Supplementary Material for “Path following
algorithms for />-regularized M-estimation with
approximation guarantee”

Yunzhang Zhu Renxiong Liu
Department of Statistics Statistics and Data Science team
Ohio State University Nokia Bell Labs
Columbus, OH 43015 Murray Hill, NJ 07974
zhu.219Qosu.edu renxiong.liu@nokia-bell-labs.com

The supplementary material collects additional numerical results in Section 4, examples of ground
truth and approximated solution path, as well as all the proofs of the theorems and corollaries in the
main text.

1 Additional numerical results in Section 4
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Figure S1: Number of iterations at each grid point for the Newton and gradient descent methods
applying to ridge regression over simulated data generated in Example 1.
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Figure S2: Number of iterations at each grid point for the Newton and gradient descent methods
applying to the ¢5-regularized logistic regression over simulated data generated in Example 2.
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Figure S3: Number of iterations at each grid point for the Newton and gradient descent methods
applying to the ¢5-regularized logistic regression over the a9a real dataset from LIBSVM [Chang and
Lin, 2011].

In this section, we inlcude some additional numerical results for the three examples in Section 4. In
particular, we plot the number of iterations at each grid point by Newton method and gradient descent
method for all three examples. We summarize the results in Figure S1-S3.

Figure S1 presents the results for ridge regression. In this case, the number of iterations by gradient
method first increases and then stays flat as ¢;, grows. Newton method, however, only takes one
iteration at each grid point. Moreover, the level of approximation (i.e., €) seems to have no impact on
the number of iterations at each grid point, which is highly desirable.

Figure S2 shows the results for ¢5-regularized logistic regression. As we can see from Figure S2,
the number of iterations needed increases as ¢, increases for gradient descent method, whereas the
Newton method always requires just two iterations at each ¢;. Again, the level of approximation (i.e.,
€) does not seem to influence the number of iterations much.

Lastly, Figure S3 shows the iteration plot for the real data example. Again, similar to the results in
Figure S2, for gradient descent method the number of iterations needed increases as t; increases,
while the Newton method requires only a few iterations at each t.

2 Examples of ground truth solution path and approximated solution path

This section includes examples of visualized ground truth solution path and approximated solution
path by Newton method and gradient descent method, when applied to ridge regression and /5-
regularized logistic regression.
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Figure S4: Ground truth solution path and approximated solution path by Newton method (left panel)
and gradient descent method (right panel), when applied to ridge regression over simulated data
generated in Example 1, with n = 100 and p = 3.
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Figure S5: Ground truth solution path and approximated solution path by Newton method (left panel)
and gradient descent method (right panel), when applied to /5-regularized logistic regression over
simulated data generated in Example 2, with n = 100 and p = 3.

3 Some preliminary results and supporting lemmas

Some standard results for m-strongly convex functions will be repeatedly used in the proofs, which
are stated below. We omit their proofs as all of them can be found in standard convex analysis
textbooks [see, e.g., Boyd and Vandenberghe, 2004]. Suppose that f(-) is a m-strongly convex
function with minimizer x*. Then for any x and y,

IVf(x) = Vi3, (S1)

1
I3 and o = 2*[ls < —[[Vf(z)[>  (S2)

3=

mllz =yl < (VF(2) = Vf(y),z—y) <

M~ a3 < F@) ~ @) < 5V

~

Next, we present two supporting lemmas.
Lemma S1. Suppose that L,,(0) is a proper convex function. Then

C{') = C®)

/ |
10(27) = 0()ll2 < 0 10CE)]]2 (S3)

foranyt,t' > 0.

Proof of Lemma S1. Note that for any ¢ > 0 and any g» € OL,,(0(t')) and g; € OL,,(6(t)), we have
(ge — g¢,0(t") — 0(t)) > 0, where OL,,(0) denotes the subdifferential of L, (-) at 6. Hence, for any

ht/ S 8ft/ (Q(t/)), ht S 8ft/ (9(t))
(her = he ,0(") = 0(1)) > [10(") — 6(1)]13 (84)

Since 0 € dfw (6(t')) and —C(t')0(t)/C(t) + 0(t) € Of (0(t)), substituting hy with 0 and h; with
—C(t")0(t)/C(t) + 6(t), we obtain that

(C)o)/Ct) —0(t),0(t") — (1)) = [|0(t) — 0(t)]|3- (S5)
This further implies that
10(t") =013 < (C(")0(t)/C(t) - 0(t) ,6(¢') —0(t)) < |C(¢)/C(t) = 1l[|0D)|2[l6t) =022
which proves (S3). This completes the proof of Lemma S1. ]
Lemma S2. Assume that L,,(0) is a closed proper convex function. We have that
10(t)]]2 < (e" = DIVLa(0)[|2 and |0(t)]]2 < (1 = e™*) (IVLa(0)ll2 + [0(£)]]2)  (S6)
foranyt' >t > 0. Moreover, under the assumption that (8) holds, we have that

1 1162 1

Co(e®k—1) — = Co(ek—1)
1 + ((i—ei_f’k) ||9(tk)||2 1 - ((1787_1’19)

(87

forany1 <k < N.



Proof of Lemma S2. Since f;(+) is et strongly convex, using (S2), we have
16(2) = 0ll2 < €[V £:(0) |2 = (¢" = 1)[|V L (0)]l2,

which proves the first inequality ||0(¢)||2 < (¢! — 1)||VL,,(0)|2. Combining this with the fact that
[16(t)|l2 < ||0(t)]|2, we have that

10(t)]]2 < min ((e" = 1) VLA (0)l2, [10(t")]l2) < (1 —e™") (IVLn(0)l2 + 10(t")]]2) ,
which proves the second inequality in (S6).

Next, we prove (S7). Using the fact that ||0; — 0(tx)||2 < e®*||gx||2, we obtain that

Coe™ —1
10kll2 < N10Ctk) 2 + 10(tk) — Okll2 < 10Ct)ll2 + €™ [lgell2 < 10(t)]|2 + 6t’“(()€(tk_1>)|9kllz ,
which implies that
10CE)[l2
[0k]l2 < 1 Cole*—1) - (S8)
(1—e~tk)
Similarly, we have
Co(e* — 1
660l < 16l + 106t) — ulla < 1l + < lla < 106l + 2 S5 10l

which implies that

6l o 1

[0tz — 1+ %

Combining this with (S8), it proves (S7). This completes the proof of Lemma S2. ]

We next present a supporting lemma to be used in the proof of Theorem 4.
Lemma S3. For any € € (0,1], let (e** —1)? = cie and ay1 = In(1 + coet*/?(e™ — 1)), where
c1,co > 0 are constants and ty, = Zle ;. Define k* := max{k : t;, < In(e~1)}. Then,
B < 14+ cica +V1+cieo
Clch/g\/ 1+ Cl\/g

Proof of Lemma S3. 1t is easy to see that «y, is strictly increasing for k£ > 2 and by definition of k*,
we have that

(89)

ap+1 <In(l1+4c¢yep) forany 1 < k < k* | (S10)
which implies that e®*+1/2 < (1 + c1c2)"/? for any 1 < k < k*. Moreover, since e®+1 =
1 + cicpy/eet*/2, we have that

g 2 _ —tK 2( QK _ —Qag 2
omth/2 _ pmtipa/2 _ € /21 emten/2(emi — 1) ek /2¢0109\/6 c1ea/€

etit1/2 - e¥k+1/2 1 1 T e@nt1/2 411 Okl 4 eQr+1/2
for any k > 1. Therefore, for any 1 < k < k*,

k* k*

e—t1/2 _ pmthri1/2 Z (641-/2 _ 641-“/2) _ Z ciea/€ > k*crea/€
i=1 o e +ei+1/2 T 14+ 1+ cic’
which implies (S9). This completes the proof of Lemma S3. |

4 Some properties of /;-regularized solution path

We present some properties of the solution path to be used later in other proofs.

Corollary S1. Suppose that L, (0) is a closed proper convex function. Let 0(t) denote the {s-
regularized solution path defined by (2). Then

(i) 1|0(t)||2 is nondecreasing in t and L, (0(t)) is nonincreasing in t;



(i) ||0(t)||2/ (et — 1) is nonincreasing in t;

(iii) if L, (0) is a continuous and the minimum {5 norm minimizer of L, (9), denoted as 0, is
finite, then lim;_, ., 0(t) = 6*.

This corollary shows that the /5 norm of the solutions along the path is monotone, and the solution
0(t) converges to the minimum ¢» norm minimizer of L, (0) as ¢ goes to infinity if it is finite. We
also remark that part (iii) has already been established in Theorem 8 of Suggala et al. [2018]. We
include these properties here to make the article largely self-contained.

Proof of Corollary S1. To prove (i), rearranging terms in (S5), we obtain that
(C() = C@) (163 — le@)lI3) = (Ct) + C@))llo) — oI5 = 0,

which implies that ||6(¢)]|2 is nondecreasing in ¢. For nonincreasingness of L., (6(t)), note that

CULA6() + 51003 < C)La(0() + 516013

< (C) = C(1)La(0(t) + C(t)Ln (6(t)) + %IIG(t’)Ilﬁ :

which implies that (C(t") — C(t))(Ln(6(t')) — L,(6(¢))) < 0. Hence, if C(t') — C(t) > 0 then
L,(0(t")) < L,(6(t)), which proves that L,,(6(t)) is nonincreasing in ¢.

To prove (ii), using (S3), we have that for any ¢ > ¢’ and 6(t) # 6(¢'),
1012 = 11012 < [10() — 6()]l2 < (C(t) = CENNO®)[2/C (), (S11)

which implies that
10(®)ll2/C () < I0(E)ll2/C (") - (S12)
This also holds when 6(¢) = 6(t’) because C'(¢) is an increasing function. This proves part (ii).

Lastly, we prove part (iii). Denote by 6* the minimum ¢5 norm minimizer of L, (6). Next, we show
that 6(t) converges to 6* as t — oo if 6* is finite. Note that 0 € 9L,,(8*) and 0 € C(¢)0L,,(6(¢)) +
0(t). As aresult,

0 € C(t) (OLn(0(t)) — OLn(07)) +0(t) ,
where A — B denotes the set {a —b: a € A and b € B}. Multiplying 6(¢) — 6* on both sides, we

obtain that
(0(t) — %) 0(t) € =C(£)(0(t) — 0*) " (OLn(6(t)) — DL, (67)) ,

which implies that (0(t) — 0*)70(t) < 0. Therefore, [|0(t)]|3 < (0*)70(t) < [|0*[|]2/10(¢)]|2,
which implies that ||0(¢)||2 < ||#*]]2_ < oo for any ¢ > 0. Denote by 6 the limit of any con-
verging subsequence 6(ty), that is, 0 = limy_, o 0(tx) for some t;, — oo. Then, |02 =
limy o0 [|0(tk)]|2 < [|6*|l2- Next, we show that § must also be a minimizer of L, (0). To this
end, note that L, (0) = limg_,o L, (0(tx)) by using the continuity of L, () in §. Moreover, by
optimality of 6(ty),

1

2 * * |2
16(te)ll2 < Ln(67) + WHQ 2 - (S13)

L

Lu(8(tk)) < Ln(6(tx)) + 55075

By letting k¥ — oo and using the fact that L,,(6) = limg_, o L, (0(tx)) due to continuity of L,,(6),
we have that

1
20 (tx)

L,(0) :klggoLn(o(tk)) < lim (L,,,(o*)+

k 16°12) = £(0").

— 00

where the last step uses the assumption that [|0* |2 < oc. This proves that § must also be a minimizer
of L, (0).

Now if § 5 6*, then their convex combination 3 (6 + 6*) must also be a minimizer of L,,(6) due to
the convexity of L, (). On the other hand, the convex combination has strictly smaller norm than
that of 6%, because || (6 + 6*)||l2 < 5(||0]| + [|0*[|2) < [|6* |- This contradicts with the definition
of *. Hence, we must have limy_,, 0(tx) = 6 = 6* for every converging subsequence 60(ty).
Consequently, the sequence 6(t) must converge to 6*. This completes the proof of Corollary S1. W



5 Proof of Theorem 1

Proof of Theorem 1. For any t € [tg, txy1], we let wy, = ttkkjll__ttk ,fork=0,1,...,N — 1. Then

0(t) = wpby + (1 — wy)0pp1. By convexity of fy(-), we have f;(0(t)) < wyfe(0) + (1 —
wk)ft(9k+1). Thus,

F0() = fe(0() <wr(f:(0r) = fe(0(8))) + (1 = wi) (fe(Oria) — Fo(6(1)) - (S14)
Forany k =1,..., N — 1, the term f;(0;) — f:(6(¢)) in (S14) can be bounded as follows:

-t —t o —ty 2
Fi00) = 00 < 5 IV F IR = S | 1= V(00 + S

1—et
1—et\? et — o—ti\ 2
e <1> IV i (01|13 + € (letk) 16, ||2

etk

1—et)\? et —emtr\?
= (1_6,5k> lgkl3 + €' <1—etk) 16k 13,
where the first inequality uses the fact that f;(-) is e~*-strongly convex and (S2). Similarly, we can
bound the term f;(6x+1) — f:(6(t)) by

1—et 2 et _ e—trt 2
¢ <1_) gl +¢* (1_) [

forany k =0,1,..., N — 1. Combining these two bounds, we have that

wi(fi(0k) = £:(6(2))) + (1 = wi) (fi(Ort1) — f2(6(2)))

1— et 2
< "' max { (1—e—tk) gk l13, ||9k+1||§} +

te41 0 2 tr 0 2
S TSI TN R

2

IN

1—e t)2’ (1 — e thr1)2
forany k =1,..., N — 1. This proves (5).
When k = 0, the term f;(6)) — f:(6(¢)) in (S14) can be bounded as follows

et(1

ll0) — 1,00)) = () ~ 1,00)) < =19 u0)13 = L, 013

for any 0 <t < t1, where we have used (S2) in the above inequality. Following a similar argument
as before, we obtain that

wol ulB)— B8 (10 (1)~ (0(2)) < TS

for any ¢ € [0, ¢1]. This proves (4).

IV Ly (0)][3+max (e" [lg1]I3, 161]3)

Now we bound f;(6(t)) — f;(8(t)) when ty < t < tyax. Toward this end, notice that

Fe0(1) = £u(6(1)) = f1(On) — f:(0(2)
1 _ et e—tn _ ot

e _
= ot Ve (On) = fen (0(En)) + m(”‘g(w)”z 10 113) + Fe(O(tn)) — fe(8(2)) -

Next, we bound these three terms separately. For the first term, by using (S2), we have that f; , (On) —

fin (0(tn)) < 27 te!~||gn||3. Using this, we obtain that

T Ui (08) = fon (60 < S 2T o . ($15)

We next bound the third term. By optimality of 6(¢x ), we have f:, (0(tn)) < fi
turn implies that L, (6(tn)) — L, (0(t)) < .5(e'~ — 1)~ (|6(1)13 — [|0(tn) |13

~(0(t)), which in
) Using this, the



third term can be bounded as follows

fi(0(t )) fe(0() = (1 = e7")(Ln(0(tn)) — La(0(t))) + 2 (||9(tN)H2—H9( )I3)
(1 )(HG( | ER I GDI[E )+*t(H9(tN )3 = [l6)113)

e tN — et

M —e ) (163 = 116(tn)113) -

Combining the bounds for the first term and the third term, we obtain that

sup  {fu(0(t) — fo(0(t))}

tn <t<tmax
(1 — e t)etn o,  eTiN e~ 9 9
< -~ 7 —(]|6(¢ — /|6 S16
< s [T g+ S0l - D)) 610

< T anlE + e [0t
= 2(17 *tN) gnll2 (61\’—1) max ) |[|2 s

which implies (6). This completes the proof of Theorem 1. ]

6 Proof of Theorem 2

Proof of Theorem 2. Using (8), we obtain that

2 2
(e —1) 2 oma (ot —tigiy2 € 1Okaal3
(etk+1 _ 1) ||0k+1|‘2 < Coea (6 e k+1) (1 — e*tk+1)2 )

1 — e tett 2 1 — e tri 2 (e —1) ’
o () el s e (ST ) (G gyion)

2 €41 (|0k 3
(1= tr)2

ettt gppn |3 < ettt <C°

and

< Cg(eamax 4 eamax/Q + 1)2(e—tk _ e—tk+1>
where we have used the fact that a1 > /2 and

e — 1 eM+1 — Tt e ] 1—e e —1 1—e '
1—ete ¥t — 1 = 1—etk (1 * eXk+1 — 1) = 1—et (1 * er/2 — 1>

eak —

= 17_i +eak/2 +1 < e +eak/2+1 < gOmax _’_eamax/2+1.
— etk

Combining, we get

1— e e 2
et +1 max { (M) ||gk||§7 9k+1|§}

- - e |0k e |0krall3
< Cg(eanlax + eCmax/2 + 1)2(3 e _ e tk+1)2 max { (1 — e—tk)QQ’ (1 — e*tk+12)2 } s

which together with (5), we obtain that

sup  {£:(0(1)) = f:(6(1))}

te(tn,trt1]

a1 2 tr 2
< (1 + C%)(e—tk _ e—tk+1)2 max{ € ||9k||2 € ||9k+1H2 } 7 (S17)

(1 —e )2 (1 — e tet1)2



where C; = Cy(e®mex 4 e®max/2 4 1). Therefore,
I<hen - 1t€[sup {ft(ﬁ(t)) - ft(@(t))}

thootht1]

P03 e |0k 3
< 2V (p—tk _ o—tky1)2 € kll2 k+1112
- 1SII§1§a137(—1(1 + (e )" max (1—e7t)27 (1 — e trr1)?

e "0k 13
< 2 o112 —Qg41 (k41 2 o (,ap _ 2
_(1+C’1)1g€aéxN 1) max (e (e )% e (e 1) )}

—tk 2(oQk+1 2
2 e |03 (et — 1)
4(1+Cl)1ISI}CaSXN{ (-2 )
Using (4) and (8), we have that

sup {£i00) = £i(0(0) } < (3/2) - max (e = 1| VLLOF, [62]3)  (S18)

te[0,t1]

Therefore, if ty_1 < tmax < t for some N > 1, we have

swp {7u6(0) ~ Fi00)} < swp {700 - 1100}

0<t<tmax

—tr 2( ,0pp1 2
g4(1+cf)max{(em —1)?|VL,(0)|%, max <€ 1952 (e D >}

1<k<N (1 —et)?

which implies (10).

Now if £ < tiax, by using (S16), we have that sup; <;<; {ft(é(t)) - ft(é?(t))} can be upper
bounded by

e

oy {0 g 4 g 00 ~ 1013

tN <t<tmax

(]_ )etz\r (eaN ]_) 2 e~ N _ ¢ 5 5
< +
tN<St1£max 201 e_tN) Cy (etv — 1) 1012 2(1 _tN)(H@( Mz = 10x112)

e N (e*v —1)\? 1 — e (tmax—t)
< C On I3 + ————[10(tmax) I3
< (O ) Mew + ) IB
1 — ¢~ max(an, tmax—tN)
< e max {[|0n 13, [10(tmax)ll3} -
provided that Che®=>= < 1/2, or sufficiently Cy < 1/4. Combining this with the previous bounds, it
proves (9). This completes the proof of Theorem 2. ]

7 Approximation-error bound for ||6() — 6(t)||

Corollary S2. Under the assumptions in Theorem 2, we have that

sup  [|(t) — 0(t)||2 §5max{(e°‘1 CD)||VL.(0)]2, max ('9‘“”2(6%“ _1))} (S19)

0<t<tmax 1<k<N 1—et

when ty_1 < tmax < ty for some N > 1, and

sup 1) — o)l < CZDIONl2 o n 00 — Bt (520)

—t
tN <t<tmax 4(1 —¢€ N) tN <t<tmax
when ty < tpax.

Proof of Corollary S2. By using (S17) and (S2), we obtain that
sup  [[6(t) ~ 0032 swp e (£i(00) — £i(0(1)))

tE[t try1] tE[ty try1]

trk+1 2 ti 2
2\ t —t —t 2 € 10kllz €™ |10k+1l3
2(1 4 C?)etr+i(e7t — e t+1)2 max { A —en)2 (I ctin )2 (S21)




where C; = Cp(e@max + e@max/2 4 1). Therefore,

max  sup J0(t) — 6|12
1Sk§N71t€[tk,tk+l] 2

<2(14C?) max erri(eTth — e tht1)? max{

et |03 e [|Oriall3
1<k<N-1

(1—et)2 (1— e trr)2

i} 2
<200+ ) s { e e (€ e e 1)) |
03 (e — 1)?
<8(1+C%) 11<I}€a<XN{ (12_e—tk)2 .

Moreover, using (4) and (S2), we have that

sup [0(t) — 0(0)[3 <2 sup et (£0(6)) — £(0(1)))
t€[0,t1] t€(0,t1]
< 3¢ max ((e™ — 12[VLL(0)[3. 161]3) (s22)
Therefore, if ty_1 < tmax < ty for some NV > 1, we have

sup  [[9(t) = 6(1)|3 < sup [6(¢) — 6(t)]I3

OStStmax OStStN

12 (eCk+1 -1 2
SS(I—!—C%)max{(eal —1)?|VL,(0)]3, max (||9k|2(6 . ) )} ,

1<k<N (1—et)2

which implies (S19), because 8(1 + CZ) = 8 (1 + CZ(e%mx 4 evmax/2 4 1)?) < 25.

To bound sup, , -4« [0(t) — 0(t)

16() — 6(t)ll2 = 15 — 6(t)l2 < [10n — O(tw) |2 + [|6(tn) — O()]l2
< eVllgnllz + 10(tx) — 0(1)]2

(= DIONT2 o) — Ot + 1608) — Otz

2, note that for any ¢ty < t < t,,ax, We have that

<Gy

1—etn
Hence,
- e — 1)||0n
sup 0) — o) < 06 TNz Ly o) — Bt
£ <t<tumax L—e™' tN <t<tmax
which proves (S20). This completes the proof of Corollary S2. ]

8 Proof of Theorem 3

Proof of Theorem 3. We first show that a1 > ar/2. If Qg1 = Qmax OF 20, then trivially
Q41 > /2. Now we assume that o1 = A, where

ci1(e® = 1)|| VL, (0)[|2t/2(1 — e—tk)> .

A, =1 1
¢ “( - e

When k& = 1, using (S7) and the fact that e** — 1 < \/€/||V L, (0)||2, we obtain that

e* —1

ex/2 —1

Q2
Tz e

edlr —

et —1 cive(l —e )
— 041/2+1 a1/2 1
e 1 e G e )
1—et) Co(e®r —1)
2 ea1/2+1 ea1/2 Cl\/g( (1_
( e e~ \! T 0 —en)
Cl\/g
VL) ]a(c™ — 1)

provided that ¢; > 1 and Cjy < 41 This implies that g > a1 /2.

= (em?41)

> (em/2 4 1) (1= Cpe™) > (e™/2 £ 1)(1 — Che?) > 1,



When k& > 2, note that oy, < Ap_1 and

edr+1 — 1] eXr+1 — ] eAr — 1

p— ak/2 ak/2
eak/Q—li(e +1) e —1 = (e +1)e“‘k'fl—l

(/2 4 1)eon/2 (et = D[IVLn(0)]|2(1 —e~") 10k—1ll2

10k l2 (e = 1)|IVL,(0)[2(1 — e~tr-1)
B —1)[|0k|

> (o2 4 1) © L2 S23

> (e + )(etk_1 VAR (523)
Now using (S7) with Cy < 4~1, we have that

(PR —1) o (ePk—1)
(e = Dlfk-1ll2 (e = DOtz — 50 _ 1~ aaemy (524)
(etr=1 = D[|Okll2 — (e = D[|O(t)]l2 1 4 % T 14 %

where the last inequality uses part (ii) of Corollary S1. Combining this with (S23), we obtain that

ek+1 1 1— %
L o)

e GRS ey e (525)
L+ qi=ey

Therefore, to prove a1 > ay/2, it suffices to show that the RHS of the above inequality is no
smaller than 1. To this end, using the fact that o, < Qmax < 1/5 forall k£ > 1, we have

(e —1) e (e —1) ek < e20k—1 e2%k-1
(1 _ e—tk) e — g~ lh—1 1+ 1;2:_}“1_1 = 1+ i;aek:tf:ll = 14 16;5;7&1)“__;
< esakil(eakil + 1) = 201 (1 1
— e20k-1 4 e¥%-1 1 e20k—1 4 e -1 4 |
1
<2 (1o — <
<e (1 62/5+el/5+1>1'09'
for any k > 2, and when k£ = 1, we have
(eak B 1) _
Combining this with (S25), we have that
(e*k—1)
eortl — 1 L= qa=emy 1-1.22/4
> (p—Qk/2 1 ¢ > (p—1/10 1 E—— |
ex/2 — 1 (e - )1 4%?1312) = ! )1 +1.22/4 ’
—e

which proves that a1 > /2. Hence, oy, satisfies all the conditions in Theorem 2.
Next, we show that the algorithm will terminate in finite steps. We first show that ¢; diverges. To this
end, using (S6) and (S7), we have
€l/2ete/2(1 — e~ tr) - et /2(e1 —1)||VL,(0)||2(1 — e~ )
[16%/2 - 16(tk)][2/(1 —271)

/2 — )| VL(0)]]a(1 — e=t%)
n > 27 1(e1 _ 1)etr/2
=TT e - VL) 227~

3

which implies that

ap _ 1)€—tk/2 (et — 1)
A >1n(1 +27 1™ — 1)e */?) > (e = ) S27
k = n( + (8 )6 ) =9 + (eal _ 1)€—tk/2 2etk/2 + (eal _ 1) ( )

Thus,

. (e* —1)
Q41 = Min (amax, 20, 2 /2 1 (e —1)) (528)
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Now we prove the divergence of ¢; by contradiction. Suppose that ¢;, does not diverge. Then there
must exist a constant 1" such that ¢;, < T for all k. However, now we have

> mi 2 (e~ 1)
(0% min ( dmax, 20k, )
k+1 = k 2€T/2 + (6(11 _ 1)

which implies that «, is lower bounded by a positive constant when k is large enough, implying that
ti should diverge. This is a contradiction. Hence, t; diverges.

Now we are ready to show that the algorithm must terminate in a finite number of iterations. If
tmax < 00, then £y > t,.x must hold for large enough k as ¢ diverges. If ¢,,,x = 00, then we have
that 0(tmax) = 0 is finite by assumption. Therefore, the first termination criterion in (14) should
also be met when N is large enough because ¢ diverges.

Lastly, we prove (15) when the algorithm is terminated. Using (9) and (10) in Theorem 2, and

applying inequality (S7) in Lemma S2, we have that

(e — 1)
—tp

ool < (1+ 0o =0

) 100ll2 < (1+ Coc™) cll2 < 20]l2.
and

_ et —1 2 «a o
e () 63 < e (€™ = 1)(|VLa(0)]3 S e,

1—eh
2 2
et (€N e < gt (£ LY 10 — 12
1 — e tr+a tlz = 1— e tr+ (etx —1)2

2 2
B eak+1 _ ]_ _ 6ak+1 - ]-
=t (To ) I s e (T2 ) ol

< (e = 1)?|VLh(0)]3 S e
for any k£ > 1 when the algorithm is terminated.

Now at termination, one of two conditions in (14) must be met. If ¢y > t,,ax 1S met, then applying
(10) in Theorem 2 and the above two bounds, it follows that

sup  {fi(0() = fu0(1) } S 4(1+CReom +em2 1 1)2) e Se. ($29)

0<t<tmax

If it is the other termination criterion cz(efy — 1)71 (1 — e~ max(an: tmax—tN)) < ¢ in (14) that is
met first, then we must have ¢ < t,ax at termination, and

1 — e~ max(an, tmax—tn)

T max ([0 3, 16 (tuma) 3)

1 — e~ max(an, tmax—tn)
<

de
2 2 2
pre— max (4[[0(tn)[5, [10(tmax)||5) < all9(tmax)||2 Se

where again we have used |0 |2 < 2||6(tn)||2 and the fact that ||0(tn)]l2 < [|0(tmax)|2 < O(1).
Using this and applying (9) in Theorem 2, we still have

sup  { £1(0() — fu(6(®) | S €.

0<t<tmax

This completes the proof of Theorem 3. ]

9 Proof of Theorem 4

Proof of Theorem 4. We first consider the case where ¢,,,x = 00. In view of the termination criterion
(14), the algorithm will be terminated when ¢, = O(In(e~')). We define N = max{k : t; <
In(e~1)}. By applying Lemma S1 and S2, we have

Ol 1 162 _ [10Cmax)ll2 + [[VLn(0)]l2
l—et = 1—Che 1 —eth — 1 — Cpe2r '

(S30)
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Therefore, we have
/2 (e —1)[[VLn(0)[2(1 —e~")
10|12
o (e = 1) VL (0)]|2
= 2(]|0(tmax)[l2 + VLA (0)]]2)

where we have used Cpe®* < 271 and

= Vletk/Q(eal -1,

o IV L. (0)]
L S0l + IVEn©@T2) <

will be treated as a problem-dependent constant. Using this, we obtain that

Q)41 > min {20%, In(1 + vyet*/?(er — 1))}

when ;11 < max. Now we use induction to prove that ag1 > In(1 + Vletk/Q(eal —1)). First,
note that vy < 1 and we have that oy > In(1 + v4(e®* — 1)). Suppose that this is true for k& — 1.
Then, we have that

ek — 1> ea’“/2(eo‘k -1 > ea’“/gl/let’“*m(eo‘1 -1)> Vlet’“/2(e°‘1 -1).
Therefore, 20, > In(1 + vy et*/2(e® — 1) and
Qpy1 > min {Zak In(1 + vy etr/2 (e — 1))} > In(1 4 vyet/2(e™ — 1)) (S31)
when a1 < apax.
Now, applying Lemma S3, it follows that the number of grid points NV satisfies
N <e V2 1 n(e™) /amax = O~ V2),

if we treat 3, ||0(tmax)]|2, and ||V L, (0)]|2 as constants.

When t.x < 00, we know that the algorithm will terminate if ty > tpax. Since oy is lower
bounded by an increasing sequence (S31), it follows that after at most ty,ax /01 S e~ 1/2 iterations,
we must have that ¢y > t,,,x and the algorithm terminates. This completes the proof of Theorem
4. u

10 Proof of Theorem 5

Proof of Theorem 5. For any t;, <t <t with k > 1, we have that

F(B(8)) = FA0(E) = 11(6) = FAO(®) < 55051V
1 H 1—e* e

— € (&
@ ([T e IO T

A
1 1—e™ ? 2 e t—etr 2 9
1 1— eterr 2 e—tri1 _ =tk \ 2
=% { (1) lgells + (1) mn%} (53

Now using the bound in (18) and the fact that a1 < 2ay and (1 — et +1) /(1 — e ) < 3, we
obtain that

Fe(0(1)) = fo(0(2))
1 [ /1= etrrn? e — 1 2 femten et \?
S /\7]6 {( 1 . Gitk‘ ) (CO 6tk—1 — 1 |9k1|2) + (1€tk> ||9kH2

S e L)

Ak je{kht1y | (ef-

O

IN
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for any Cy < 37! and k > 2; and

£i(0@t) — f(0(2))
—tht1 2 e_tk+1 — e_tk 2
= {(1‘_14) (Cole™ = VL. (0)]]2)° + (1_6_t> ”ek”g}

2 (eo‘z — 1)2 2 a1 2 2
< Smax {108, @ - DAIVE O ]

for any Cy < 1/3 when k = 1. Moreover, for any 0 < ¢ < t1, we have that

_ e—tl)

2
2
s IV L. O

(S33)

. B (1—e71)? (1
fe(0(2)) — fe(0(2)) = f:(0) — fe(0(2)) < WHVLn(O)Hg <

Now we bound f;(6(t)) — f;(8(t)) when ty < t < tyax. Toward this end, notice that
F:(0(8) = £:(0(8) = fuOn) = £:(6())

1—et i et

— (i (O8) = fin (BN +

m(llﬂ(tw)llé —[1Ox13) + fe(B(tn)) — F(6(2)) -

Next, we bound these three terms separately. For the first term, by using (S2), we have that f; , (On) —
fin (0(tn)) < 27te!~||gn||3. Using this, we obtain that

1—et (1—e?)

—_— On) — o(t <

1_e_tN(ftN( N) ftN( (N)))— 2)\(tN)(1—€_tN)

For the third term, similar to the proof of Theorem 1, we have that

lgn 3. (S34)

e tN — et

2 2
fe(O0(tn)) — fe(0(2)) < 20—y (le@)z = 116En)13) -
Combining the bounds for the first term and the third term, and the bound in (18), we obtain that

FO) = F0(0) < ol + iy (1 = [613)

< (1—et) e —1 10x | 2+
= 2Nt ) (T —etv) \ Oetnoy — VNI
1 (e*v —1) 16(t)13
= Aty) (etv-1 — 1) 2(ety — 1)
forany ¢ty < t < tyax, provided that e *~ < 17/18 and Cp < 1/3.

e tv _ et

a1 —e=ony OO — 10x113)

S ll0n 1113 +

Now, combining the bounds for f,(8(t)) — f+(6(t)) when t € [tg, tx41] for 0 < k < N, we have that

5 (e = 1)?|VLn(0)]I3 (et — 1)%10k 13

— <
te[ziln),ax] fi ()= 1:(6(1)) < 2max{ min(Ag, A1) " 1<heN-1 (etr —1)2min(Ag, A\gg1) |
when ty_1 < tmax < tn, and
sup fy(0(t)) — fu(6(t))
t€[0,tmax]
< [ DIVIO e 03 s 1900
min(Ag, A1) 1<k<N-1 (etr — 1)2min(Ag, Ak+1) ety —1

when ty < tmax, provided that g1 < 2ay and ty > In(18/17). Using the step size scheme in
(19) and (20), we obtain that

sup ft(é(t)) — f:(6(¢)) < 2emax (1, sup |9t§/02> <e (S35)
t€[0,tmax] t>t N
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when the algorithm is terminated for some constant co > 1.

Finally, it remains to show that the algorithm must terminate within a finite number of steps. To this
end, suppose that t;, does not diverge. Then there exists constant ¢ < oo such that ¢, < t for all
k > 1. Using Assumption (A1), we have that A, > min, <<, , g(t). Therefore,

min(Ag, Ag+1) > ,min g(t) > g(t). (536)
<tk+2
Moreover, using ||gx||2 < 1 and
1 ) 1
(0 = 1o, (0) € o6 = o 00)) € greslonl < s (63D
we obtain that
2 i th _ _ i t_ _

10613 < 5575 + 26 = D(Ln(0) = Lu(Bi)) € o 42" = D(La(0) = M) (539

where M = infy L,,() > —oo. Combining these bounds, we get

ci(e® —1)[[VLp(0)|[2(e" — 1)/min(A, A1)
1% [[2/min(Ao, A1)

Ok4+1 = Min {amax, 2a, In (1 +

> min {omax, 2ax, O(1)}

which implies that a1 1 is lower bounded by a constant, which contradicts with the fact that ¢t < ¢
for all £ > 1. Hence, t;, must diverge, and the algorithm must terminate after a finite number of steps.
This completes the proof of Theorem 5. ]
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