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Figure 5: Training dataset generation examples using DL3DV scenes.

Figure 6: Examples from the DL3DV inference set.

A SUPPLEMENTARY

This supplementary material provides further detailed explanations of our model structure and
implementation details. We also provide additional quantitative and qualitative comparisons to
support effectiveness of our method.

A.1 DATASET GENERATION

In this section, we specify the details of the hyperparameters used to build our training dataset
from DL3DV (Ling et al., 2024) real-world scenes, following the reverse ISP process of Brooks et
al. (Brooks et al., 2019).

For parametric augmentations using the reverse ISP process (Fig. 5, right), we use a modified im-
plementation (https://github.com/aasharma90/UnprocessDenoising_PyTorch),
and we randomly sample hyperparameters controlling digital gain, exposure, gamma value, and
shadow and highlight thresholds. Along with the bi-modal mixture distribution of exposure explained
in Sec 3.4, digital gain and gamma values are uniformly sampled from the following ranges:
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Table 4: Detailed network structure. The input to the transformer is a multi-view image sequence,
where the first frame is the reference image. B denotes the batch size and S is the number of input
frames. The transformer output is a set of 3D bilateral grids, which are subsequently sliced and
applied to the original source images, excluding the reference frame. For the output of 1-1, 768
represents the channel dimension, and 784 corresponds to the number of patches.

IDX STRUCTURE INPUT OUTPUT
Patch Embedding

1-1 CONCAT(DINOv1, Conv) Input(B × S × 3 × H(224) × W(224)) B × S × 768 × 784
Transformer Encoder

2-1 FrameAttention OUT1-1 B × S × 768 × 256
2-2 GlobalAttention OUT2-1 B × S × 768 × 256
2-3 FrameAttention OUT2-2 B × S × 768 × 256
2-4 GlobalAttention OUT2-3 B × S × 768 × 256
2-5 FrameAttention OUT2-4 B × S × 768 × 256
2-6 GlobalAttention OUT2-5 B × S × 768 × 256

Transformer Decoder
3-1 CrossAttention OUT2-6 B × S-1 × 768 × 256
3-2 FrameAttention OUT3-1 B × S-1 × 768 × 256
3-3 CrossAttention OUT3-2 B × S-1 × 768 × 256
3-4 FrameAttention OUT3-3 B × S-1 × 768 × 256
3-5 CrossAttention OUT3-4 B × S-1 × 768 × 256
3-6 FrameAttention OUT3-5 B × S-1 × 768 × 256

Grid Prediction Head
4-1 (MLP, Tanh) OUT3-6 B × S-1 × 512 × 256
4-2 (MLP, Tanh) OUT4-1 B × S-1 × 256 × 256
4-3 MLP OUT4-2 B × S-1 × 104 × 256

4-4-1 (Tanh, Reshape) OUT4-3[:, :, :-8, :] (B * S-1) × 12 × 8 × 28 × 28
4-4-2 (Tanh, Reshape) OUT4-3[:, :, -8:, :] (B * S-1) × 1 × 8 × 28 × 28

Slicing & Applying
5-1 Slicing & Applying (OUT4-4-1, Input) (B * S-1) × 3 × H × W
5-2 Slicing OUT4-4-2 (B * S-1) × 1 × H × W

1. Red gain, blue gain: N (µgain, σ
2
gain)

2. Gamma: [0.5, 3.0],

where µgain, σgain are set to 1.0 and 0.2, respectively.

Additionally, we apply random 3 × 3 color correction matrices (CCMs) to the images. In order
to generalize to multiple cameras, we sample random convex combinations from (Brooks et al.,
2019), which includes four CCMs: A Sony A7R (full-frame), an Olympus OMD E-M10 (Micro
Four-Thirds), a Sony RX100 IV (1 inch) and a Nexus 6P (1/2.3 inch).

We visualize some examples from our training dataset that are generated based on DL3DV, a large-
scale scene dataset (Ling et al., 2024), in Fig. 5.

Fig. 6 visualizes scenes from our DL3DV inference set used in the main experiments. We carefully
curate this set to include a wide range of categories, including: nature & outdoors, tourist attractions,
restaurants and cafes, sports & fitness, parks & recreation, educational institutions, events & confer-
ences, tech & business, shopping centers, and transportation hubs. This inference set allows us to
assess the models performance across diverse real-world environments and application domains.
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Table 5: Runtime and peak GPU memory usage across different numbers of input frames.
Runtime is measured in seconds and GPU memory usage is reported in gigabytes.

Input Frames 2 4 8 10 20 50 100 200

Time (s) 0.0786 0.1028 0.1451 0.1779 0.2948 0.8172 2.1219 6.4382
Memory (GB) 2.1384 2.1608 2.3142 2.4020 2.8225 4.1070 6.2593 10.5508

Table 6: Inference time comparison between predicting images and bilateral grids. Runtime
is measured in seconds. OOM (Out Of Memory) indicates that the system ran out of memory and
terminated the process.

Input Resolution 256 384 512 768 1K 2K 4K
Dense Prediction Head 0.0897 0.1390 0.2451 0.8761 OOM OOM OOM
Bilateral Grid Head 0.0791 0.0818 0.0804 0.0862 0.0880 0.1347 0.3783

A.2 NETWORK DETAILS

We provide the detailed structure of our network in Tab. 4, relating to the transformer architecture
discussed in Sec.3.2 of the main paper. Also, as shown in Tab. 5, we evaluate the inference runtime
and peak GPU memory usage for different numbers of input frames. These measurements are
conducted on a single NVIDIA RTX 3090 GPU using FlashAttention v2 (Dao, 2023), with the image
resolution fixed at 224× 224.

A.3 DIRECT IMAGE PREDICTION VS BILATERAL GRID ESTIMATION

In this section, we demonstrate the advantages of our proposed method that predicts 3D bilateral grids
from the patches of the transformer model, rather than predicting the corrected images directly. We
conduct an additional experiment making a modification to our model, in which the output images
are directly decoded from the patches by the transformer. Note that while predicting the bilateral grid
from each patch can be achieved with relatively shallow layers, directly regressing the full-resolution
image requires a more complex architecture.

To demonstrate this, we adopt the dense prediction head (DPT) of VGGT (Wang et al., 2025), which
is used to predict depth maps, by modifying it for the image prediction setting. To ensure a fair
comparison, we adjust the number of layers and channels in the head to make the total number of
parameters comparable with ours (∼ 140M). This approach, however, introduces significant memory
overhead and constrains the output resolution, making it infeasible to predict at high resolutions on
a mid-grade GPU, as shown in Tab. 6 and Tab. 7. Predicting images beyond 1K resolution causes
out-of-memory issues on a NVIDIA RTX 3090 GPU. Tab. 6 compares the inference time (in seconds)
using the two different prediction heads across a range of input image resolutions from 224 to 4K.
Inference time using the DPT is slower than the bilateral grid for all input resolutions and increases
sharply with resolution. At low resolutions (e.g., 224, 384), both heads are comparable, but the
bilateral grid head is slightly faster. Tab. 7 compares the peak GPU memory usage (in GB) for two
architectures, showing how each method scales in memory consumption. The bilateral grid head
scales better thanks to low-resolution processing and interpolation.

Additionally, we conduct a quantitative performance comparison between the DPT-based model
and our bilateral grid-based model. We modify the DPT model to predict the residual between

Table 7: Peak memory usage comparison between predicting images and bilateral grids. GPU
memory usage is reported in gigabytes. OOM (Out Of Memory) indicates that the system ran out of
memory and terminated the process.

Input Resolution 256 384 512 768 1K 2K 4K
Dense Prediction Head 2.2034 2.6398 3.9537 11.6560 OOM OOM OOM
Bilateral Grid Head 2.1425 2.1461 2.1519 2.1730 2.1996 2.6300 4.5519
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Table 8: Performance comparison between direct regression of image corrections using a DPT head
and our bilateral grid transformer on the BilaRF dataset.

Method PSNR CC SSIM CC LPIPS CC
Dense Prediction Head 24.01 0.7291 0.3882
Bilateral Grid Head 25.60 0.8240 0.2368

Reference Image Source (375 × 500) Corrected (375 × 500) Source (3K × 4K) Corrected (3K × 4K)

Figure 7: Visualization of learned bilateral grid application to low- and high-resolution images.
Left: reference frame; middle: low-resolution (375 × 500) source and corrected images; right:
high-resolution (3K × 4K) counterparts. Best viewed when zoomed in.

the input and ground-truth images rather than directly regressing the corrected images, following
prior work (Song et al., 2021). Despite this adjustment, its reconstruction performance remains
significantly below that of our bilateral grid head, as shown in Tab. 8. This can be explained as
follows. Unlike our bilateral grid framework, dense image-to-image translation is a much more
complex task and requires substantial architectural engineering to achieve competitive performance.
Full-resolution image regression typically relies on multi-scale skip connections, feature pyramids, or
residual designs optimized for reconstruction tasks. Without such specialized components, a dense
prediction head struggles to capture high-frequency structures and fine photometric cues, which
explains its suboptimal performance in our controlled comparison.

There is an additional disadvantage when training the DPT-based model, namely that the dense
prediction head is inherently resolution-fixed. Because the decoder directly outputs a full-resolution
image, it cannot generalize to different input or output resolutions at inference time. Supporting a
new resolution requires retraining the entire network, making it fundamentally less flexible than our
bilateral grid framework, which naturally decouples feature resolution from output resolution through
grid slicing. Moreover, the number of parameters required by the DPT model increases as O(n2)
with respect to the output resolution, making the task substantially more difficult than ours, whose
parameter count remains fixed.

Overall, in comparison to the DPT head, predicting bilateral grids offers some notable advantages:
it enables the use of a compact, low-resolution representation derived from the input image while
maintaining compatibility with the original high-resolution image via slicing, as shown in Fig. 7,
8, and 9. This decoupling of input and output resolution is particularly beneficial in memory-
constrained environments or when high-resolution outputs are required. For real-time or high-
resolution applications (e.g., 1080p or 4K), the bilateral grid head is more practical and efficient,
making it especially appealing for tasks such as real-time video processing, mobile deployment,
or large-scale inference. Beyond efficiency, another important advantage of the bilateral grid is its
ability to learn transformations that adjust global appearance while preserving intrinsic scene shading
cues, as demonstrated in Figures 10 and 11 (bottom row), where dark shadows remain dark despite
appearance alignment.
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Reference Image Source (375 × 500) Corrected (375 × 500) Source (750 × 1K) Corrected (750 × 1K)

Reference Image Source (1.5K × 2K) Corrected (1.5K × 2K) Source (3K × 4K) Corrected (3K × 4K)

Figure 8: Visualization of our learned bilateral grids applied to low- and high-resolution images,
ranging from low-resolution (375× 500) source and corrected images to their high-resolution (3K ×
4K) counterparts. Best viewed when zoomed in.

A.4 ADDITIONAL QUALITATIVE RESULTS

We provide additional qualitative comparisons on the DL3DV, MipNeRF360-VE, and BilaRF datasets
in Fig. 12. Examples of image correction to a given reference frame on the BilaRF dataset are shown
in Fig. 13.

A.5 CONFIDENCE MAP

We provide visualizations in Fig. 18 of the confidence maps predicted by our transformer model
alongside the bilateral grids. As described in the main paper, we incorporate confidence map
prediction through the Bayesian loss function (Eq. 4) to stabilize training. In Fig. 18, low-confidence
regions correspond to areas where reliable color correction is inherently difficult (e.g., saturated
highlights or deep shadows), while high-confidence regions align with well-exposed, structurally
stable parts of the scene.

A.6 2D EXPOSURE CORRECTION METHODS

We present qualitative comparisons with 2D exposure correction methods in Fig. 10 and Fig. 11,
corresponding to the methods evaluated in Tab. 2 of the main paper. The top row shows input views
with significant photometric inconsistencies, including variations in exposure and white balance.
While prior methods partially mitigate these issues, they often introduce undesirable artifacts such as
color shifts, over-saturation, or unnatural tonal adjustments, especially under challenging lighting
conditions. In contrast, our method produces more consistent color and illumination across views,
while faithfully preserving fine details and natural scene appearance. Importantly, our approach
enables improved multi-view consistency as evidenced by the smoother transitions across viewpoints
(e.g., when viewing the corrected frames in Fig. 11 (a) from left to right), which is crucial for
downstream 3D reconstruction methods. As shown in Fig. 11 (b), our 3DGS reconstruction of the
scene produces a clean, artifact-free wall compared to all other 2D image correction methods. We
further conduct an additional experiment comparing 2D image correction methods with ours on the
BilaRF dataset, with quantitative results shown in Tab. 9.
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Reference Image Source (375 × 500) Corrected (375 × 500) Source (750 × 1K) Corrected (750 × 1K)

Reference Image Source (1.5K × 2K) Corrected (1.5K × 2K) Source (3K × 4K) Corrected (3K × 4K)

Figure 9: Visualization of our learned bilateral grids applied to low- and high-resolution images,
ranging from low-resolution (375× 500) source and corrected images to their high-resolution (3K ×
4K) counterparts. Best viewed when zoomed in.

Table 9: Comparison with 2D image correction methods on the BilaRF Wang et al. (2024a) dataset.

Comparison with 2D Works PSNR CC ↑ SSIM CC ↑ LPIPS CC ↓ time ↓
CoTF (Li et al., 2024) 23.73 0.7838 0.2743 3.01

MSEC (Afifi et al., 2021) 23.26 0.7450 0.3615 2.42
MSLTNet (Zhou et al., 2024) 24.29 0.7865 0.2734 1.54

UEC (Cui et al., 2024) 24.62 0.8064 0.2488 5.36
Ours 25.60 0.8240 0.2368 2.3

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Input

CoTF

MSEC

MSLTNet

UEC

Ours

Reference

Reference

Figure 10: Qualitative comparisons of 2D image correction methods with ours on the garden scene
from the MipNeRF360-VE dataset (Cui et al., 2025). All comparison methods (CoTF, MSEC,
MSLTNet, and UEC) process frames independently, in contrast to our approach. UEC leverages the
same reference frame as ours, selected via our reference-frame selection pipeline.
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Input

CoTF

MSEC

MSLTNet

UEC

Ours

(a) 2D corrected frames

Reference

Reference

CoTF MSEC MSLTNet UEC Ours

(b) Novel view synthesis after reconstruction using (a)

GT

Figure 11: Qualitative comparisons of 2D image correction methods with ours on the bonsai scene
from the MipNeRF360-VE dataset (Cui et al., 2025). All comparison methods (CoTF, MSEC,
MSLTNet, and UEC) process frames independently, in contrast to our approach. UEC leverages the
same reference frame as ours, selected via our reference-frame selection pipeline. Top (a) shows the
corrected 2D frames; bottom (b) shows novel view renders from the resulting 3DGS reconstructions.
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Figure 12: Qualitative results grouped by dataset: DL3DV, MipNeRF360-VE, and BilaRF.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(a) Reference frame (b) Source frames (c) Corrected frames

Figure 13: Visualization of image correction by our transformer model. Our model aligns the source
frames in (b) to the reference frame in (a), producing the corrected frames shown in (c).

Input images

Corrected images by our model

Figure 14: Visualization of our corrected outputs in the presence of bright light sources and low
dynamic-range input images.

Reference Frame Source Frames corrected by our model
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Figure 15: Visualization of the corrected outputs produced by our model when the reference image is
captured under different illumination conditions (low, middle, and high exposure).
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Figure 16: Visualization of a selection of representative input frames from the MipNeRF360-VE
dataset.
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AnySplat + OursAnySplat + ISP VariationAnySplat + Original

Figure 17: Visualization of 3DGS reconstructions using AnySplat for scenes from DL3DV (first four
rows) and MipNeRF360 (bottom row). DL3DV input images contain randomized ISP variations,
while appearance variations for MipNeRF360 are sourced from the MipNeRF360-VE dataset. From
left to right: (1) AnySplat+Original uses the original clean input frames, (2) AnySplat+ISP Variation
uses appearance-varying frames, and (3) AnySplat+Ours uses frames corrected by our model.
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Figure 18: Visualization of confidence maps across input image frames with varying appearance.
Darker pixel values indicate lower confidence at the corresponding pixel locations.

w/o self-supervised loss w/ self-supervised loss w/ self-supervised lossw/o self-supervised loss

Figure 19: Qualitative comparison with and without using AnySplat-based self-supervised loss (Lss).
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