10,

we may bound the left hand side of (27) as follows:

3
(
1 +Rθ−1

)
p11 ≤ 3s

1− s
p10θ

−1 =

(
1 + 2s

1− s
· p10
p00

· p00 − p10

)
θ−1

≤ (Rp00 − p10) θ
−1 = Rθ−1p00 − p10θ

−1, (28)

where we also used the definition of R. The right hand side of (28) is at most the right hand side
of (27), which concludes the proof.

We are now ready to put everything together to prove Lemma B.10.

Proof of Lemma B.10. Set θ := 1/
√
n. Since R, as defined in (23), satisfies R = O (log(n)/n),

the condition 0 < θ ≤ 1 − R of Lemma B.12 is satisfied for all n large enough. Moreover, since
Rθ−1 = O (log(n)/

√
n), we can make Rθ−1 arbitrarily small for n large enough. To simplify

notation in what we follows, we write

C+ := |{1 ≤ k ≤ |C| : λk = +1}| =
∣∣C ∩ E+ (σ)

∣∣ ,
C− := |{1 ≤ k ≤ |C| : λk = −1}| =

∣∣C ∩ E− (σ)
∣∣ .

Our goal is to bound Φτ
C . Due to Proposition B.11, it suffices to bound the PGFs ϕ|C|,ij,j for

i, j ∈ {0, 1}. To do this, we use the recursion (21), as well as Lemma B.12. Ideally, we would like
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to present a streamlined argument that works for all i, j ∈ {0, 1} simultaneously. However, there
are minor differences in boundary cases for different values of i, j ∈ {0, 1}. Specifically, while the
bound (24) in Lemma B.12 holds for all 2 ≤ k ≤ |C| − 1 and all i, j ∈ {0, 1}, for k = 1 it only
holds when i = 0 (see the beginning of the proof of Lemma B.12). Furthermore, ϕ|C|,ij,m is only
defined for j = m. For these reasons, we bound ϕ|C|,ij,j separately for each i, j ∈ {0, 1} (while
minimizing repeated arguments).

We first consider the case of (i, j) = (0, 0) and bound ϕ|C|,00,0. In this case the bound (24) in
Lemma B.12 holds for all 1 ≤ k ≤ |C| − 1. Noting that for (i, j) = (0, 0) the recursion (20) holds
for all 2 ≤ k ≤ |C|, by plugging in (24) we obtain that the following holds for all 2 ≤ k ≤ |C|:

ϕk,00,0 ≤
{(

p00 + p10 +
(
1 +Rθ−1

)
(p01 + p11θω)

)
ϕk−1,00,0 if λk = +1,(

q00 + q10 +
(
1 +Rθ−1

)
(q01 + q11θζ)

)
ϕk−1,00,0 if λk = −1.

(29)

To simplify this recursion, first note that p01 + p11θω = (1 + o(1))p01 as n → ∞, since p01 and p11
are on the same order, ω is bounded, and θ = o(1). Also recall that Rθ−1 = o(1). Consequently we
have that

p00 + p10 +
(
1 +Rθ−1

)
(p01 + p11θω) = p00 + p10 + (1 + o(1))p01 = 1− (1 + o(1))p11

as n → ∞. Thus for any fixed ϵ ∈ (0, 1) we have, for all n large enough, that

p00 + p10 +
(
1 +Rθ−1

)
(p01 + p11θω) ≤ 1− (1− ϵ)p11 ≤ exp (−(1− ϵ)p11) ,

where we have used the inequality 1 + x ≤ exp(x). Similarly we have that

q00 + q10 +
(
1 +Rθ−1

)
(q01 + q11θζ) ≤ exp (−(1− ϵ)q11)

for all n large enough. Plugging these inequalities back into (29), for all n large enough the following
holds for all 2 ≤ k ≤ |C|:

ϕk,00,0 ≤
{
exp (−(1− ϵ)p11)ϕk−1,00,0 if λk = +1,

exp (−(1− ϵ)q11)ϕk−1,00,0 if λk = −1.
(30)

Iterating this inequality and noting that ϕ1,00,0 = 1, we have thus obtained that

ϕ|C|,00,0 ≤
{
exp (−(1− ϵ) {(C+ − 1) p11 + C−q11}) if λ1 = +1,

exp (−(1− ϵ) {C+p11 + (C− − 1) q11}) if λ1 = −1.
(31)

Next, we turn to the case of (i, j) = (0, 1), with the goal of bounding ϕ|C|,01,1. First, we shall bound
ϕ|C|−1,01,0. By the same arguments as before (using the recursion and Lemma B.12), we have that,
for all n large enough, the following holds for all 2 ≤ k ≤ |C| − 1:

ϕk,01,0 ≤
{
exp (−(1− ϵ)p11)ϕk−1,01,0 if λk = +1,

exp (−(1− ϵ)q11)ϕk−1,01,0 if λk = −1.
(32)

Iterating this inequality and noting that ϕ1,01,0 = 1, we thus have that

ϕ|C|−1,01,0 ≤


exp (−(1− ϵ) {(C+ − 2) p11 + C−q11}) if λ1 = λ|C| = +1,

exp (−(1− ϵ) {(C+ − 1) p11 + (C− − 1) q11}) if λ1 · λ|C| = −1,

exp (−(1− ϵ) {C+p11 + (C− − 2) q11}) if λ1 = λ|C| = −1.

Recall that p11, q11 = O (log(n)/n), and so exp(p11), exp(q11) = 1 + O (log(n)/n). Therefore
regardless of the value of λ|C|, we have that

ϕ|C|−1,01,0 ≤
(
1 +O

(
logn
n

))
·
{
exp (−(1− ϵ) {(C+ − 1) p11 + C−q11}) if λ1 = +1,

exp (−(1− ϵ) {C+p11 + (C− − 1) q11}) if λ1 = −1.
(33)

Now turning to ϕ|C|,01,1, the recursion and Lemma B.12 together give that

ϕ|C|,01,1 ≤
{(

p00 + p10θ
−1 +

(
1 +Rθ−1

)
(p01 + p11ω)

)
ϕ|C|−1,01,0 if λ|C| = +1,(

q00 + q10θ
−1 +

(
1 +Rθ−1

)
(q01 + q11ζ)

)
ϕ|C|−1,01,0 if λ|C| = −1.
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Recalling the values of the parameters in these coefficients, regardless of the value of λ|C| we have
that

ϕ|C|,01,1 ≤
(
1 +O

(
logn√

n

))
ϕ|C|−1,01,0. (34)

Plugging this back into (33), we obtain that

ϕ|C|,01,1 ≤
(
1 +O

(
logn√

n

))
·
{
exp (−(1− ϵ) {(C+ − 1) p11 + C−q11}) if λ1 = +1,

exp (−(1− ϵ) {C+p11 + (C− − 1) q11}) if λ1 = −1.
(35)

Next, we turn to the case of (i, j) = (1, 0), with the goal of bounding ϕ|C|,10,0. Note that in this
case the bound in (24) only holds for 2 ≤ k ≤ |C| − 1. By the same arguments as before (using
the recursion and Lemma B.12), we have that, for all n large enough, the following holds for all
3 ≤ k ≤ |C|:

ϕk,10,0 ≤
{
exp (−(1− ϵ)p11)ϕk−1,10,0 if λk = +1,

exp (−(1− ϵ)q11)ϕk−1,10,0 if λk = −1.
(36)

Iterating this inequality gives that

ϕ|C|,10,0 ≤ ϕ2,10,0 ·


exp (−(1− ϵ) {(C+ − 2) p11 + C−q11}) if λ1 = λ2 = +1,

exp (−(1− ϵ) {(C+ − 1) p11 + (C− − 1) q11}) if λ1 · λ2 = −1,

exp (−(1− ϵ) {C+p11 + (C− − 2) q11}) if λ1 = λ2 = −1.

From (25) we have that ϕ2,10,0 = 1 + O (log(n)/
√
n), regardless of the value of λ2. Using again

that exp(p11), exp(q11) = 1 +O (log(n)/n), we thus have that

ϕ|C|,10,0 ≤
(
1 +O

(
logn√

n

))
·
{
exp (−(1− ϵ) {(C+ − 1) p11 + C−q11}) if λ1 = +1,

exp (−(1− ϵ) {C+p11 + (C− − 1) q11}) if λ1 = −1.
(37)

Finally, we turn to the case of (i, j) = (1, 1), with the goal of bounding ϕ|C|,11,1. Similarly to (34),
we have that

ϕ|C|,11,1 ≤
(
1 +O

(
logn√

n

))
ϕ|C|−1,11,0, (38)

and so in the following we bound ϕ|C|−1,11,0. By the recursion and Lemma B.12, we have that, for
all n large enough, the following holds for all 3 ≤ k ≤ |C| − 1:

ϕk,11,0 ≤
{
exp (−(1− ϵ)p11)ϕk−1,11,0 if λk = +1,

exp (−(1− ϵ)q11)ϕk−1,11,0 if λk = −1.
(39)

Iterating this inequality gives that

ϕ|C|−1,11,0

≤ ϕ2,11,0 ·


exp (−(1− ϵ) {(C+ − 3) p11 + C−q11}) λ1 = λ2 = λ|C| = +1,

exp (−(1− ϵ) {(C+ − 2) p11 + (C− − 1) q11}) |{i ∈ {1, 2, |C|} : λi = +1}| = 2,

exp (−(1− ϵ) {(C+ − 1) p11 + (C− − 2) q11}) |{i ∈ {1, 2, |C|} : λi = +1}| = 1,

exp (−(1− ϵ) {C+p11 + (C− − 3) q11}) λ1 = λ2 = λ|C| = −1.

From (26) we have that ϕ2,11,0 = O (1/
√
n), regardless of the values of λ1 and λ2. Using again that

exp(p11), exp(q11) = 1 +O (log(n)/n), we thus have that

ϕ|C|−1,11,0 ≤ O
(

1√
n

)
·
{
exp (−(1− ϵ) {(C+ − 1) p11 + C−q11}) if λ1 = +1,

exp (−(1− ϵ) {C+p11 + (C− − 1) q11}) if λ1 = −1.

Plugging this back into (38), we thus have that

ϕ|C|,11,1 ≤ O
(

1√
n

)
·
{
exp (−(1− ϵ) {(C+ − 1) p11 + C−q11}) if λ1 = +1,

exp (−(1− ϵ) {C+p11 + (C− − 1) q11}) if λ1 = −1.
(40)

We have now computed bounds for ϕ|C|,ij,j for all i, j ∈ {0, 1}, and so we are now ready to bound
Φτ

C . Suppose that λ1 = +1; the other case is analogous. By Proposition B.11 and the bounds
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in (31), (35), (37), and (40), we have that

Φτ
C = p00ϕ|C|,00,0 + p01ϕ|C|,01,1 + p10ϕ|C|,10,0 + p11ϕ|C|,11,1

≤ exp
(
−(1− ϵ)

{(
C+ − 1

)
p11 + C−q11

})
·
{
p00 +

(
1 +O

(
logn√

n

))
(p01 + p10) +O

(
1√
n

)
p11

}
.

Observe that

p00 +
(
1 +O

(
logn√

n

))
(p01 + p10) +O

(
1√
n

)
p11 = 1− p11 +O

(
log2(n)
n3/2

)
,

so for all n large enough this is at most 1− (1− ϵ)p11 ≤ exp (−(1− ϵ)p11). Plugging this back into
the inequality above, we obtain that

Φτ
C ≤ exp

(
− (1− ϵ)

{
C+p11 + C−q11

})
.

Recalling the definitions of p11 and q11 shows that we have obtained the desired inequality.

B.4 Proof of Lemma B.9

For any t+ and t− (to be chosen later) we have that

P (τ̂ ∈ Sk1,k2
|σ, τ∗) ≤ P (∃τ ∈ Sk1,k2

: X(τ) ≤ 0 |σ, τ∗)
≤ P

(
∃τ ∈ Sk1,k2

: X(τ) ≤ 0, Y +(τ) ≥ t+, Y −(τ) ≥ t−
∣∣σ, τ∗) (41)

+ P
(
∃τ ∈ Sk1,k2

: Y +(τ) ≤ t+
∣∣σ, τ∗) (42)

+ P
(
∃τ ∈ Sk1,k2 : Y −(τ) ≤ t−

∣∣σ, τ∗) . (43)

In the following we bound from above each of these three terms, starting with (41). For any
τ ∈ Sk1,k2

, and any θ ∈ (0, 1] and ω, ζ ≥ 1, we have that

P
(
X(τ) ≤ 0, Y +(τ) ≥ t+, Y −(τ) ≥ t−

∣∣σ, τ∗)
=
∑
k≤0

∑
k+≥t+

∑
k−≥t−

P
((
X(τ), Y +(τ), Y −(τ)

)
=
(
k, k+, k−

) ∣∣σ, τ∗)
≤

∞∑
k=−∞

∞∑
k+=−∞

∞∑
k−=−∞

θkωk+−t+ζk
−−t−P

((
X(τ), Y +(τ), Y −(τ)

)
=
(
k, k+, k−

) ∣∣σ, τ∗)
= ω−t+ζ−t−Φτ (θ, ω, ζ).

By taking a union bound over τ ∈ Sk1,k2
and setting (θ, ω, ζ) := (1/

√
n, e, e), we can thus bound

the expression in (41) from above by

|Sk1,k2
| max
τ∈Sk1,k2

e−t+−t−Φτ
(
1/
√
n, e, e

)
.

Using the estimate |Sk1,k2
| ≤ nk1+k2 (see the proof of Lemma B.7) and also Lemma B.3, we thus

have that

P
(
∃τ ∈ Sk1,k2 : X(τ) ≤ 0, Y +(τ) ≥ t+, Y −(τ) ≥ t−

∣∣σ, τ∗)
≤ max

τ∈Sk1,k2

exp

(
(k1 + k2) log n−

(
t+ + t− + (1− ϵ)s2

(
αM+(τ) + βM−(τ)

) log n
n

))
.

Noting that we may choose t+ and t− as functions of τ , set

t+ := (1− ϵ)s2α
log n

n
M+(τ) and t− := (1− ϵ)s2β

log n

n
M−(τ). (44)

In this way the expression in (41) is bounded from above by

max
τ∈Sk1,k2

exp

(
(k1 + k2) log n− 2(1− ϵ)s2

(
αM+(τ) + βM−(τ)

) log n
n

)
. (45)
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On the event Fϵ, provided that n is large enough, we may use the bounds in Lemma B.8 for M+(τ)
and M−(τ) to bound the exponent in (45) from above by{

1− (1− ϵ)2s2 (α+ β) /2
}
(k1 + k2) log n ≤ −ϵ(k1 + k2) log n,

where the second inequality follows from the assumption that s2(α+ β)/2 > (1 + ϵ)(1− ϵ)−2. We
have thus obtained, for all n large enough, that

P
(
∃τ ∈ Sk1,k2

: X(τ) ≤ 0, Y +(τ) ≥ t+, Y −(τ) ≥ t−
∣∣σ, τ∗)1 (Fϵ) ≤ n−ϵ(k1+k2).

Next, we turn to bounding (42), and recall that we have set t+ as in (44). We shall first relate Y +(τ)
to a similar quantity which depends only on the correctly matched region of the corresponding vertex
permutation π. Formally, given π∗ (equivalently, τ∗), define the sets

F (π) := {v ∈ V : π(v) = π∗(v)} and
(
F (π)

2

)
:= {{u, v} : u, v ∈ F (π), u ̸= v}.

In words, F (π) is the set of correctly matched vertices according to π, and
(
F (π)
2

)
is the set of

unordered pairs in F (π). We can then write

Y +(τ) =
∑

e∈E+(σ):τ(e)̸=τ∗(e)

AeBτ∗(e)
(a)
=

∑
e∈E+(σ)\((F (π)

2 )∪E+
tr)

AeBτ∗(e)

=
∑

e∈E+(σ)\(F (π)
2 )

AeBτ∗(e) −
∑

e∈E+
tr

AeBτ∗(e)

(b)

≥
∑

e∈E+(σ)\(F (π)
2 )

AeBτ∗(e) −
n

2
.

Above, (a) follows since τ(e) = τ∗(e) if and only if either both endpoints of e are fixed points of π
or the endpoints of e are a transposition in π; and (b) follows since AeBτ∗(e) ∈ {0, 1}, so the second
summation is at most

∣∣E+
tr

∣∣ ≤ (k1 + k2)/2 (by Lemma B.4), which in turn is at most n/2. Hence
Y +(τ) ≤ t+ implies that ∑

e∈E+(σ)\(F (π)
2 )

AeBτ∗(e) ≤ t+ +
n

2
. (46)

To abbreviate notation, for F ⊆ V let HF := E+(σ) \
(
F
2

)
(where we suppress dependence on σ in

the notation for simplicity). Noting that M+(τ) ≤
∣∣HF (π)

∣∣ and recalling the definition of t+, (46)
further implies that ∑

e∈HF (π)

AeBτ∗(e) ≤ (1− ϵ)s2α
log n

n

∣∣HF (π)

∣∣+ n

2
. (47)

Importantly, note that (given σ and τ∗) the sum in (47) depends on π (equivalently, τ ) only through
F (π). The same holds for the right hand side of (47). Therefore if there exists τ ∈ Sk1,k2

such that
Y +(τ) ≤ t+, then there exists F ⊆ V such that |V+ \ F | = k1, |V− \ F | = k2, and the inequality

ZF :=
∑
e∈HF

AeBτ∗(e) ≤ (1− ϵ)s2α
log n

n
|HF |+

n

2
. (48)

holds. Thus turning to (42), a union bound gives that

P
(
∃τ ∈ Sk1,k2 : Y +(τ) ≤ t+

∣∣σ, τ∗)
≤ P

(
∃F ⊆ V with |V+ \ F | = k1, |V− \ F | = k2 : ZF ≤ (1− ϵ)s2α

log n

n
|HF |+

n

2

∣∣∣∣σ, τ∗)
≤

∑
F⊆V :|V+\F |=k1,|V−\F |=k2

P
(
ZF ≤ (1− ϵ)s2α

log n

n
|HF |+

n

2

∣∣∣∣σ, τ∗)

≤ 2n max
F⊆V :|V+\F |=k1,|V−\F |=k2

P
(
ZF ≤ (1− ϵ)s2α

log n

n
|HF |+

n

2

∣∣∣∣σ, τ∗) . (49)
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Before continuing, we make a brief remark about the purpose of the above computations. If we were
to deal with Y +(τ) directly, and take a union bound over all τ ∈ Sk1,k2 , we would gain a factor
of |Sk1,k2 | ≤ nk1+k2 = exp (Θ (n log n)) from the union bound, which would be too large for our
purposes. This is why it is important to switch from Y +(τ) to the sum in (48): it allows us to take a
union bound over a much smaller set, resulting in a factor of only 2n, as in (49).

Continuing the proof, our goal is to bound the probability in (49). Notice that (conditioned on σ and
τ∗) for every e ∈ E+(σ) we have that

AeBτ∗(e) ∼ Bernoulli

(
s2α

log n

n

)
,

and these random variables are (conditioned on σ and τ∗) mutually independent across e ∈ E+(σ).
Hence (conditioned on σ and τ∗) we have that ZF ∼ Bin

(
|HF | , s2α log(n)/n

)
. In particular, note

that E [ZF |σ, τ∗] = |HF | s2α log(n)/n.

Note that for any F ⊆ V such that |V+ \ F | = k1 and |V− \ F | = k2, and for any π such that
ℓ(π) ∈ Sk1,k2

, we have that |HF | ≥ M+(ℓ(π)). Therefore Lemma B.8 implies that |HF | ≥
((1 − ϵ)/4)(k1 + k2)n for all n large enough. Recall that we assume that either k1 ≥ ϵ

2 |V+| or
k2 ≥ ϵ

2 |V−|. Therefore on the event Fϵ we have that k1 + k2 ≥ (ϵ/2) (1− ϵ/2)n/2. Thus on the
event Fϵ we have that |HF | = Ω

(
n2
)
. Hence on the event Fϵ we have, for all n large enough, that

(1− ϵ)s2α
log n

n
|HF |+

n

2
≤ (1− ϵ/2) |HF | s2α

log n

n
= (1− ϵ/2)E [ZF |σ, τ∗] .

Thus for all n large enough we have that

P
(
ZF ≤ (1− ϵ)s2α

log n

n
|HF |+

n

2

∣∣∣∣σ, τ∗)1(Fϵ)

≤ P
(
ZF ≤

(
1− ϵ

2

)
E [ZF |σ, τ∗]

∣∣∣σ, τ∗)1(Fϵ).

By Bernstein’s inequality we have that

P
(
ZF ≤

(
1− ϵ

2

)
E [ZF |σ, τ∗]

∣∣∣σ, τ∗) ≤ exp

(
−

ϵ2

8 E [ZF |σ, τ∗]2

Var (ZF |σ, τ∗) + 1
3E [ZF |σ, τ∗]

)

≤ exp

(
−3ϵ2

32
E [ZF |σ, τ∗]

)
,

where the second inequality uses the fact that Var (ZF |σ, τ∗) ≤ E [ZF |σ, τ∗]. Recall that

E [ZF |σ, τ∗] = |HF | s2α
log n

n
≥ 1− ϵ

4
(k1 + k2)s

2α log n

for all n large enough. Putting everything together, we have thus shown, for any F ⊆ V such that
|V+ \ F | = k1 and |V− \ F | = k2, that

P
(
ZF ≤ (1− ϵ)s2α

log n

n
|HF |+

n

2

∣∣∣∣σ, τ∗)1(Fϵ) ≤ exp

(
−3ϵ2(1− ϵ)

128
(k1 + k2)s

2α log n

)
for all n large enough. Plugging this back into (49), we obtain that

P
(
∃τ ∈ Sk1,k2

: Y +(τ) ≤ t+
∣∣σ, τ∗)1(Fϵ) ≤ exp

(
n log 2− 3ϵ2(1− ϵ)

128
(k1 + k2)s

2α log n

)
≤ exp

(
−ϵ2(1− ϵ)

50
(k1 + k2)s

2α log n

)
for all n large enough, where the second inequality follows because (k1 + k2) log n = Ω(n log n),
which is asymptotically much larger than n log 2. This concludes the bound for (42).

Turning to (43), repeating identical steps as above also shows, for all n large enough, that

P
(
∃τ ∈ Sk1,k2

: Y −(τ) ≤ t−
∣∣σ, τ∗)1(Fϵ) ≤ exp

(
−ϵ2(1− ϵ)

50
(k1 + k2)s

2β log n

)
.

Putting everything together, if we let δ0 := min
{
ϵ, ϵ2(1− ϵ)s2α/50, ϵ2(1− ϵ)s2β/50

}
, then the

terms (41), (42), and (43) are all at most n−δ0(k1+k2), for all n large enough. This gives a total bound
of 3n−δ0(k1+k2) ≤ n−δ0(k1+k2)/2 for all n large enough, concluding the proof of Lemma B.9.

16



C Exact graph matching for correlated SBMs: impossibility

In this section we prove Theorem 3.2 in the main text, showing that it is impossible to exactly match
the two correlated SBMs G1 and G2 whenever s2(α+ β)/2 < 1. While this was previously proven
in [7], we provide a proof for completeness. At a high level, the strategy behind the proof is as
follows.

When s2 (α+ β) /2 < 1, we show that there are many vertices in G such that the corresponding
vertices in G1 and G′

2 have non-overlapping neighborhoods. Due to this lack of shared information,
such vertices are challenging to correctly match in the two graphs, even for the maximum a posteriori
(MAP) estimator that is given G1 and G2. For this reason, the MAP estimator is likely to output
an incorrect vertex correspondence. Since the MAP estimator minimizes the probability of error,
we conclude that no other estimator can do better (in particular, no estimator can output the correct
correspondence with probability bounded away from zero).

The input to the estimation problem is the pair of labeled graphs G1 and G2; equivalently, in the
following we use the respective adjacency matrices A and B. To compute the MAP estimator, we need
to derive the posterior distribution of π∗ given A and B. This is unfortunately quite challenging in
correlated SBMs, since the probability of edge formation depends on the (unknown) latent community
memberships of vertices. To carry out a tractable analysis, we shall provide extra information to
the estimator: we assume that σ is also known; that is, we assume knowledge of the community
memberships of all vertices in G1. Providing this extra information can only make the problem
of estimating π∗ easier, yet it turns out that recovering π∗ is still impossible even with this extra
information.

C.1 Properties of the posterior distribution

Before deriving the posterior distribution of π∗ given A, B, and σ, we define some relevant notation.
Given σ, for a lifted permutation τ and i, j ∈ {0, 1}, define

µ+(τ)ij :=
∑

e∈E+(σ)

1
((
Ae, Bτ(e)

)
= (i, j)

)
,

µ−(τ)ij :=
∑

e∈E−(σ)

1
((
Ae, Bτ(e)

)
= (i, j)

)
.

Additionally define

ν+(τ) :=
∑

e∈E+(σ)

Bτ(e), ν−(τ) :=
∑

e∈E−(σ)

Bτ(e).

With these notations in place, and recalling the definitions of {pij}i,j∈{0,1} and {qij}i,j∈{0,1}, the
following lemma determines the posterior distribution of π∗ given A, B, and σ.
Lemma C.1 (Posterior distribution). Let π ∈ Sn and let τ = ℓ(π) be the corresponding lifted
permutation. There is a constant c = c(A,B,σ) such that

P (π∗ = π |A,B,σ) = c

(
p00p11
p01p10

)µ+(τ)11 (q00q11
q01q10

)µ−(τ)11 (p01
p00

)ν+(τ)(
q01
q00

)ν−(τ)

. (50)

Proof. By Bayes’ rule, we have that

P (π∗ = π |A,B,σ) =
P (A,B |π∗ = π,σ)P (π∗ = π |σ)

P (A,B |σ)
.

Since the permutation π∗ is chosen uniformly at random and independently of the community labels,
we have that P (π∗ = π |σ) = P(π∗ = π) = 1/n!. Moreover, the term in the denominator only
depends on A, B, and σ (it does not depend on π). We can therefore write

P (π∗ = π |A,B,σ) = c(A,B,σ)P (A,B |π∗ = π,σ) ,

where c(A,B,σ) = 1/ (n!P (A,B |σ)). We now focus on computing P (A,B |π∗ = π,σ).
Given σ, the edge formation processes in the parent graph G are mutually independent across
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pairs of vertices. Since the subsampling procedure is also independent across pairs of vertices, we
have that

P(A,B | π∗ = π,σ) =
(
p
µ+(τ)00
00 p

µ+(τ)01
01 p

µ+(τ)10
10 p

µ+(τ)11
11

)(
q
µ−(τ)00
00 q

µ−(τ)01
01 q

µ−(τ)10
10 q

µ−(τ)11
11

)
.

(51)
To simplify this expression, note that we can write

µ+(τ)00 =
∑

e∈E+(σ)

(1−Ae)
(
1−Bτ(e)

)
=

∑
e∈E+(σ)

(1−Ae)− ν+(τ) + µ+(τ)11,

µ+(τ)01 =
∑

e∈E+(σ)

(1−Ae)Bτ(e) = ν+(τ)− µ+(τ)11,

µ+(τ)10 =
∑

e∈E+(σ)

Ae

(
1−Bτ(e)

)
=

∑
e∈E+(σ)

Ae − µ+(τ)11,

with similar expressions for µ−(τ)ij . The only terms on the right hand sides above that depend
on τ (and therefore π) are ν+(τ) and µ+(τ)11; the remaining terms only depend on A and σ. We
therefore have that

p
µ+(τ)00
00 p

µ+(τ)01
01 p

µ+(τ)10
10 p

µ+(τ)11
11 = C(A,σ)

(
p00p11
p01p10

)µ+(τ)11 (p01
p00

)ν+(τ)

where C(A,σ) depends only on A and σ. A similar expression holds for the other factor in (51), with
pij replaced with qij , µ+(τ)ij replaced with µ−(τ)ij , and ν+(τ) replaced with ν−(τ). Plugging
these back into (51) we obtain (50).

Recall that p00, q00 = 1 − o(1) as n → ∞, and that p01, p10, p11, q01, q10, q11 are all on the order
log(n)/n, implying that p00p11 > p01p10 and q00q11 > q01q10 for all n large enough. Thus
a useful consequence of Lemma C.1 is that P (π∗ = π |A,B,σ) is increasing in µ+(τ)11 and
µ−(τ)11, and decreasing in ν+(τ) and ν−(τ). Building on these observations, the following results
establish conditions under which two lifted permutations, τ and τ ′, satisfy µ+(τ)11 ≥ µ+(τ ′)11 or
ν+(τ) = ν+(τ ′), with similar statements about µ− and ν−. These will be used later to analyze the
performance of the MAP estimator.
Proposition C.2. Given σ, the following holds. Let πa, πb ∈ Sn. If

πa(V+) = πb(V+) and πa(V−) = πb(V−), (52)
then ν+(ℓ(πa)) = ν+(ℓ(πb)) and ν−(ℓ(πa)) = ν−(ℓ(πb)).

Proof. We prove the claim for ν+; the other claim follows from identical arguments. First note that
E+(σ) =

(
V+

2

)
∪
(
V−
2

)
, so we can write

ν+(ℓ(πa)) =
∑

(i,j)∈(V+
2 )

Bπa(i),πa(j) +
∑

(i,j)∈(V−
2 )

Bπa(i),πa(j). (53)

In light of the assumption (52), the mapping π−1
a ◦ πb : V+ → V+ is a bijection. The first summation

on the right hand side of (53) is therefore equal to∑
(i,j)∈(V+

2 )

B(πa◦π−1
a ◦πb)(i),(πa◦π−1

a ◦πb)(j) =
∑

(i,j)∈(V+
2 )

Bπb(i),πb(j).

Similarly, since π−1
a ◦ πb : V− → V− is a bijection in light of (52), the second summation on the

right hand side of (53) is equal to ∑
(i,j)∈(V−

2 )

Bπb(i),πb(j).

Plugging the previous two displays back into (53) we obtain that ν+(ℓ(πa)) = ν+(ℓ(πb)).

Proposition C.3. Let τa and τb be lifted permutations such that whenever AeBτb(e) = 1 we also
have that AeBτa(e) = 1. Then µ+(τa)11 ≥ µ+(τb)11 and µ−(τa)11 ≥ µ−(τb)11.

Proof. The condition on τa and τb in the statement implies that AeBτa(e) ≥ AeBτb(e) for all e ∈ E ,
and the desired result follows from the formulas for µ+ and µ−.
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C.2 Performance of the MAP estimator and proof of Theorem 3.2

The following lemma shows how one may use the simple propositions above to bound the probability
that the MAP estimator outputs a given permutation. Before stating the lemma, we recall a few
properties of the MAP estimator. The estimator is formally given by

π̂MAP ∈ argmax
π∈Sn

P (π∗ = π |A,B,σ) . (54)

In words, π̂MAP is the mode of the posterior distribution {P (π∗ = π |A,B,σ)}π∈Sn
. When the

argmax set is not a singleton, π̂MAP is a uniform random element of the argmax set. The MAP
estimator is optimal, in the sense that it minimizes the probability of error (see, e.g., [10, Chapter 4]).

For π ∈ Sn, define the set

Tπ ≡ Tπ(A,B) :=
{
i ∈ [n] : ∀j ∈ [n], Ai,jBπ(i),π(j) = 0

}
,

as well as Tπ
+ := Tπ ∩ V+ and Tπ

− := Tπ ∩ V−. Note that Tπ
+ and Tπ

− are functions of A, B, and σ.
In words, if π is the true vertex correspondence and i ∈ Tπ, then the neighbors of i in G1 and the
neighbors of i in G′

2 are disjoint sets. Due to the lack of overlapping information, it becomes difficult
for the MAP estimator to correctly match i in G1 with its counterpart π(i) in G2. The following
lemma formalizes this (where we use the standard convention that 0! = 1).
Lemma C.4 (MAP estimator). For all n large enough and for any π ∈ Sn we have that

P (π̂MAP = π |A,B,σ) ≤ 1∣∣Tπ
+

∣∣! · ∣∣Tπ
−
∣∣! .

Proof. Fix π ∈ Sn and suppose that A, B, and σ are given. Let ρ1 be any permutation of Tπ
+ and let

ρ2 be any permutation of Tπ
−. Construct a new permutation π′ = π′ (π, ρ1, ρ2) as follows:

• For i ∈ [n] \ Tπ , let π′(i) := π(i).

• For i ∈ Tπ
+, let π′(i) := π (ρ1(i)).

• For i ∈ Tπ
−, let π′(i) := π (ρ2(i)).

Let T be the set of permutations π′ constructed in this way. Since each choice of ρ1 and ρ2 leads to a
distinct π′, we have that |T | =

∣∣Tπ
+

∣∣! · ∣∣Tπ
−
∣∣!.

A useful consequence of this construction is that π′ (V+) = π (V+) and π′ (V−) = π (V−). By
Proposition C.2, this implies that

ν+ (ℓ (π′)) = ν+ (ℓ (π)) and ν− (ℓ (π′)) = ν− (ℓ (π)) . (55)

Furthermore, note that if Ai,jBπ(i),π(j) = 1, then we must have i, j ∈ [n] \ Tπ by definition. The
construction of π′ implies that π′(i) = π(i) and π′(j) = π(j) for such i and j. Hence we have that
Ai,jBπ′(i),π′(j) = Ai,jBπ(i),π(j) = 1 for such i and j. By Proposition C.3 we thus have that

µ+(ℓ(π′))11 ≥ µ+(ℓ(π))11 and µ−(ℓ(π′))11 ≥ µ−(ℓ(π))11. (56)

In light of Lemma C.1, as well as the observations on monotonicity made after its proof, (55) and (56)
together imply, for all n large enough, that

P (π∗ = π |A,B,σ) ≤ P (π∗ = π′ |A,B,σ) . (57)

Now we distinguish two cases. First, if π is not a maximizer of {P (π∗ = π̃ |A,B,σ)}π̃∈Sn
, then

we have that P (π̂MAP = π |A,B,σ) = 0, so the claim holds trivially. On the other hand, if π is a
maximizer of {P (π∗ = π̃ |A,B,σ)}π̃∈Sn

, then (by (57)) so is π′ for every π′ ∈ T . Therefore the
set argmaxπ̃∈Sn

P (π∗ = π̃ |A,B,σ) has at least |T | elements. Since π̂MAP picks an element of
the argmax set uniformly at random, this implies that

P (π̂MAP = π |A,B,σ) ≤ 1

|T |
=

1∣∣Tπ
+

∣∣! · ∣∣Tπ
−
∣∣! .
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Next, the following lemma establishes lower bounds for
∣∣Tπ

+

∣∣ and
∣∣Tπ

−
∣∣ in the case where π is

the ground truth vertex permutation. Before stating the result, for π ∈ Sn we define the measure
Pπ(·) := P (· |π∗ = π). Additionally, let Eπ and Varπ denote the expectation and variance operators
corresponding to the measure Pπ .
Lemma C.5. Suppose that s2 (α+ β) /2 < 1. Then there exists γ = γ(α, β, s) > 0 such that

lim
n→∞

min
π∈Sn

Pπ

(∣∣Tπ
+

∣∣ , ∣∣Tπ
−
∣∣ ≥ nγ

)
= 1.

The proof of the lemma is based on estimating the first and second moments of
∣∣Tπ

+

∣∣ and
∣∣Tπ

−
∣∣ under

the measure Pπ . While the proof techniques are quite standard, the proof is somewhat tedious, so we
defer it to Section C.3.

We are now ready to prove the impossibility result for graph matching in correlated SBMs.

Proof of Theorem 3.2. As mentioned before, we prove a stronger claim; namely, we show that
even if σ is provided as extra information, for any estimator π̃ = π̃(G1, G2,σ) we have that
limn→∞ P (π̃ = π∗) = 0. To this end, we study the MAP estimator π̂MAP = π̂MAP (A,B,σ) of π∗
given A, B, and σ (see (54)). Since the MAP estimator minimizes the probability of error (see, e.g.,
[10, Chapter 4]), it suffices to show that limn→∞ P (π̂MAP = π∗) = 0.

To compute/bound P (π̂MAP = π∗), we may first condition on π∗ and then on A, B, and σ. Since
π∗ ∈ Sn is uniformly random, we have that

P (π̂MAP = π∗) =
1

n!

∑
π∈Sn

∑
A,B,σ

P (π̂MAP = π |A,B,σ, π∗ = π)P (A,B,σ |π∗ = π) .

Note that π̂MAP is a function of A, B, and σ (and perhaps additional randomness, in case the
maximizer of the posterior distribution is not unique). Therefore P (π̂MAP = π |A,B,σ, π∗ = π) =
P (π̂MAP = π |A,B,σ), that is, we may remove the event {π∗ = π} from the conditioning. Plugging
this back into the display above and using the bound of Lemma C.4 we obtain that

P (π̂MAP = π∗) ≤
1

n!

∑
π∈Sn

Eπ

[
1∣∣Tπ

+

∣∣! · ∣∣Tπ
−
∣∣!
]
, (58)

where the expectation is over A, B, and σ (recall that Tπ
+ and Tπ

− are functions of A, B, and σ).
Let γ = γ (α, β, s) > 0 be the constant given by Lemma C.5, and for π ∈ Sn define the event
Aπ :=

{∣∣Tπ
+

∣∣ , ∣∣Tπ
−
∣∣ ≥ nγ

}
. By definition we have that

Eπ

[
1∣∣Tπ

+

∣∣! · ∣∣Tπ
−
∣∣!
]
≤ 1

(nγ !)
2 + Pπ (Ac

π) .

Plugging this into (58) we thus have that

P (π̂MAP = π∗) ≤
1

(nγ !)
2 +

1

n!

∑
π∈Sn

Pπ (Ac
π) ≤

1

(nγ !)
2 + max

π∈Sn

Pπ (Ac
π) .

Both terms on the right hand side go to 0 as n → ∞; the latter term converging to 0 as n → ∞ is
due to Lemma C.5.

C.3 Lower bounding
∣∣Tπ

+

∣∣ and
∣∣Tπ

−
∣∣: Proof of Lemma C.5

Fix π ∈ Sn; throughout the proof we condition on the event {π∗ = π}. Given also σ, we have that

Ai,jBπ(i),π(j) ∼

Bernoulli
(
s2α logn

n

)
if (i, j) ∈ E+(σ)

Bernoulli
(
s2β logn

n

)
if (i, j) ∈ E−(σ).

Moreover, for fixed i ∈ [n] the random variables
{
Ai,jBπ(i),π(j)

}
j∈[n]\{i} are mutually independent

(given {π∗ = π} and σ). Hence if i ∈ V+, then we have that

Pπ (i ∈ Tπ |σ) =
(
1− s2α

log n

n

)|V+|−1(
1− s2β

log n

n

)|V−|

.
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Note that |V+| and |V−| are typically approximately n/2, and hence the conditional probability above
is typically approximately n−s2(α+β)/2. To make this precise, we introduce some further notation.
For ϵ ∈ (0, 1) define

δ := 1− (1 + ϵ/2)
2
s2 (α+ β) /2,

λ := 1− (1− ϵ) s2 (α+ β) /2.

In the following we fix ϵ ∈ (0, 1) such that

δ > 0 and λ > 0 and λ < 2δ. (59)

Such an ϵ ∈ (0, 1) exists due to the assumption that s2 (α+ β) /2 < 1. Recall that on the event Fϵ

we have that |V+| , |V−| ≤ (1 + ϵ/2)n/2. Thus if σ is such that the event Fϵ holds, then

logPπ (i ∈ Tπ |σ) ≥
(
1 +

ϵ

2

) n

2

(
log

(
1− s2α

log n

n

)
+ log

(
1− s2β

log n

n

))
≥
(
1 +

ϵ

2

)2 n

2

(
−s2(α+ β)

log n

n

)
= (δ − 1) log n,

where the second inequality holds for all n large enough, since log(1 − x) ≥ −(1 + ϵ/2)x for all
x > 0 small enough. Thus, on the event Fϵ we have that Pπ (i ∈ Tπ |σ) ≥ nδ−1 for all n large
enough. By linearity of expectation this gives a lower bound on the (conditional) expectation of

∣∣Tπ
+

∣∣:
if σ is such that Fϵ holds, then for all n large enough we have that

Eπ

[∣∣Tπ
+

∣∣ ∣∣σ] ≥ |V+|nδ−1 ≥ 1− ϵ/2

2
nδ ≥ 1

4
nδ. (60)

To establish a probabilistic lower bound for
∣∣Tπ

+

∣∣, we proceed by bounding its (conditional) variance.
For i ∈ [n] let Xi := 1

(
i ∈ Tπ

+

)
be the indicator variable that i ∈ Tπ

+. We then have that

Varπ
(∣∣Tπ

+

∣∣ ∣∣σ) = Varπ

∑
i∈V+

Xi

∣∣∣∣∣∣σ
 =

∑
i∈V+

Varπ (Xi |σ) +
∑

i,j∈V+:i ̸=j

Covπ (Xi, Xj |σ) .

(61)
For the variance terms on the right hand side, we use the bound

Varπ (Xi |σ) ≤ Pπ (i ∈ Tπ |σ) ≤ exp

(
−s2 (α (|V+| − 1) + β |V−|)

log n

n

)
.

If σ is such that Fϵ holds, then using the bounds |V+| − 1 ≥ (1− ϵ)n/2 and |V−| ≥ (1− ϵ)n/2 we
thus have that

Varπ (Xi |σ) ≤ nλ−1. (62)
The covariance terms can be computed as

Covπ (Xi, Xj |σ) = Eπ [XiXj |σ]− Eπ [Xi |σ]Eπ [Xj |σ]

=

(
1− s2α

log n

n

)2|V+|−3(
1− s2β

log n

n

)2|V−|

−
(
1− s2α

log n

n

)2|V+|−2(
1− s2β

log n

n

)2|V−|

= s2α
log n

n

(
1− s2α

log n

n

)2|V+|−3(
1− s2β

log n

n

)2|V−|

≤ s2α
log n

n
exp

(
−s2 (α (2 |V+| − 3) + β (2 |V−|))

log n

n

)
.

If σ is such that Fϵ holds, then using the bounds 2 |V+| − 3 ≥ (1− ϵ)n and 2 |V−| ≥ (1− ϵ)n we
thus have that

Covπ (Xi, Xj |σ) ≤
(
s2α log(n)

)
n−1−(1−ϵ)s2(α+β) =

(
s2α log(n)

)
n2λ−3. (63)

Plugging (62) and (63) back into (61), we have that

Varπ
(∣∣Tπ

+

∣∣ ∣∣σ) ≤ n · nλ−1 + n2 ·
(
s2α log(n)

)
n2λ−3 = nλ +

(
s2α log(n)

)
n2λ−1.
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whenever σ is such that Fϵ holds. Since λ < 1, we have that λ > 2λ− 1, and so the display above
implies that

Varπ
(∣∣Tπ

+

∣∣ ∣∣σ) ≤ 2nλ (64)
for all n large enough, whenever σ is such that Fϵ holds.

Next, we use Chebyshev’s inequality to turn the first and second moment estimates into a probabilistic
lower bound for

∣∣Tπ
+

∣∣. If σ is such that Fϵ holds, then, by (60), for all n large enough such that
nδ/2 ≤ nδ/8, we have that

Pπ

(∣∣Tπ
+

∣∣ ≤ nδ/2
∣∣∣σ) ≤ Pπ

(∣∣∣∣Tπ
+

∣∣− Eπ

[∣∣Tπ
+

∣∣ ∣∣σ]∣∣ ≥ nδ/8
∣∣σ) .

Thus by Chebyshev’s inequality and (64) we have that

Pπ

(∣∣Tπ
+

∣∣ ≤ nδ/2
∣∣∣σ) ≤ 64n−2δ Varπ

(∣∣Tπ
+

∣∣ ∣∣σ) ≤ 128nλ−2δ

for all n large enough, whenever σ is such that Fϵ holds. Recall from (59) that λ− 2δ < 0, so this
bound decays to 0 as n → ∞.

To remove the conditioning on σ, we can write

Pπ

(∣∣Tπ
+

∣∣ ≥ nδ/2
)
≥ E

[
Pπ

(∣∣Tπ
+

∣∣ ≥ nδ/2
∣∣∣σ)1 (Fϵ)

]
≥
(
1− 128nλ−2δ

)
P (Fϵ) .

Note in particular that this lower bound holds uniformly over all π ∈ Sn. Hence, since P (Fϵ) → 1
as n → ∞, we have that

lim
n→∞

min
π∈Sn

Pπ

(∣∣Tπ
+

∣∣ ≥ nδ/2
)
= 1.

Finally, the same arguments also hold for
∣∣Tπ

−
∣∣ by symmetry, so the conclusion follows by a union

bound.

D Impossibility of community recovery from correlated SBMs

Proof of Theorem 3.4. The key idea is to reduce the problem to that of exact community recovery in
the (classical) single-graph SBM setting. Specifically, as observed in the proof of Theorem 3.3 in the
main text, the union graph H∗ := G1 ∨π∗ G2 satisfies

H∗ ∼ SBM

(
n, α(1− (1− s)2)

log n

n
, β(1− (1− s)2)

log n

n

)
,

and from H∗ it is possible to simulate G1 and G2. However, under the condition∣∣∣√α−
√
β
∣∣∣ <√ 2

1− (1− s)2
, (65)

exact community recovery is impossible from an SBM with such parameters [2, 8, 3, 1].

To make the argument formal, suppose by way of contradiction that there exists an estimator
σ̃ = σ̃(G1, G2) such that

lim sup
n→∞

P (ov (σ̃(G1, G2),σ) = 1) > 0. (66)

Now let H be a graph on the vertex set [n] satisfying

H ∼ SBM

(
n, α(1− (1− s)2)

log n

n
, β(1− (1− s)2)

log n

n

)
,

and let σH denote the underlying community labels of H . Given H , we now construct two edge-
subsampled graphs H1 and H ′

2 as follows. First, define the parameters

(r01, r10, r11) :=

(
s(1− s)

1− (1− s)2
,

s(1− s)

1− (1− s)2
,

s2

1− (1− s)2

)
and note that r01 + r10 + r11 = 1, so this triple defines a probability distribution. Now for every
vertex pair (i, j) independently:
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• if (i, j) is not an edge in H , then it is not an edge in H1 and it is not an edge in H ′
2;

• if (i, j) is an edge in H , then

– with probability r10, the pair (i, j) is an edge in H1 but not an edge in H ′
2;

– with probability r01, the pair (i, j) is not an edge in H1 but it is an edge in H ′
2; and

– with probability r11, the pair (i, j) is an edge in both H1 and H ′
2.

The key observation is that, by construction, (H1, H
′
2,σH) has the same distribution as (G1, G

′
2,σ).

Now let π ∈ Sn be a uniformly random permutation which is independent of everything else. Finally,
we generate H2 by relabeling the vertices of H ′

2 according to π (i.e., vertex i in H ′
2 is relabeled

to π(i) in H2). Again by construction, (H1, H2,σH) has the same distribution as (G1, G2,σ). In
particular, ov (σ̃(H1, H2),σH) and ov (σ̃(G1, G2),σ) have the same distribution, and so

P (ov (σ̃(H1, H2),σH) = 1) = P (ov (σ̃(G1, G2),σ) = 1) .

Combining this with (66), we have that

lim sup
n→∞

P (ov (σ̃(H1, H2),σH) = 1) > 0. (67)

However, it is known [2, 8, 3, 1] that if (65) holds, then for every estimator σ′ = σ′(H) (including
randomized estimators) we have that

lim
n→∞

P (ov (σ′(H),σH) = 1) = 0. (68)

Since (H1, H2) was constructed from H using only additional randomness, σ̃(H1, H2) can be
thought of as a randomized estimator of σH which takes H as input. Therefore (67) and (68) are in
direct contradiction. Thus (66) does not hold, which proves the claim.

E Proofs for many correlated SBMs

In this section we prove our results that concern K ≥ 3 correlated SBMs, namely Theorems 3.6 and
3.7. These proofs are analogous to the proofs of Theorems 3.3 and 3.4, extending them to the setting
of K ≥ 3 correlated SBMs.

Proof of Theorem 3.6. Given permutations π2, . . . , πK ∈ Sn, we define G1 ∨π2 G2 . . . ∨πK GK ,
the union graph with respect to π2, . . . , πK , as follows: for distinct i and j, the pair (i, j) is an edge
in G1 ∨π2 G2 . . . ∨πK GK if and only if (i, j) is an edge in G1 or

(
πk(i), πk(j)

)
is an edge in Gk

for some k ∈ {2, . . . ,K}. In particular, let H∗ := G1 ∨π2
∗
G2 . . . ∨πK

∗
GK . By construction, H∗ is

the subgraph of the parent graph G consisting of exactly the edges that are in G1 or in G′
k for some

k ∈ {2, . . . ,K}. Thus we have that

H∗ ∼ SBM

(
n, α

(
1− (1− s)

K
) log n

n
, β
(
1− (1− s)

K
) log n

n

)
.

The algorithm we study first computes, for every k ∈ {2, . . . ,K}, the permutation π̂k := π̂ (G1, Gk)
according to Theorem 3.1. We then pick any community recovery algorithm that is known to succeed
until the information-theoretic limit, and run it on Ĥ := G1 ∨π̂2 G2 . . . ∨π̂K GK ; we denote the
result of this algorithm by σ̂(Ĥ). We can then write

P(ov(σ̂(Ĥ),σ) ̸= 1) ≤ P({ov(σ̂(Ĥ),σ) ̸= 1} ∩ {Ĥ = H∗}) + P(Ĥ ̸= H∗)

≤ P(ov(σ̂(H∗),σ) ̸= 1) +

K∑
k=2

P
(
π̂k ̸= πk

⋆

)
,

where, to obtain the inequality in the second line, we have used that σ̂(Ĥ) = σ̂(H∗) on the event
{Ĥ = H∗}, and that Ĥ ̸= H∗ implies that π̂k ̸= πk

∗ for some k ∈ {2, . . . ,K}. Since exact
community recovery on H∗ is possible when the condition∣∣∣√α−

√
β
∣∣∣ >√ 2

1− (1− s)K
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holds [2, 8, 3, 1], we know that P(ov(σ̂(H∗),σ) ̸= 1) → 0 as n → ∞. In light of Theorem 3.1 we
also have, for every k ∈ {2, . . . ,K}, that P(π̂k ̸= πk

∗ ) → 0 when s2(α+ β)/2 > 1, concluding the
proof.

Proof of Theorem 3.7. Suppose, by way of contradiction, that there exists an estimator σ̃ =
σ̃ (G1, G2, . . . , GK) such that

lim sup
n→∞

P (ov (σ̃(G1, G2, . . . , GK),σ) = 1) > 0. (69)

Now let H be a graph on the vertex set [n] satisfying

H ∼ SBM

(
n, α

(
1− (1− s)

K
) log n

n
, β
(
1− (1− s)

K
) log n

n

)
,

and let σH denote the underlying community labels of H . Given H , we now construct K edge-
subsampled graphs, H1, H

′
2, . . . ,H

′
K , as follows. First, for x ∈ {0, 1}K let |x| :=

∑K
k=1 xk. For

every x ∈ {0, 1}K let rx := s|x|(1− s)K−|x|/
(
1− (1− s)

K
)

, and note that
∑

x∈{0,1}K\0K rx =

1, so r := {rx}x∈{0,1}K\0K defines a probability distribution. Now for every vertex pair (i, j)

independently:

• if (i, j) is not an edge in H , then it is not an edge in any of H1, H
′
2, . . . ,H

′
K ;

• if (i, j) is an edge in H , then draw x ∈ {0, 1}K \ 0K from the distribution r. Then (i, j) is
an edge in H1 if and only if x1 = 1, and for every k ∈ {2, . . . ,K}, the pair (i, j) is an edge
in H ′

k if and only if xk = 1.

The key observation is that, by construction, (H1, H
′
2, . . . ,H

′
K ,σH) has the same distribution as

(G1, G
′
2, . . . , G

′
K ,σ). Now let π2, . . . , πK ∈ Sn be i.i.d. uniformly random permutations which are

independent of everything else. Finally, for every k ∈ {2, . . . ,K}, we generate Hk by relabeling
the vertices of H ′

k according to πk (i.e., vertex i in H ′
k is relabeled to πk(i) in Hk). Again by con-

struction, (H1, H2, . . . ,HK ,σH) has the same distribution as (G1, G2, . . . , GK ,σ). In particular,
ov (σ̃(H1, H2, . . . ,HK),σH) and ov (σ̃(G1, G2, . . . , GK),σ) have the same distribution, and so

P (ov (σ̃(H1, H2, . . . ,HK),σH) = 1) = P (ov (σ̃(G1, G2, . . . , GK),σ) = 1) .

Combining this with (69), we have that

lim sup
n→∞

P (ov (σ̃(H1, H2, . . . ,HK),σH) = 1) > 0. (70)

However, it is known [2, 8, 3, 1] that if the condition∣∣∣√α−
√
β
∣∣∣ <√ 2

1− (1− s)K

holds, then for every estimator σ′ = σ′(H) (including randomized estimators) we have that

lim
n→∞

P (ov (σ′(H),σH) = 1) = 0. (71)

Since (H1, H2, . . . ,HK) was constructed from H using only additional randomness, the estimator
σ̃(H1, H2, . . . ,HK) is a randomized estimator of σH which takes H as input. Therefore (70)
and (71) are in direct contradiction. Thus (69) does not hold, proving the claim.
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