
1 Identifiability1

1.1 Tier 12

Lemma 1.1. Given a countable set X . Let M(X) = [X,PX] the set of stochastic maps from3

X to X . Note that given an initial distribution, each stochastic map gives a Markov chain. Let4

M(X)r ⊂ M(X) denote the subset of recurrent maps, meaning that for each state x ∈ X , its5

Markov chain starting with x visits x infinitely often with probability one. Let ϕλ :M(X) → P (XN)6

denote the distribution over infinite chains starting with an initial distribution λ ∈ PX . Let7

C : XN → M(X) denote the map that gives a maximum likelihood estimate of the transition8

probabilities given an infinite chain. Let P (M(X)r) denote the set of probabilities over M(X)r.9

Then for all m ∈ M(X)r, λ ∈ PX , with probability one, τ ∼ ϕλ(m), C(τ) = m. Furthermore,10

∀p ∈ P (M(X))r), λ ∈ PX , m ∼ p, τ ∼ ϕλ(m), C(τ) is distributed as p.11

Proof. The first result is shown via the ergodic theorem in [Norris, 1997, Theorem 1.10.2]. The12

second result follows from the fact that
∫
A
dδa(a

′) = a, where δa is the Dirac measure around a13

(alternatively, the second result follows from a probability monad law).14

Theorem 1.2. Given countable state and action spaces S, A, let the set ΘΠ = [S, PA] denote the set15

of stochastic policies, ΘF = [S ×A,PS] the set of stochastic dynamics, Θ = ΘF ×ΘΠ the product.16

Note that each θ ∈ Θ gives a Markov chain with state S×A. Let Θr be the subset of recurrent Markov17

chains. Let p ∈ P (Θr) be a joint distribution dynamics and policy giving recurrent chains. Then p18

can be identified from the distribution over infinite sequences P ((S ×A)N) given by rolling out p.19

Proof. Following lemma 1.1, we can identify p′ ∈ P ([S ×A,P (S ×A)]) that generates the chain.20

The map Θ → [S ×A,P (S ×A)] is injective, so we can recover p ∈ P (Θr) from p′.21

Corollary 1.3. In Tier 1, assuming the chains are recurrent, we can identify all distributions, thus we22

can construct the interventional policy.23

1.2 Tier 224

Theorem 1.4. Given p(θF , θΠ) ∈ P (Θ) and p′(θF , θΠ) ∈ P (Θ)r, such that the marginal dis-25

tributions over dynamics agree p(θF) = p′(θF). Define on a trajectory τ , pdo(A)(θF |τ) ∝26

p(θF)
∏
t p(st+1|st, at, θF). Assume that with probability one, for policy and dynamics (θΠ, θF) ∼ p27

and infinite rollout τ ∼ ϕλ(θΠ, θF), that pdo(A)(θ̂F |τ) = δθF .28

Then, given trajectory distributions ϕPλ (p), ϕ
P
λ′(p′) ∈ P ((S×A)N), we can identify the interventional29

policy30

p(at|s1, do(a1), ..., st) ∝
∫
Θ

dθF dθΠp(θΠ, θF)p(at|st, θΠ)
∏
t

p(st+1|st, at, θF)

Proof. We identify the dynamics p(θF) using the recurrent model p′ via theorem 1.2. Then for a31

model pψ(a|s, θ̂F) with parameters ψ, maximise the likelihood of32

EθF ,θΠ∼pEτ∼ϕλ(θF ,θΠ)Eθ̂F∼pdo(A)(θ̂F |τ) log pψ(a|s, θ̂F)

which by assumption is equal to33

EθF ,θΠ∼pEτ∼ϕλ(θF ,θΠ) log pψ(a|s, θF)

which is maximised by pψ(a|s, θF) = p(a|s, θF) = EθΠ∼p(θΠ|θF)p(a|s, θΠ). Then:34

p(at|s1, do(a1), ..., st) = Eθ̂F∼pdo(A)(θ̂F |τ)p(a|s, θ̂F).35

1

2 Optimality36

Lemma 2.1. Given expert distribution p(θF , θΠ) ∈ P (Θ) and agent distribution p′(θF , θΠ) ∈ P (Θ),37

such that the marginal distributions over dynamics agree p(θF) = p′(θF). Assume the expert’s policy38

is uniquely determined by the environment dynamics (e.g. as it is trained with RL on a single reward39

function on each environment), so we can write p(a|s, θF) for the expert policy. Assume that with40

probability one, for policy and dynamics (θΠ, θF) ∼ p′ and infinite rollout τ ∼ ϕλ(θΠ, θF), that41

p′do(A)(θ̂F |τ) = δθF .42

Then, on rollouts of p′, the interventional policy approaches the expert policy:43

lim
t→∞

EθF ,θΠ∼p′Eτ∼ϕλ(θF ,θΠ)DKL(p(at|st, θF)||p(at|s1, do(a1), ..., st)) = 0

Proof.

lim
t→∞

EθF ,θΠ∼p′Eτ∼ϕλ(θF ,θΠ) log p(at|st, θF)− log p(at|s1, do(a1), ..., st)

= lim
t→∞

EθF ,θΠ∼p′Eτ∼ϕλ(θF ,θΠ) log p(at|st, θF)− logEθ̂F∼pdo(A)(θ̂F |τ≤t)
p(at|st, θ̂F)

= lim
t→∞

EθF ,θΠ∼p′Eτ∼ϕλ(θF ,θΠ) log p(at|st, θF)− log p(at|st, θF) = 0

where in the last line we used that in the limit to infinite sequences, that pdo(A)(θ̂F |τ) = δθF .44

3 Tier 1 algorithm45

The paper presents the proof that at tier 1, when suitable demonstrations from the expert are available,46

the interventional policy is identifiable from the expert data alone, without access to the environment47

or the expert. In this section, we present a practical algorithm for learning the deconfounded imitation48

policy from such an expert dataset. At test time, the agent works the same way as the tier 2 algorithm49

presented in the paper.50

Training an inference model directly on the expert demonstration faces the same problem as naive51

imitation learning, i. e., the trained model takes the expert’s actions as evidence for the latent. However,52

by the assumption stated in appendix 2, that the expert is uniquely determined by the environment53

dynamics, we can directly learn the conditional policy and dynamics model explaining the expert54

trajectories from the demonstrations because a latent that explains the dynamics also explains the55

expert. To train such models, we use variational inference to learn a trajectory encoder qϕoff , which56

infers the latent for the expert trajectories, and a factorized decoder, which reconstructs the dynamics57

of the environment and the expert’s policy using networks pψ and πη respectively. The variational58

inference objective is given by59

Loff,i = Eθ̂∼qϕ(θ̂|τ i
e)

[H∑
t=0

log pψ(st+1 | st, at, θ̂)+log πη(at|st, θ̂)
]
−βDKL

(
qϕoff(θ̂ | τ ie)

∥∥∥ p(θ̂)) ,
(1)

which, unlike the objective in the main paper, represents a VAE where the encoder qϕoff takes as input60

the full expert trajectory τ ie, and the decoder decodes both the action and transition probabilities61

throughout the trajectory.62

This gives us a way for training the conditional policy imitating the experts in the demonstrations and a63

dynamics model. However, we cannot directly use the learned inference model qϕoff for implementing64

the interventional policy, because it takes the expert’s actions as evidence for the latent. The tier 265

algorithm works by separately learning an inference model from interactions with the environment66

and using that inference model for deconfounding the expert trajectories. In tier 1, where we do not67

have sampling access to the environment, we cannot learn the inference model directly. Instead, we68

observe that one factor of the decoder used for training the inference model is a dynamics model of69

the environment conditional on the predicted latent. Therefore, we can use it to generate synthetic70

trajectories for training an online inference model qϕon to minimize the online variational inference71

objective given in the main paper. The online inference model can then be used for implementing the72

interventional policy similarly as in tier 2. The full tier 1 algorithm is presented in algorithm 1.73

2

Algorithm 1 Behavior cloning with latent inference, offline variant

Require: The initial parameters of the imitation policy η, offline inference model ϕoff, online
inference model ϕon, dynamics model ψ, prior distribution for the learned latent space p(θ̃), a
dataset of expert trajectories {τ ie}, an MDP (S,A, p, p0, H), learning rates α1, α2, α3, and α4.
while not done do

θ̃ ∼ p(θ̃) ▷ Sample latent from the prior for the learned latent space
s0 ∼ p0(s0) ▷ Sample first state from a learned model or expert data
τsynth = s0, t = 0
for t ≤ H do

at ∼ π(at | st) ▷ Sample action from a Markov policy
st+1 = pψ(st+1 | st, at, θ̃) ▷ Dynamics model
Append (at, st+1) to τsynth.
t = t+ 1

end for
ϕon = ϕon − α1∇ϕonL̂(τsynth) ▷ Train the online inference model to minimize equation 6.
ϕoff = ϕoff − α2∇ϕoff

∑
j L̂off(τ

j
e) ▷ Train the offline inference model to minimize equation 1.

ψ = ψ − α3∇ψ

∑
j L̂off(τ

j
e) ▷ Train the dynamics model to minimize equation 1.

η = η − α4∇η

∑
j L̂off(τ

j
e) ▷ Train the imitator policy to minimize equation 1.

end while

4 Experimental setup74

Implementation details The inference model qϕ is implemented as an RNN with GRU architec-75

ture Cho et al. [2014] with a hidden layer of 256 units. Before the RNN, the observation is prepro-76

cessed by an MLP with two hidden layers of size 256 units and output size 32. The action is prepro-77

cessed by a linear transformation to a 32 dimensional vector. The outputs of the RNN are processed78

by a linear transformation to a vector which parametrizes the latent distribution. The latent distribu-79

tion is a 256 dimensional Gaussian. One half of the predicted vector represents the mean of the latent80

distribution and the other half, after softplus activation has been applied to it represents the variance.81

The decoder is an MLP with two hidden layers of size 256 and a linear output layer. It uses the same82

input preprocessing networks for the observations and actions as the inference model.83

The policy is an MLP, which takes the latent sample, and an observation as inputs. It uses the same84

observation embedding network as the other networks and then has two hidden layers with 256 units85

each.86

The naive behavioral cloning baseline uses the same network architecture as the deconfounded87

algorithm, except it does not represent the belief as a probabilistic latent variable and therefore there88

is no sampling step. It just directly passes output of the trajectory encoder as the input to the policy89

network.90

All of the MLPs use ReLU activations.91

All networks are optimized using the ADAM optimizer [Kingma and Ba, 2014] with otherwise92

default settings from pytorch [Paszke et al., 2019] apart from the learning rate.93

Hyperparameter settings The hyperparameters used for the learning algorithms are presented in94

table 1.95

Computing the ground truth policies All of the probabilities relevant to the bandit problem are96

known exactly from the definition of the problem and the conditional and interventional policies given97

in the main paper. Using these probabilities we can compute the true conditional and interventional98

policies, allowing us to compare the learned algorithms to the relevant optimal policies.99

3

Hyperparameter Value
Episode length 100

Imitation training steps 5000
Dynamics model training batch size (full episodes) 100

Imitation training batch size (full episodes) 100
Behavioral cloning learning rate 0.001

Variational inference learning rate 0.0001
KL coefficient (β) 0.001

Table 1: Hyperparameters for the deconfounded behavioral cloning and naive behavioral cloning
algorithms

In practice, the true belief over theta can be computed for any trajectory as follows100

log p(θ̂)0 = log
1

5
, log p(θ̂[At])t+1 =

{
log p(θ̂[At])t + st log

3
4 + (1− st) log

1
4 if At = at

log p(θ̂[At])t + st log
1
4 + (1− st) log

3
4 otherwise

.

(2)

The true interventional policy can then be computed by sampling a belief θ̂t ∼ log p(θ̂)t, and sampling101

an action from πexp(at|st, θ̂t). This can be seen as a Thompson sampling policy [Thompson, 1933],102

which acts optimally given its current belief of the task. The true conditional policy is computed103

similarly, except taking the actions as evidence for the latent is added to the update104

log p(θ̂[At])t+1 =

{
log p(θ̂)t[At] + st log

3
4 + (1− st) log

1
4 + log 6

10 if At = at
log p(θ̂)t[At] + st log

1
4 + (1− st) log

3
4 + log 1

10 otherwise
. (3)

References105

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of106

neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014.107

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint108

arXiv:1412.6980, 2014.109

J R Norris. Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge110

University Press, 1997.111

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,112

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas113

Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,114

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-115

performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-116

Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,117

pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/118

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.119

pdf.120

William R Thompson. On the likelihood that one unknown probability exceeds another in view of121

the evidence of two samples. Biometrika, 25(3-4):285–294, 1933.122

4

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

	Identifiability
	Tier 1
	Tier 2

	Optimality
	Tier 1 algorithm
	Experimental setup

