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The supplementary material collects additional numerical results in Section 4, examples of ground
truth and approximated solution path, as well as all the proofs of the theorems and corollaries in the
main text.

1 Additional numerical results in Section 4
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Figure S1: Number of iterations at each grid point for the Newton and gradient descent methods
applying to ridge regression over simulated data generated in Example 1.
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Figure S2: Number of iterations at each grid point for the Newton and gradient descent methods
applying to the ℓ2-regularized logistic regression over simulated data generated in Example 2.
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Figure S3: Number of iterations at each grid point for the Newton and gradient descent methods
applying to the ℓ2-regularized logistic regression over the a9a real dataset from LIBSVM [Chang and
Lin, 2011].

In this section, we inlcude some additional numerical results for the three examples in Section 4. In
particular, we plot the number of iterations at each grid point by Newton method and gradient descent
method for all three examples. We summarize the results in Figure S1-S3.

Figure S1 presents the results for ridge regression. In this case, the number of iterations by gradient
method first increases and then stays flat as tk grows. Newton method, however, only takes one
iteration at each grid point. Moreover, the level of approximation (i.e., ϵ) seems to have no impact on
the number of iterations at each grid point, which is highly desirable.

Figure S2 shows the results for ℓ2-regularized logistic regression. As we can see from Figure S2,
the number of iterations needed increases as tk increases for gradient descent method, whereas the
Newton method always requires just two iterations at each tk. Again, the level of approximation (i.e.,
ϵ) does not seem to influence the number of iterations much.

Lastly, Figure S3 shows the iteration plot for the real data example. Again, similar to the results in
Figure S2, for gradient descent method the number of iterations needed increases as tk increases,
while the Newton method requires only a few iterations at each tk.

2 Examples of ground truth solution path and approximated solution path

This section includes examples of visualized ground truth solution path and approximated solution
path by Newton method and gradient descent method, when applied to ridge regression and ℓ2-
regularized logistic regression.
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Figure S4: Ground truth solution path and approximated solution path by Newton method (left panel)
and gradient descent method (right panel), when applied to ridge regression over simulated data
generated in Example 1, with n = 100 and p = 3.
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Figure S5: Ground truth solution path and approximated solution path by Newton method (left panel)
and gradient descent method (right panel), when applied to ℓ2-regularized logistic regression over
simulated data generated in Example 2, with n = 100 and p = 3.

3 Some preliminary results and supporting lemmas

Some standard results for m-strongly convex functions will be repeatedly used in the proofs, which
are stated below. We omit their proofs as all of them can be found in standard convex analysis
textbooks [see, e.g., Boyd and Vandenberghe, 2004]. Suppose that f(·) is a m-strongly convex
function with minimizer x⋆. Then for any x and y,

m∥x− y∥22 ≤ ⟨∇f(x)−∇f(y) , x− y⟩ ≤ 1

m
∥∇f(x)−∇f(y)∥22 , (S1)

m

2
∥x− x⋆∥22 ≤ f(x)− f(x⋆) ≤ 1

2m
∥∇f(x)∥22 and ∥x− x⋆∥2 ≤ 1

m
∥∇f(x)∥2 (S2)

Next, we present two supporting lemmas.
Lemma S1. Suppose that Ln(θ) is a proper convex function. Then

∥θ(t′)− θ(t)∥2 ≤ |C(t′)− C(t)|
C(t)

∥θ(t)∥2 (S3)

for any t, t′ > 0.

Proof of Lemma S1. Note that for any t > 0 and any gt′ ∈ ∂Ln(θ(t
′)) and gt ∈ ∂Ln(θ(t)), we have

⟨gt′ − gt , θ(t
′)− θ(t)⟩ ≥ 0, where ∂Ln(θ) denotes the subdifferential of Ln(·) at θ. Hence, for any

ht′ ∈ ∂ft′(θ(t
′)), ht ∈ ∂ft′(θ(t))

⟨ht′ − ht , θ(t
′)− θ(t)⟩ ≥ ∥θ(t′)− θ(t)∥22 (S4)

Since 0 ∈ ∂ft′(θ(t
′)) and −C(t′)θ(t)/C(t) + θ(t) ∈ ∂ft′(θ(t)), substituting ht′ with 0 and ht with

−C(t′)θ(t)/C(t) + θ(t), we obtain that

⟨C(t′)θ(t)/C(t)− θ(t) , θ(t′)− θ(t)⟩ ≥ ∥θ(t′)− θ(t)∥22 . (S5)

This further implies that

∥θ(t′)−θ(t)∥22 ≤ ⟨C(t′)θ(t)/C(t)−θ(t) , θ(t′)−θ(t)⟩ ≤ |C(t′)/C(t)−1|∥θ(t)∥2∥θ(t′)−θ(t)∥2 ,
which proves (S3). This completes the proof of Lemma S1. ■

Lemma S2. Assume that Ln(θ) is a closed proper convex function. We have that

∥θ(t)∥2 ≤ (et − 1)∥∇Ln(0)∥2 and ∥θ(t)∥2 ≤ (1− e−t) (∥∇Ln(0)∥2 + ∥θ(t′)∥2) (S6)

for any t′ ≥ t > 0. Moreover, under the assumption that (8) holds, we have that

1

1 + C0(e
αk−1)

(1−e−tk )

≤ ∥θk∥2
∥θ(tk)∥2

≤ 1

1− C0(e
αk−1)

(1−e−tk )

(S7)

for any 1 ≤ k ≤ N .
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Proof of Lemma S2. Since ft(·) is e−t strongly convex, using (S2), we have

∥θ(t)− 0∥2 ≤ et∥∇ft(0)∥2 = (et − 1)∥∇Ln(0)∥2 ,

which proves the first inequality ∥θ(t)∥2 ≤ (et − 1)∥∇Ln(0)∥2. Combining this with the fact that
∥θ(t)∥2 ≤ ∥θ(t′)∥2, we have that

∥θ(t)∥2 ≤ min
(
(et − 1)∥∇Ln(0)∥2, ∥θ(t′)∥2

)
≤ (1− e−t) (∥∇Ln(0)∥2 + ∥θ(t′)∥2) ,

which proves the second inequality in (S6).

Next, we prove (S7). Using the fact that ∥θk − θ(tk)∥2 ≤ etk∥gk∥2, we obtain that

∥θk∥2 ≤ ∥θ(tk)∥2 + ∥θ(tk)− θk∥2 ≤ ∥θ(tk)∥2 + etk∥gk∥2 ≤ ∥θ(tk)∥2 + etk
C0(e

αk − 1)

(etk − 1)
∥θk∥2 ,

which implies that

∥θk∥2 ≤ ∥θ(tk)∥2
1− C0(e

αk−1)

(1−e−tk )

. (S8)

Similarly, we have

∥θ(tk)∥2 ≤ ∥θk∥2 + ∥θ(tk)− θk∥2 ≤ ∥θk∥2 + etk∥gk∥2 ≤ ∥θk∥2 +
C0(e

αk − 1)

(1− e−tk)
∥θk∥2 ,

which implies that
∥θk∥2

∥θ(tk)∥2
≥ 1

1 + C0(e
αk−1)

(1−e−tk )

.

Combining this with (S8), it proves (S7). This completes the proof of Lemma S2. ■

We next present a supporting lemma to be used in the proof of Theorem 4.

Lemma S3. For any ϵ ∈ (0, 1], let (eα1 − 1)2 = c21ϵ and αk+1 = ln(1 + c2e
tk/2(eα1 − 1)), where

c1, c2 > 0 are constants and tk =
∑k

i=1 αi. Define k⋆ := max{k : tk ≤ ln(ϵ−1)}. Then,

k⋆ <
1 + c1c2 +

√
1 + c1c2

c1c2
√
ϵ
√
1 + c1

√
ϵ

. (S9)

Proof of Lemma S3. It is easy to see that αk is strictly increasing for k ≥ 2 and by definition of k⋆,
we have that

αk+1 ≤ ln(1 + c1c2) for any 1 ≤ k ≤ k⋆ , (S10)

which implies that eαk+1/2 ≤ (1 + c1c2)
1/2 for any 1 ≤ k ≤ k⋆. Moreover, since eαk+1 =

1 + c1c2
√
ϵetk/2, we have that

e−tk/2 − e−tk+1/2 =
eαk+1/2 − 1

etk+1/2
=

e−tk+1/2(eαk+1 − 1)

eαk+1/2 + 1
=

e−αk+1/2c1c2
√
ϵ

eαk+1/2 + 1
=

c1c2
√
ϵ

eαk+1 + eαk+1/2

for any k ≥ 1. Therefore, for any 1 ≤ k ≤ k⋆,

e−t1/2 − e−tk⋆+1/2 =

k⋆∑
i=1

(
e−ti/2 − e−ti+1/2

)
=

k⋆∑
i=1

c1c2
√
ϵ

eαi+1 + eαi+1/2
≥ k⋆c1c2

√
ϵ

1 + c1c2 +
√
1 + c1c2

,

which implies (S9). This completes the proof of Lemma S3. ■

4 Some properties of ℓ2-regularized solution path

We present some properties of the solution path to be used later in other proofs.
Corollary S1. Suppose that Ln(θ) is a closed proper convex function. Let θ(t) denote the ℓ2-
regularized solution path defined by (2). Then

(i) ∥θ(t)∥2 is nondecreasing in t and Ln(θ(t)) is nonincreasing in t;
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(ii) ∥θ(t)∥2/(et − 1) is nonincreasing in t;

(iii) if Ln(θ) is a continuous and the minimum ℓ2 norm minimizer of Ln(θ), denoted as θ⋆, is
finite, then limt→∞ θ(t) = θ⋆.

This corollary shows that the ℓ2 norm of the solutions along the path is monotone, and the solution
θ(t) converges to the minimum ℓ2 norm minimizer of Ln(θ) as t goes to infinity if it is finite. We
also remark that part (iii) has already been established in Theorem 8 of Suggala et al. [2018]. We
include these properties here to make the article largely self-contained.

Proof of Corollary S1. To prove (i), rearranging terms in (S5), we obtain that

(C(t′)− C(t))
(
∥θ(t′)∥22 − ∥θ(t)∥22

)
≥ (C(t) + C(t′))∥θ(t)− θ(t′)∥22 ≥ 0 ,

which implies that ∥θ(t)∥2 is nondecreasing in t. For nonincreasingness of Ln(θ(t)), note that

C(t′)Ln(θ(t
′)) +

1

2
∥θ(t′)∥22 ≤ C(t′)Ln(θ(t)) +

1

2
∥θ(t)∥22

≤ (C(t′)− C(t))Ln(θ(t)) + C(t)Ln(θ(t
′)) +

1

2
∥θ(t′)∥22 ,

which implies that (C(t′) − C(t))(Ln(θ(t
′)) − Ln(θ(t))) ≤ 0. Hence, if C(t′) − C(t) > 0 then

Ln(θ(t
′)) ≤ Ln(θ(t)), which proves that Ln(θ(t)) is nonincreasing in t.

To prove (ii), using (S3), we have that for any t > t′ and θ(t) ̸= θ(t′),

∥θ(t)∥2 − ∥θ(t′)∥2 ≤ ∥θ(t′)− θ(t)∥2 ≤ (C(t)− C(t′))∥θ(t)∥2/C(t) , (S11)

which implies that
∥θ(t)∥2/C(t) ≤ ∥θ(t′)∥2/C(t′) . (S12)

This also holds when θ(t) = θ(t′) because C(t) is an increasing function. This proves part (ii).

Lastly, we prove part (iii). Denote by θ⋆ the minimum ℓ2 norm minimizer of Ln(θ). Next, we show
that θ(t) converges to θ⋆ as t → ∞ if θ⋆ is finite. Note that 0 ∈ ∂Ln(θ

⋆) and 0 ∈ C(t)∂Ln(θ(t)) +
θ(t). As a result,

0 ∈ C(t) (∂Ln(θ(t))− ∂Ln(θ
⋆)) + θ(t) ,

where A−B denotes the set {a− b : a ∈ A and b ∈ B}. Multiplying θ(t)− θ⋆ on both sides, we
obtain that

(θ(t)− θ⋆)⊤θ(t) ∈ −C(t)(θ(t)− θ⋆)⊤ (∂Ln(θ(t))− ∂Ln(θ
⋆)) ,

which implies that (θ(t) − θ⋆)⊤θ(t) ≤ 0. Therefore, ∥θ(t)∥22 ≤ (θ⋆)⊤θ(t) ≤ ∥θ⋆∥2∥θ(t)∥2,
which implies that ∥θ(t)∥2 ≤ ∥θ⋆∥2 < ∞ for any t ≥ 0. Denote by θ̄ the limit of any con-
verging subsequence θ(tk), that is, θ̄ = limk→∞ θ(tk) for some tk → ∞. Then, ∥θ̄∥2 =
limk→∞ ∥θ(tk)∥2 ≤ ∥θ⋆∥2. Next, we show that θ̄ must also be a minimizer of Ln(θ). To this
end, note that Ln(θ̄) = limk→∞ Ln(θ(tk)) by using the continuity of Ln(θ) in θ. Moreover, by
optimality of θ(tk),

Ln(θ(tk)) ≤ Ln(θ(tk)) +
1

2C(tk)
∥θ(tk)∥22 ≤ Ln(θ

⋆) +
1

2C(tk)
∥θ⋆∥22 . (S13)

By letting k → ∞ and using the fact that Ln(θ̄) = limk→∞ Ln(θ(tk)) due to continuity of Ln(θ),
we have that

Ln(θ̄) = lim
k→∞

Ln(θ(tk)) ≤ lim
k→∞

(
Ln(θ

⋆) +
1

2C(tk)
∥θ⋆∥22

)
= Ln(θ

⋆) ,

where the last step uses the assumption that ∥θ⋆∥2 < ∞. This proves that θ̄ must also be a minimizer
of Ln(θ).

Now if θ̄ ̸= θ⋆, then their convex combination 1
2 (θ̄ + θ⋆) must also be a minimizer of Ln(θ) due to

the convexity of Ln(θ). On the other hand, the convex combination has strictly smaller norm than
that of θ⋆, because ∥ 1

2 (θ̄ + θ⋆)∥2 < 1
2 (∥θ̄∥+ ∥θ⋆∥2) ≤ ∥θ⋆∥2. This contradicts with the definition

of θ⋆. Hence, we must have limk→∞ θ(tk) = θ̄ = θ⋆ for every converging subsequence θ(tk).
Consequently, the sequence θ(t) must converge to θ⋆. This completes the proof of Corollary S1. ■
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5 Proof of Theorem 1

Proof of Theorem 1. For any t ∈ [tk, tk+1], we let wk = tk+1−t
tk+1−tk

, for k = 0, 1, . . . , N − 1. Then

θ̃(t) = wkθk + (1 − wk)θk+1. By convexity of ft(·), we have ft(θ̃(t)) ≤ wkft(θk) + (1 −
wk)ft(θk+1). Thus,

ft(θ̃(t))− ft(θ(t)) ≤wk(ft(θk)− ft(θ(t))) + (1− wk)(ft(θk+1)− ft(θ(t))) . (S14)

For any k = 1, . . . , N − 1, the term ft(θk)− ft(θ(t)) in (S14) can be bounded as follows:

ft(θk)− ft(θ(t)) ≤
1

2e−t
∥∇ft(θk)∥22 =

et

2

∥∥∥∥ 1− e−t

1− e−tk
∇ftk(θk) +

e−t − e−tk

1− e−tk
θk

∥∥∥∥2
2

≤ et
(

1− e−t

1− e−tk

)2

∥∇ftk(θk)∥22 + et
(
e−t − e−tk

1− e−tk

)2

∥θk∥22

= et
(

1− e−t

1− e−tk

)2

∥gk∥22 + et
(
e−t − e−tk

1− e−tk

)2

∥θk∥22 ,

where the first inequality uses the fact that ft(·) is e−t-strongly convex and (S2). Similarly, we can
bound the term ft(θk+1)− ft(θ(t)) by

et
(

1− e−t

1− e−tk+1

)2

∥gk+1∥22 + et
(
e−t − e−tk+1

1− e−tk+1

)2

∥θk+1∥22

for any k = 0, 1, . . . , N − 1. Combining these two bounds, we have that

wk(ft(θk)− ft(θ(t))) + (1− wk)(ft(θk+1)− ft(θ(t)))

≤ etk+1 max

{(
1− e−tk+1

1− e−tk

)2

∥gk∥22, ∥gk+1∥22

}
+

(e−tk − e−tk+1)2 max

{
etk+1∥θk∥22
(1− e−tk)2

,
etk∥θk+1∥22

(1− e−tk+1)2

}
,

for any k = 1, . . . , N − 1. This proves (5).

When k = 0, the term ft(θk)− ft(θ(t)) in (S14) can be bounded as follows

ft(θ0)− ft(θ(t)) = ft(0)− ft(θ(t)) ≤
1

2e−t
∥∇ft(0)∥22 =

et(1− e−t)2

2
∥∇Ln(0)∥22

for any 0 ≤ t < t1, where we have used (S2) in the above inequality. Following a similar argument
as before, we obtain that

w0(ft(θ0)−ft(θ(t)))+(1−w0)(ft(θ1)−ft(θ(t))) ≤
et1(1− e−t1)2

2
∥∇Ln(0)∥22+max

(
et1∥g1∥22, ∥θ1∥22

)
for any t ∈ [0, t1]. This proves (4).

Now we bound ft(θ̃(t))− ft(θ(t)) when tN < t ≤ tmax. Toward this end, notice that

ft(θ̃(t))− ft(θ(t)) = ft(θN )− ft(θ(t))

=
1− e−t

1− e−tN
(ftN (θN )− ftN (θ(tN ))) +

e−tN − e−t

2(1− e−tN )
(∥θ(tN )∥22 − ∥θN∥22) + ft(θ(tN ))− ft(θ(t)) .

Next, we bound these three terms separately. For the first term, by using (S2), we have that ftN (θN )−
ftN (θ(tN )) ≤ 2−1etN ∥gN∥22. Using this, we obtain that

1− e−t

1− e−tN
(ftN (θN )− ftN (θ(tN ))) ≤ (1− e−t)etN

2(1− e−tN )
∥gN∥22 . (S15)

We next bound the third term. By optimality of θ(tN ), we have ftN (θ(tN )) ≤ ftN (θ(t)), which in
turn implies that Ln(θ(tN )) − Ln(θ(t)) ≤ .5(etN − 1)−1

(
∥θ(t)∥22 − ∥θ(tN )∥22

)
. Using this, the
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third term can be bounded as follows

ft(θ(tN ))− ft(θ(t)) = (1− e−t)(Ln(θ(tN ))− Ln(θ(t))) +
e−t

2

(
∥θ(tN )∥22 − ∥θ(t)∥22

)
≤ 1− e−t

2(etN − 1)

(
∥θ(t)∥22 − ∥θ(tN )∥22

)
+

e−t

2

(
∥θ(tN )∥22 − ∥θ(t)∥22

)
=

e−tN − e−t

2(1− e−tN )

(
∥θ(t)∥22 − ∥θ(tN )∥22

)
.

Combining the bounds for the first term and the third term, we obtain that

sup
tN<t≤tmax

{ft(θ̃(t))− ft(θ(t))}

≤ sup
tN<t≤tmax

{
(1− e−t)etN

2(1− e−tN )
∥gN∥22 +

e−tN − e−t

2(1− e−tN )
(∥θ(t)∥22 − ∥θN∥22)

}
(S16)

≤ etN

2(1− e−tN )
∥gN∥22 +

1

2(etN − 1)
∥θ(tmax)∥22 ,

which implies (6). This completes the proof of Theorem 1. ■

6 Proof of Theorem 2

Proof of Theorem 2. Using (8), we obtain that

etk+1∥gk+1∥22 ≤ etk+1

(
C0

(eαk+1 − 1)

(etk+1 − 1)
∥θk+1∥2

)2

≤ C2
0e

αmax(e−tk − e−tk+1)2
etk∥θk+1∥22

(1− e−tk+1)2
,

and

etk+1

(
1− e−tk+1

1− e−tk

)2

∥gk∥22 ≤ etk+1

(
1− e−tk+1

1− e−tk

)2(
C0

(eαk − 1)

(etk − 1)
∥θk∥2

)2

,

≤ C2
0 (e

αmax + eαmax/2 + 1)2(e−tk − e−tk+1)2
etk+1∥θk∥22
(1− e−tk)2

where we have used the fact that αk+1 ≥ αk/2 and

eαk − 1

1− e−tk

eαk+1 − e−tk

eαk+1 − 1
≤ eαk − 1

1− e−tk

(
1 +

1− e−tk

eαk+1 − 1

)
≤ eαk − 1

1− e−tk

(
1 +

1− e−tk

eαk/2 − 1

)
=

eαk − 1

1− e−tk
+ eαk/2 + 1 ≤ eαk + eαk/2 + 1 ≤ eαmax + eαmax/2 + 1 .

Combining, we get

etk+1 max

{(
1− e−tk+1

1− e−tk

)2

∥gk∥22, ∥gk+1∥22

}

≤ C2
0 (e

αmax + eαmax/2 + 1)2(e−tk − e−tk+1)2 max

{
etk+1∥θk∥22
(1− e−tk)2

,
etk∥θk+1∥22

(1− e−tk+1)2

}
,

which together with (5), we obtain that

sup
t∈[tk,tk+1]

{ft(θ̃(t))− ft(θ(t))}

≤ (1 + C2
1 )(e

−tk − e−tk+1)2 max

{
etk+1∥θk∥22
(1− e−tk)2

,
etk∥θk+1∥22

(1− e−tk+1)2

}
, (S17)
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where C1 = C0(e
αmax + eαmax/2 + 1). Therefore,

max
1≤k≤N−1

sup
t∈[tk,tk+1]

{
ft(θ̃(t))− ft(θ(t))

}
≤ max

1≤k≤N−1
(1 + C2

1 )(e
−tk − e−tk+1)2 max

{
etk+1∥θk∥22
(1− e−tk)2

,
etk∥θk+1∥22

(1− e−tk+1)2

}
≤ (1 + C2

1 ) max
1≤k≤N

{
e−tk∥θk∥22
(1− e−tk)2

max
(
e−αk+1(eαk+1 − 1)2, e−αk(eαk − 1)2

)}
≤ 4(1 + C2

1 ) max
1≤k≤N

{
e−tk∥θk∥22(eαk+1 − 1)2

(1− e−tk)2

}
.

Using (4) and (8), we have that

sup
t∈[0,t1]

{
ft(θ̃(t))− ft(θ(t))

}
≤ (3/2) ·max

(
(eα1 − 1)2∥∇Ln(0)∥22 , ∥θ1∥22

)
(S18)

Therefore, if tN−1 ≤ tmax ≤ tN for some N ≥ 1, we have

sup
0≤t≤tmax

{
ft(θ̃(t))− ft(θ(t))

}
≤ sup

0≤t≤tN

{
ft(θ̃(t))− ft(θ(t))

}
≤ 4(1 + C2

1 )max

{
(eα1 − 1)2∥∇Ln(0)∥22 , max

1≤k≤N

(
e−tk∥θk∥22(eαk+1 − 1)2

(1− e−tk)2

)}
,

which implies (10).

Now if tN < tmax, by using (S16), we have that suptN<t≤tmax

{
ft(θ̃(t))− ft(θ(t))

}
can be upper

bounded by

sup
tN<t≤tmax

{
(1− e−t)etN

2(1− e−tN )
∥gN∥22 +

e−tN − e−t

2(1− e−tN )
(∥θ(t)∥22 − ∥θN∥22)

}
≤ sup

tN<t≤tmax

{
(1− e−t)etN

2(1− e−tN )

(
C0

(eαN − 1)

(etN − 1)
∥θN∥2

)2

+
e−tN − e−t

2(1− e−tN )
(∥θ(t)∥22 − ∥θN∥22)

}

≤ e−tN

2

(
C0

(eαN − 1)

(1− e−tN )

)2

∥θN∥22 +
1− e−(tmax−t)

2(etN − 1)
∥θ(tmax)∥22

≤ 1− e−max(αN , tmax−tN )

etN − 1
max

{
∥θN∥22 , ∥θ(tmax)∥22

}
,

provided that C0e
αmax < 1/2, or sufficiently C0 ≤ 1/4. Combining this with the previous bounds, it

proves (9). This completes the proof of Theorem 2. ■

7 Approximation-error bound for ∥θ̃(t)− θ(t)∥2

Corollary S2. Under the assumptions in Theorem 2, we have that

sup
0≤t≤tmax

∥θ̃(t)− θ(t)∥2 ≤ 5max

{
(eα1 − 1)∥∇Ln(0)∥2 , max

1≤k≤N

(
∥θk∥2(eαk+1 − 1)

1− e−tk

)}
(S19)

when tN−1 ≤ tmax ≤ tN for some N ≥ 1, and

sup
tN<t≤tmax

∥θ̃(t)− θ(t)∥2 ≤ (eαN − 1)∥θN∥2
4(1− e−tN )

+ 2 sup
tN≤t≤tmax

∥θ(t)− θ(tmax)∥2 (S20)

when tN < tmax.

Proof of Corollary S2. By using (S17) and (S2), we obtain that

sup
t∈[tk,tk+1]

∥θ̃(t)− θ(t)∥22 ≤ 2 sup
t∈[tk,tk+1]

et
(
ft(θ̃(t))− ft(θ(t))

)
≤ 2(1 + C2

1 )e
tk+1(e−tk − e−tk+1)2 max

{
etk+1∥θk∥22
(1− e−tk)2

,
etk∥θk+1∥22

(1− e−tk+1)2

}
(S21)
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where C1 = C0(e
αmax + eαmax/2 + 1). Therefore,

max
1≤k≤N−1

sup
t∈[tk,tk+1]

∥θ̃(t)− θ(t)∥22

≤ 2(1 + C2
1 ) max

1≤k≤N−1
etk+1(e−tk − e−tk+1)2 max

{
etk+1∥θk∥22
(1− e−tk)2

,
etk∥θk+1∥22

(1− e−tk+1)2

}
≤ 2(1 + C2

1 ) max
1≤k≤N

{
∥θk∥22

(1− e−tk)2
max

(
(eαk+1 − 1)2, e−αk(eαk − 1)2

)}
≤ 8(1 + C2

1 ) max
1≤k≤N

{
∥θk∥22(eαk+1 − 1)2

(1− e−tk)2

}
.

Moreover, using (4) and (S2), we have that

sup
t∈[0,t1]

∥θ̃(t)− θ(t)∥22 ≤ 2 sup
t∈[0,t1]

et
(
ft(θ̃(t))− ft(θ(t))

)
≤ 3eα1 max

(
(eα1 − 1)2∥∇Ln(0)∥22 , ∥θ1∥22

)
(S22)

Therefore, if tN−1 ≤ tmax ≤ tN for some N ≥ 1, we have

sup
0≤t≤tmax

∥θ̃(t)− θ(t)∥22 ≤ sup
0≤t≤tN

∥θ̃(t)− θ(t)∥22

≤ 8(1 + C2
1 )max

{
(eα1 − 1)2∥∇Ln(0)∥22 , max

1≤k≤N

(
∥θk∥22(eαk+1 − 1)2

(1− e−tk)2

)}
,

which implies (S19), because 8(1 + C2
1 ) = 8

(
1 + C2

0 (e
αmax + eαmax/2 + 1)2

)
≤ 25.

To bound suptN<t≤tmax
∥θ̃(t)− θ(t)∥2, note that for any tN < t ≤ tmax, we have that

∥θ̃(t)− θ(t)∥2 = ∥θN − θ(t)∥2 ≤ ∥θN − θ(tN )∥2 + ∥θ(tN )− θ(t)∥2
≤ etN ∥gN∥2 + ∥θ(tN )− θ(t)∥2

≤ C0
(eαN − 1)∥θN∥2

1− e−tN
+ ∥θ(tN )− θ(tmax)∥2 + ∥θ(t)− θ(tmax)∥2 .

Hence,

sup
tN<t≤tmax

∥θ̃(t)− θ(t)∥2 ≤ C0
(eαN − 1)∥θN∥2

1− e−tN
+ 2 sup

tN≤t≤tmax

∥θ(t)− θ(tmax)∥2 ,

which proves (S20). This completes the proof of Corollary S2. ■

8 Proof of Theorem 3

Proof of Theorem 3. We first show that αk+1 ≥ αk/2. If αk+1 = αmax or 2αk, then trivially
αk+1 ≥ αk/2. Now we assume that αk+1 = Ak, where

Ak := ln

(
1 +

c1(e
α1 − 1)∥∇Ln(0)∥2etk/2(1− e−tk)

∥θk∥2

)
.

When k = 1, using (S7) and the fact that eα1 − 1 ≤
√
ϵ/∥∇Ln(0)∥2, we obtain that

eα2 − 1

eα1/2 − 1
= (eα1/2 + 1)

eα2 − 1

eα1 − 1
≥ (eα1/2 + 1)

eA1 − 1

eα1 − 1
= (eα1/2 + 1)eα1/2

c1
√
ϵ(1− e−t1)

∥θ1∥2(eα1 − 1)

≥ (eα1/2 + 1)eα1/2
c1
√
ϵ(1− e−t1)

∥θ(t1)∥2(eα1 − 1)

(
1− C0(e

α1 − 1)

(1− e−t1)

)
≥ (e−α1/2 + 1)

c1
√
ϵ

∥∇Ln(0)∥2(eα1 − 1)
(1− C0e

α1) ≥ (e−α1/2 + 1)(1− C0e
α1) ≥ 1 ,

provided that c1 ≥ 1 and C0 ≤ 4−1. This implies that α2 ≥ α1/2.
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When k ≥ 2, note that αk ≤ Ak−1 and

eαk+1 − 1

eαk/2 − 1
= (eαk/2 + 1)

eαk+1 − 1

eαk − 1
≥ (eαk/2 + 1)

eAk − 1

eAk−1 − 1

= (eαk/2 + 1)eαk/2
(eα1 − 1)∥∇Ln(0)∥2(1− e−tk)

∥θk∥2
∥θk−1∥2

(eα1 − 1)∥∇Ln(0)∥2(1− e−tk−1)

≥ (e−αk/2 + 1)
(etk − 1)∥θk−1∥2
(etk−1 − 1)∥θk∥2

. (S23)

Now using (S7) with C0 ≤ 4−1, we have that

(etk − 1)∥θk−1∥2
(etk−1 − 1)∥θk∥2

≥ (etk − 1)∥θ(tk−1)∥2
(etk−1 − 1)∥θ(tk)∥2

1− (eαk−1)

4(1−e−tk )

1 + (eαk−1)

4(1−e−tk )

≥
1− (eαk−1)

4(1−e−tk )

1 + (eαk−1)

4(1−e−tk )

(S24)

where the last inequality uses part (ii) of Corollary S1. Combining this with (S23), we obtain that

eαk+1 − 1

eαk/2 − 1
≥ (e−αk/2 + 1)

1− (eαk−1)

4(1−e−tk )

1 + (eαk−1)

4(1−e−tk )

. (S25)

Therefore, to prove αk+1 ≥ αk/2, it suffices to show that the RHS of the above inequality is no
smaller than 1. To this end, using the fact that αk ≤ αmax ≤ 1/5 for all k ≥ 1, we have

(eαk − 1)

(1− e−tk)
=

eαk(eαk − 1)

eαk − e−tk−1
=

eαk

1 + 1−e−tk−1

eαk−1

≤ e2αk−1

1 + 1−e−tk−1

e2αk−1−1

≤ e2αk−1

1 + 1−e−αk−1

e2αk−1−1

≤ e3αk−1(eαk−1 + 1)

e2αk−1 + eαk−1 + 1
= e2αk−1

(
1− 1

e2αk−1 + eαk−1 + 1

)
≤ e2/5

(
1− 1

e2/5 + e1/5 + 1

)
≤ 1.09 .

for any k ≥ 2, and when k = 1, we have

(eαk − 1)

(1− e−tk)
= eα1 ≤ exp(1/5) < 1.22 . (S26)

Combining this with (S25), we have that

eαk+1 − 1

eαk/2 − 1
≥ (e−αk/2 + 1)

1− (eαk−1)

4(1−e−tk )

1 + (eαk−1)

4(1−e−tk )

≥ (e−1/10 + 1)
1− 1.22/4

1 + 1.22/4
> 1 ,

which proves that αk+1 ≥ αk/2. Hence, αk satisfies all the conditions in Theorem 2.

Next, we show that the algorithm will terminate in finite steps. We first show that tk diverges. To this
end, using (S6) and (S7), we have

ϵ1/2etk/2(1− e−tk)

∥θk∥2
≥ etk/2(eα1 − 1)∥∇Ln(0)∥2(1− e−tk)

∥θ(tk)∥2/(1− 2−1)

≥ etk/2(eα1 − 1)∥∇Ln(0)∥2(1− e−tk)

2(etk − 1)∥∇Ln(0)∥2
≥ 2−1(eα1 − 1)e−tk/2 ,

which implies that

Ak ≥ ln(1 + 2−1(eα1 − 1)e−tk/2) ≥ (eα1 − 1)e−tk/2

2 + (eα1 − 1)e−tk/2
=

(eα1 − 1)

2etk/2 + (eα1 − 1)
. (S27)

Thus,

αk+1 ≥ min

(
αmax, 2αk,

(eα1 − 1)

2etk/2 + (eα1 − 1)

)
. (S28)
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Now we prove the divergence of tk by contradiction. Suppose that tk does not diverge. Then there
must exist a constant T such that tk < T for all k. However, now we have

αk+1 ≥ min

(
αmax, 2αk,

(eα1 − 1)

2eT/2 + (eα1 − 1)

)
,

which implies that αk is lower bounded by a positive constant when k is large enough, implying that
tk should diverge. This is a contradiction. Hence, tk diverges.

Now we are ready to show that the algorithm must terminate in a finite number of iterations. If
tmax < ∞, then tk ≥ tmax must hold for large enough k as tk diverges. If tmax = ∞, then we have
that θ(tmax) = θ⋆ is finite by assumption. Therefore, the first termination criterion in (14) should
also be met when N is large enough because tN diverges.

Lastly, we prove (15) when the algorithm is terminated. Using (9) and (10) in Theorem 2, and
applying inequality (S7) in Lemma S2, we have that

∥θ(tk)∥2 ≤
(
1 + C0

(eαk − 1)

(1− e−tk)

)
∥θk∥2 ≤ (1 + C0e

αk)∥θk∥2 ≤ 2∥θk∥2 ,

and

e−t1

(
eα1 − 1

1− e−t1

)2

∥θ(t1)∥22 ≤ eα1(eα1 − 1)2∥∇Ln(0)∥22 ≲ ϵ ,

e−tk+1

(
eαk+1 − 1

1− e−tk+1

)2

∥θ(tk+1)∥22 ≤ e−tk+1

(
eαk+1 − 1

1− e−tk+1

)2 ∥θ(tk)∥22(etk+1 − 1)2

(etk − 1)2

= eαk+1e−tk

(
eαk+1 − 1

1− e−tk

)2

∥θ(tk)∥22 ≲ e−tk

(
eαk+1 − 1

1− e−tk

)2

∥θk∥22

≤ c21(e
α1 − 1)2∥∇Ln(0)∥22 ≲ ϵ

for any k ≥ 1 when the algorithm is terminated.

Now at termination, one of two conditions in (14) must be met. If tN ≥ tmax is met, then applying
(10) in Theorem 2 and the above two bounds, it follows that

sup
0≤t≤tmax

{
ft(θ̃(t))− ft(θ(t))

}
≲ 4

(
1 + C2

0 (e
αmax + eαmax/2 + 1)2

)
ϵ ≲ ϵ . (S29)

If it is the other termination criterion c2(e
tN − 1)−1

(
1− e−max(αN , tmax−tN )

)
≤ ϵ in (14) that is

met first, then we must have tN < tmax at termination, and

1− e−max(αN , tmax−tN )

etN − 1
max

(
∥θN∥22 , ∥θ(tmax)∥22

)
≤ 1− e−max(αN , tmax−tN )

etN − 1
max

(
4∥θ(tN )∥22 , ∥θ(tmax)∥22

)
≤ 4ϵ

c2
∥θ(tmax)∥22 ≲ ϵ

where again we have used ∥θN∥2 ≤ 2∥θ(tN )∥2 and the fact that ∥θ(tN )∥2 ≤ ∥θ(tmax)∥2 ≤ O(1).

Using this and applying (9) in Theorem 2, we still have

sup
0≤t≤tmax

{
ft(θ̃(t))− ft(θ(t))

}
≲ ϵ .

This completes the proof of Theorem 3. ■

9 Proof of Theorem 4

Proof of Theorem 4. We first consider the case where tmax = ∞. In view of the termination criterion
(14), the algorithm will be terminated when tk = O(ln(ϵ−1)). We define N = max{k : tk ≤
ln(ϵ−1)}. By applying Lemma S1 and S2, we have

∥θk∥2
1− e−tk

≤ 1

1− C0eαk

∥θ(tk)∥2
1− e−tk

≤ ∥θ(tmax)∥2 + ∥∇Ln(0)∥2
1− C0eαk

. (S30)
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Therefore, we have

etk/2(eα1 − 1)∥∇Ln(0)∥2(1− e−tk)

∥θk∥2

≥ etk/2(eα1 − 1)∥∇Ln(0)∥2
2(∥θ(tmax)∥2 + ∥∇Ln(0)∥2)

≡ ν1e
tk/2(eα1 − 1) ,

where we have used C0e
αk ≤ 2−1, and

ν1 =
∥∇Ln(0)∥2

2(∥θ(tmax)∥2 + ∥∇Ln(0)∥2)
< 1

will be treated as a problem-dependent constant. Using this, we obtain that

αk+1 ≥ min
{
2αk, ln(1 + ν1e

tk/2(eα1 − 1))
}

when αk+1 < αmax. Now we use induction to prove that αk+1 ≥ ln(1 + ν1e
tk/2(eα1 − 1)). First,

note that ν1 < 1 and we have that α1 ≥ ln(1 + ν1(e
α1 − 1)). Suppose that this is true for k − 1.

Then, we have that

e2αk − 1 ≥ eαk/2(eαk − 1) ≥ eαk/2ν1e
tk−1/2(eα1 − 1) ≥ ν1e

tk/2(eα1 − 1) .

Therefore, 2αk ≥ ln(1 + ν1e
tk/2(eα1 − 1) and

αk+1 ≥ min
{
2αk , ln(1 + ν1e

tk/2(eα1 − 1))
}
≥ ln(1 + ν1e

tk/2(eα1 − 1)) (S31)

when αk+1 ≤ αmax.

Now, applying Lemma S3, it follows that the number of grid points N satisfies

N ≲ ϵ−1/2 + ln(ϵ−1)/αmax = O(ϵ−1/2) ,

if we treat β, ∥θ(tmax)∥2, and ∥∇Ln(0)∥2 as constants.

When tmax < ∞, we know that the algorithm will terminate if tN ≥ tmax. Since αk is lower
bounded by an increasing sequence (S31), it follows that after at most tmax/α1 ≲ ϵ−1/2 iterations,
we must have that tN ≥ tmax and the algorithm terminates. This completes the proof of Theorem
4. ■

10 Proof of Theorem 5

Proof of Theorem 5. For any tk ≤ t ≤ tk+1 with k ≥ 1, we have that

ft(θ̃(t))− ft(θ(t)) = ft(θk)− ft(θ(t)) ≤
1

2λ(t)
∥∇ft(θk)∥22

=
1

2λ(t)

∥∥∥∥ 1− e−t

1− e−tk
∇ftk(θk) +

e−t − e−tk

1− e−tk
θk

∥∥∥∥2
2

≤ 1

λ(t)

{(
1− e−t

1− e−tk

)2

∥gk∥22 +
(
e−t − e−tk

1− e−tk

)2

∥θk∥22

}

≤ 1

λk

{(
1− e−tk+1

1− e−tk

)2

∥gk∥22 +
(
e−tk+1 − e−tk

1− e−tk

)2

∥θk∥22

}
, (S32)

Now using the bound in (18) and the fact that αk+1 ≤ 2αk and (1− e−tk+1)/(1− e−tk) ≤ 3, we
obtain that

ft(θ̃(t))− ft(θ(t))

≤ 1

λk

{(
1− e−tk+1

1− e−tk

)2(
C0

eαk − 1

etk−1 − 1
∥θk−1∥2

)2

+

(
e−tk+1 − e−tk

1− e−tk

)2

∥θk∥22

}

≤ 2

λk
max

j∈{k,k+1}

{
(eαj − 1)2

(etj−1 − 1)2
∥θj−1∥22

}
,
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for any C0 ≤ 3−1 and k ≥ 2; and

ft(θ̃(t))− ft(θ(t))

≤ 1

λk

{(
1− e−tk+1

1− e−tk

)2

(C0(e
α1 − 1)∥∇Ln(0)∥2)2 +

(
e−tk+1 − e−tk

1− e−tk

)2

∥θk∥22

}

≤ 2

λ1
max

{
(eα2 − 1)2

(et1 − 1)2
∥θ1∥22 , (eα1 − 1)2∥∇Ln(0)∥22

}
,

for any C0 ≤ 1/3 when k = 1. Moreover, for any 0 ≤ t < t1, we have that

ft(θ̃(t))− ft(θ(t)) = ft(0)− ft(θ(t)) ≤
(1− e−t)2

2λ(t)
∥∇Ln(0)∥22 ≤ (1− e−t1)2

2λ0
∥∇Ln(0)∥22 .

(S33)

Now we bound ft(θ̃(t))− ft(θ(t)) when tN < t ≤ tmax. Toward this end, notice that

ft(θ̃(t))− ft(θ(t)) = ft(θN )− ft(θ(t))

=
1− e−t

1− e−tN
(ftN (θN )− ftN (θ(tN ))) +

e−tN − e−t

2(1− e−tN )
(∥θ(tN )∥22 − ∥θN∥22) + ft(θ(tN ))− ft(θ(t)) .

Next, we bound these three terms separately. For the first term, by using (S2), we have that ftN (θN )−
ftN (θ(tN )) ≤ 2−1etN ∥gN∥22. Using this, we obtain that

1− e−t

1− e−tN
(ftN (θN )− ftN (θ(tN ))) ≤ (1− e−t)

2λ(tN )(1− e−tN )
∥gN∥22 . (S34)

For the third term, similar to the proof of Theorem 1, we have that

ft(θ(tN ))− ft(θ(t)) ≤
e−tN − e−t

2(1− e−tN )

(
∥θ(t)∥22 − ∥θ(tN )∥22

)
.

Combining the bounds for the first term and the third term, and the bound in (18), we obtain that

ft(θ̃(t))− ft(θ(t)) ≤
(1− e−t)

2λ(tN )(1− e−tN )
∥gN∥22 +

e−tN − e−t

2(1− e−tN )
(∥θ(t)∥22 − ∥θN∥22)

≤ (1− e−t)

2λ(tN )(1− e−tN )

(
C0

eαN − 1

etN−1 − 1
∥θN−1∥2

)2

+
e−tN − e−t

2(1− e−tN )
(∥θ(t)∥22 − ∥θN∥22)

≤ 1

λ(tN )

(eαN − 1)2

(etN−1 − 1)2
∥θN−1∥22 +

∥θ(t)∥22
2(etN − 1)

for any tN < t ≤ tmax, provided that e−tN ≤ 17/18 and C0 ≤ 1/3.

Now, combining the bounds for ft(θ̃(t))− ft(θ(t)) when t ∈ [tk, tk+1] for 0 ≤ k ≤ N , we have that

sup
t∈[0,tmax]

ft(θ̃(t))−ft(θ(t)) ≤ 2max

{
(eα1 − 1)2∥∇Ln(0)∥22

min(λ0, λ1)
, max
1≤k≤N−1

(eαk+1 − 1)2∥θk∥22
(etk − 1)2 min(λk, λk+1)

}
,

when tN−1 < tmax < tN , and

sup
t∈[0,tmax]

ft(θ̃(t))− ft(θ(t))

≤ 2max

{
(eα1 − 1)2∥∇Ln(0)∥22

min(λ0, λ1)
, max
1≤k≤N−1

(eαk+1 − 1)2∥θk∥22
(etk − 1)2 min(λk, λk+1)

,
supt≥tN ∥θt∥22

etN − 1

}
,

when tN < tmax, provided that αk+1 ≤ 2αk and tN ≥ ln(18/17). Using the step size scheme in
(19) and (20), we obtain that

sup
t∈[0,tmax]

ft(θ̃(t))− ft(θ(t)) ≤ 2ϵmax

(
1, sup

t≥tN

∥θt∥22/c2
)

≲ ϵ (S35)
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when the algorithm is terminated for some constant c2 ≥ 1.

Finally, it remains to show that the algorithm must terminate within a finite number of steps. To this
end, suppose that tk does not diverge. Then there exists constant t̄ < ∞ such that tk ≤ t̄ for all
k ≥ 1. Using Assumption (A1), we have that λk ≥ mintk<t<tk+1

g(t). Therefore,

min(λk, λk+1) ≥ min
t<tk+2

g(t) ≥ g(t̄) . (S36)

Moreover, using ∥gk∥2 ≤ 1 and

ftk(θk)− ftk(0) ≤ ftk(θk)− ftk(θ(tk)) ≤
1

2λ(tk)
∥gk∥22 ≤ 1

2λ(tk)
, (S37)

we obtain that

∥θk∥22 ≤ etk

λ(tk)
+ 2(etk − 1)(Ln(0)− Ln(θk)) ≤

et̄

g(t̄)
+ 2(et̄ − 1)(Ln(0)−M) (S38)

where M = infθ Ln(θ) > −∞. Combining these bounds, we get

αk+1 = min

{
αmax, 2αk, ln

(
1 +

c1(e
α1 − 1)∥∇Ln(0)∥2(etk − 1)

√
min(λk, λk+1)

∥θk∥2
√

min(λ0, λ1)

)}
≥ min {αmax, 2αk, O(1)} ,

which implies that αk+1 is lower bounded by a constant, which contradicts with the fact that tk ≤ t̄
for all k ≥ 1. Hence, tk must diverge, and the algorithm must terminate after a finite number of steps.
This completes the proof of Theorem 5. ■
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