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HmPEAR: A Dataset for Human Pose Estimation and Action
Recognition
Anonymous Authors

(a) Capturing Device (b) Images (c) Point Cloud

5m

10m

7.5m 10m

LiDAR

Capturing Device Images Projected Point Cloud 3D Point Cloud

Figure 1: (a) The capturing device, which is composed of a LiDAR and three RGB cameras. (b) Images from respective cameras. (c)
Colored point cloud of a data collection scenario.

ABSTRACT
We introduce HmPEAR, a novel dataset crafted for advancing re-
search in 3D Human Pose Estimation (3D HPE) and Human Action
Recognition (HAR), with a primary focus on outdoor environments.
This dataset offers a synchronized collection of imagery, LiDAR
point clouds, 3D human poses, and action categories. In total, the
dataset encompasses over 300,000 frames collected from 10 dis-
tinct scenes and 25 diverse subjects. Among these, 250,000 frames
of data contain 3D human pose annotations captured using an ad-
vanced motion capture system and further optimized for accuracy.
Furthermore, the dataset annotates 40 types of daily human actions,
resulting in over 6,000 action clips. Through extensive experimenta-
tion, we have demonstrated the quality of HmPEAR and highlighted
the challenges it presents to current methodologies. Additionally, we
propose straightforward baselines leveraging sequential images and
point clouds for 3D HPE and HAR, which underscore the mutual re-
inforcement between them, highlighting the potential for cross-task
synergies.
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1 INTRODUCTION
3D Human Pose Estimation (3D HPE) serves as the foundation for
understanding human kinematics, offering detailed insights into the
spatial configurations of body joints. This technology is fundamental
to Augmented and Virtual Reality, simulations, and other related
fields. On the other hand, Human Action Recognition (HAR) ex-
plores the dynamics of human movement, providing an advanced
understanding of human behavior and intentions. The integration
of these two domains, 3D HPE and HAR, enables a more compre-
hensive and nuanced interpretation of human actions. Therefore,
creating a dataset that captures both 3D human poses and action
categories is essential for in-depth research in human-centric studies.

Initial HPE efforts focused on 2D pose estimation [12, 16, 75].
However, the development of human body shape models [49, 65]

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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has allowed the representation of 3D human meshes with mini-
mal parameters, facilitating the advancement of HPE from 2D to
3D [4, 37, 41, 46]. Nevertheless, reliance on RGB data presents lim-
itations, such as sensitivity to lighting conditions and a lack of depth
accuracy. While depth sensors like Kinect have offered insights into
3D HPE [5, 83], their application in outdoor or large-scale settings is
limited. The rise of LiDAR, which, due to its precision and indepen-
dence from lighting conditions, has been integrated into recent 3D
HPE datasets [20, 27, 42, 77], facilitating advances in algorithmic
development for 3D HPE [19, 42].

RGB-based HAR has seen extensive exploration, with approaches
ranging from two-stream 2D CNNs [23, 31, 34, 61] to 3D CNNs [43,
68, 72] and transformers [2, 7, 48]. The current trends in RGB-based
models are twofold: leveraging larger datasets or more complex
models [2, 7, 44, 67], and pursuing multi-modal fusion to mitigate
the shortcomings of single-modal approaches [24, 45, 56, 73]. Em-
ploying feature fusion methods to enhances the robustness of HAR,
such as depth [22] and skeleton data [1, 11, 21, 25]. However, the
majority of existing RGBD or RGB-Pose action recognition datasets
neglect the intricate complexities inherent in dynamic, real-world
scenarios. Previous efforts, such as those by Xu et al. [77], have
made strides by incorporating LiDAR point clouds, yet they fall
short in providing detailed 3D human pose annotations. This gap
highlights an urgent need for a comprehensive dataset that integrates
LiDAR point clouds and detailed human poses for HAR.

In this paper, we present a novel dataset, named HmPEAR, which
integrates imagery and point cloud data for human 3D HPE and
HAR. This dataset was captured using a high-precision 128-beam
LiDAR and three high-resolution cameras (1920 × 1200 pixels). The
data processing procedure involved manual tracking and further
refinements. For the annotations of 3D human poses, we utilized
professional motion capture (MoCap) equipment. Additionally, for
action labels, we annotated them manually. To facilitate comprehen-
sive evaluations for 3D HPE and HAR, we proposed three baseline
models. Extensive experiments with proposed models and existing
methods demonstrate the dataset’s applicability and challenges. Our
contributions are summarized as follows:

• We introduce a novel dataset that includes imagery and Li-
DAR point cloud with 3D human pose and action annotations.
It bridges the gap between the fields of 3D HPE and HAR.

• Through extensive experiments, we have validated the quality
and supplementary value of our dataset. These experiments
also illustrated the challenges that our dataset poses.

• Additionally, we introduce a novel multi-task method that
integrates 3D HPE and HAR, demonstrating their potential
viability to complement each other.

2 RELATED WORKS
2.1 3D Human Pose Estimation Datasets
The Human3.6M [33] dataset represented a significant leap in
RGB-based 3D Human Pose Estimation(3D HPE), offering exten-
sive indoor scene data, while MPI-INF-3DHP [51] continued this
trend, remaining limited to indoor settings. As for outdoor scenar-
ios, 3DPW [70] introduced the first outdoor 3D HPE dataset with
imagery, MuCo-3DHP [52] offered a collection of outdoor multi-
person scenarios, featuring authentic interactions and occlusions.

However, they both lacked depth data, which is essential for full 3D
context understanding. BEHAVE [9] introduced depth data using
RGBD cameras, highlighting the critical role of depth information
in such contexts. LiDARHuman26M [42] made strides by incorpo-
rating accurate LiDAR point cloud data. However, its potential was
limited due to lower quality imagery and lack of synchronization.
SLOPER4D [20] addressed these issues by enhancing annotation
quality through refined optimization techniques. 3D HPE datasets of-
ten present challenges, as they predominantly feature human actions
that are either performed casually or dramatically. This characteris-
tic may lead models to learn poses in isolation without completely
understanding the nuanced action semantics associated with those
poses. As a result, there is a potential gap in comprehending the
contextual meanings and intricacies of human movements within
the datasets. This underscores the need for more comprehensive and
context-aware 3D HPE datasets.

2.2 Human Action Recognition Datasets
Traditional Human Action Recognition(HAR) datasets have pri-
marily consisted of RGB images, with a subset providing auxil-
iary depth maps and skeletal sequences. Early datasets such as
KTH [58] and Weizmann [10] were limited in dataset size and
scope. In recent years, various types of HAR datasets have emerged.
UCF101 [62] and HMDB51 [39] have introduced RGB videos
from diverse sources, covering a wide variety of action categories.
Kinetics-400 [14] and Kinetics-600 [13] were developed to meet the
demand for extensive data for effective model training. AVA [32]
focuses on complex action detection and temporal localization, ad-
dressing real-world challenges in understanding human actions. On
the other hand, NTU RGB+D [47, 59] pioneered to combination of
RGB videos with depth maps and 3D skeletons, enriching datasets
and enabling fusion-based HAR methods. BABEL [54] provides the
dense action labels that are precisely aligned with their movement
spans in the Motion Capture sequence. HuCentLife [77] encom-
passes diverse daily-life scenarios centering on people, assigning
corresponding action labels to individuals in each scenario, and of-
fering multi-modal data including imagery and point cloud. In the
aforementioned multi-modal datasets, some lack point clouds, while
others don’t provide detailed 3D human poses. To address these
gaps, there is a clear demand for a dataset that combines high-quality
imagery and point cloud data with detailed 3D human poses and
explicit action annotations.

2.3 3D Human Pose Estimation
Early 3D HPE efforts using RGB imagery for directly estimating
joint locations [57, 66, 71] or body shapes [38, 69]. Advances in
statistical human body shape models [49, 65] have facilitated the
estimation of 3D human poses using a limited number of parame-
ters [36, 37, 46, 53]. This enhances the robustness of joint location
and shape predictions. Sophisticated optimization techniques have
been introduced, such as HybriK [41], which decomposes body
model parameter estimation, and NIKI [40], which leverages in-
vertible networks to boost robustness and accuracy with RGB data.
SPIN [37] uses the estimated 2D pose as initialization in SMPL
iterative optimization to produce more accurate 3D poses and shapes.
The incorporation of depth data [5] also helps the estimation. In
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Table 1: Comparisons with existing datasets. Depth refers to depth maps. Total frames denotes the count of valid frames referenced
from previous works.

Dataset PointCloud RGB Depth SMPL Bounding box Subject Scene SMPL frames Action class Action clips total frames

LiDARHuman26M [42] ! ! % ! % 13 2 184k - - 184k
SLOPER4D [20] ! ! % ! ! 12 10 100k - - 100k
3DPW [70] % ! % ! ! 7 - 51k - - 51k
BEHAVE [9] % ! ! ! ! 8 5 15k - - 15k
CIMI4D [78] ! ! % ! ! 12 13 180k - - 180k
BABEL [54] % % % ! % 346 - 63k 250 28k 66k
SMART [15] % ! % ! ! 32 - 50k 9 5k 2,100k
HuCenLife [77] ! ! % % ! 65k 32 - 12 - 6.1k
NTU120 [47] % ! ! % % 106 - - 120 114k 8,000k
IKEA ASM [6] % ! ! % ! 48 5 - 23 16k 3,046k

Ours ! ! % ! ! 25 10 250k 40 6k 300k

outdoor scenes, LiDAR [20, 42] caters to the need for long-range
and more accurate depth. In our work, we combine RGB and LiDAR
point clouds, leveraging the estimation of human 3D poses with
HAR tasks to enhance the result of 3D HPE.

2.4 Human Action Recognition
Initially, the field of HAR has focused on integrating both temporal
and spatial aspects. Baccouche.et al [3] combined the capabilities of
3D CNN with Long Short-Term Memory (LSTM) for spatiotemporal
feature learning. SlowFast [30] is an early adopter of a dual-stream
network architecture, capable of simultaneously capturing spatial
and temporal features. Transformer-based methods [7, 44, 67] lever-
age attention mechanisms to capture long-range dependencies in
temporal sequences. Recent developments in RGB-based HAR have
introduced increasingly sophisticated strategies [17, 76], pushing
the boundaries of learning-based HAR algorithms. State-of-the-art
methods [1, 11, 25] tested on NTU RGB+D 120 [47, 59] suggest
that combining RGB and pose information can yield promising
results, which underscores the significance of pose data in such
tasks. PoseConv3D [25] utilizes a 3D heatmap volume to represent
human joints, while InfoGCN [17] employs attention-based graph
convolution to capture the context-dependent intrinsic topology of
human actions. Other approaches like STMT [82] and LocATe [63]
directly leverage motion capture data to address the challenges in
HAR. Recent LiDAR-based HAR methods have been developed to
adapt to large-scale datasets and enhance accuracy. Among them,
P4Transformer [28] employs the Transformer architecture to extract
spatiotemporal features from continuous point clouds. PSTNet [29]
was introduced to capture local structures and temporal dynamics.
Mast-Pre [60] is presented as a self-supervised learning approach,
leveraging spatiotemporal point tube masking and reconstruction
tasks to glean structural information from point cloud videos. How-
ever, the absence of a comprehensive dataset restricts the develop-
ment of unified models that are capable of capturing human motion
and recognizing human actions in a more integrated manner.

3 DATA ACQUISITION
3.1 Device setup
As illustrated in Fig. 2, our device integrates a 128-beam Ouster OS-
1 LiDAR and three Hikvision global shutter 1080p cameras. These

Line for trigger signal
Line for synchronization and data transfer

Trigger Signal

Master Clock

Sensors

Switcher

Xavier

10m

Device position
Person position

(a)

(b)

(c)

(d1)

(d2)

5m

7.5m IMUs

Figure 2: The hardware setup of our capturing device. The
LiDAR triggers the three cameras to capture images through
trigger signals..

sensors and an Auto66 master clock are connected to an NVIDIA
Jetson AGX Xavier via a switch and a PCIe network card. The field
of view (FOV) for each camera is 59.8°×46.2°, while the LiDAR’s
FOV spans 360°×45°. This setup provides an extensive FOV for
cameras, facilitating data collection in scenarios of wide field. To
eliminate distortion, global shutters are activated for all cameras.
Fig. 1 demonstrates the data acquisition setup, with the capturing
device mounted on a tripod. For 3D human pose acquisition, we
utilize Noitom’s Motion Capture (MoCap) system, PN Studio, which
incorporates multiple Inertial Measurement Units (IMUs).

3.2 Calibration
We obtained the intrinsic parameters of the three cameras through
Checkerboard Calibration [80, 81]. To determine the extrinsic pa-
rameters of different sensors, we followed the methodology outlined
in Wen’s work [74]. This involved using a terrestrial laser scanning
(TLS) sensor to acquire a precise scene point cloud as a reference.
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Kicking left leg DrinkingWaving right hand Picking upJumping up Clapping

Catching ball Put on backpack Closing umbrella Wearing hatSittingCrouching

Figure 3: Examples of actions in our dataset. Top: images with their corresponding point clouds; middle: images with their correspond-
ing pose data or pose data with their corresponding point clouds; bottom: corresponding action labels.

Subsequently, we registered the scanned point cloud from our Li-
DAR and the captured images to this reference to calculate their
relative transformations. Finally, we calculated the extrinsic parame-
ters between all sensors using the relative transformations.

3.3 Time synchronization
To ensure sensor synchronization, it is crucial for all devices to oper-
ate under a unified timing mechanism and to capture data at specified
times. We utilize the hardware-based Precision Time Protocol (PTP)
to synchronize the sensors and the AGX Xavier with the master
clock. Specifically, the Auto66 is configured as the grandmaster
clock, the AGX Xavier serves as a boundary clock, and all sensors
are configured as slave clocks. Furthermore, we engineered a simple
circuit that triggers the three cameras to capture images at a pre-
defined LiDAR rotation angle. Analysis of the PTP output verifies
that the synchronization discrepancy among sensors is maintained
below one millisecond. For the synchronization of 3D human pose
data, we record jumping timestamps at the beginning and the end of
each sequence and manually align it with the other data by detecting
the peaks. Although his manual approach may slightly compromise
synchronization precision, all sequences are optimized following

the SLOPER4D [20] to refine the human pose for each frame to
minimize the errors.

3.4 Data collection
Fig. 1 illustrates a typical data collection scenario, where the subject
performed actions with various positions and orientations. The dis-
tances from the capturing device to the subject typically range from
5 to 10 meters. To ensure realism, we did not impose restrictions on
the details or duration of actions performed by the subjects.

3.5 Bounding box annotation
The ground of point clouds is eliminated by detecting the ground
in the first frame and then applying K-Nearest Neighbors (K-NN)
based abstraction to all frames. Subsequently, we employ the DB-
SCAN [26] clustering algorithm to identify clusters within the re-
mained point cloud. By selecting a single point within the cluster of
the subject, we finally get the human point cloud. The 3D bounding
box (bbox) is calculated based on the human point cloud and pro-
jected onto the images to get the corresponding 2D bbox. To ensure
accuracy, all 2D bbox in the images are manually checked.
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3.6 Action annotation
All action clips were annotated manually and subsequently reviewed
for validation. For discrete actions, such as clapping, annotators
were required to record the start and end of the action, ensuring
completeness of the action clip. For continuous actions, like running,
annotators were instructed to limit the duration of action clips to
under five seconds, preventing the risk of excessive length.

3.7 3D human pose optimization
The SMPL [49] model is used to represent human poses. Each
frame’s pose 𝑀𝑖 is characterized by shape parameters 𝛽, joint ori-
entations 𝜃𝑖 and transition 𝑠𝑖 . The 𝜃𝑖 and 𝑠𝑖 are derived from human
pose data recorded by Noitom’s MoCap product, PN Studio. The 𝛽
are estimated by IPNet [8] using scanned models of subjects cap-
tured by iPhone’s LiDAR. Let 𝑉𝑒𝑟 (𝑀𝑖 ) ∈ R6890×3 represents the
mesh vertices, 𝐽 (𝑀𝑖 ) ∈ R24×3 represents the human joints. Followed
SLOPER4D [20], several loss items based on Chamfer Distance
(CD) and Mean Squared Error(MSE) are minimized to refine the 3D
HPE annotations:

𝐿𝑎𝑙𝑙 =𝜆1𝐿𝐶𝐷 (𝑉𝑒𝑟 ′ (𝑀𝑖 ), 𝑃𝐶𝑖 )
+𝜆2𝐿𝑀𝑆𝐸 ((𝐽 (𝑀𝑖−1) + 𝐽 (𝑀𝑖+1)/2, 𝐽 𝑡𝑠 (𝑀𝑖 ))
+𝜆3𝐿𝑀𝑆𝐸 ((𝑠𝑖−1 + 𝑠𝑖+1)/2, 𝑠𝑖 )
+𝜆4𝐿𝑀𝑆𝐸 ((𝜃𝑖−1 + 𝜃𝑖+1)/2, 𝜃𝑖 )

(1)

where𝑉𝑒𝑟 ′ stands for visible vertices at the viewpoint of the LiDAR.

4 HMPEAR DATASET
HmPEAR is a novel dataset designed for 3D HPE and HAR. It
encompasses over 300,000 frames of imagery, LiDAR point cloud,
and bounding boxes of the subject, with more than 250,000 frames
of corresponding 3D human poses. The dataset incorporates 40 daily
actions performed by 25 subjects, resulting in over 6,000 action clips.
These actions cover a wide range of human activities, including
basic whole-body movements such as standing, walking, sitting, and
running, specific actions involving the legs, such as kicking with
the left leg and jumping, hand-related gestures like clapping and
waving, as well as interactive behaviors such as making phone calls,
wearing hats, and carrying bags. Each action clip varies in duration
from 1.5 to 5 seconds. The dataset comprises 10 different scenes
under various lighting conditions. A subset of typical actions from
our dataset is illustrated in Fig. 3.

Tab. 1 provides a comparison of our dataset with other relevant
datasets. Unlike existing 3D HPE datasets, which lack action an-
notations, HmPEAR encompasses annotations of 40 daily actions.
In contrast to existing HAR datasets, which are limited to small-
scale or indoor scenarios, HmPEAR expands the scope to larger and
outdoor environments. By providing LiDAR point clouds and 3D
human pose annotations, HmPEAR enhances the dataset’s utility
and applicability in advanced 3D HPE and HAR research.

5 METHODOLOGY
We propose simple baselines, as depicted in Fig. 4 and Fig. 5, com-
posed of a Multi-modality Encoder, a Temporal Encoder, and a
Multi-task Header. The subsequent sections will provide detailed
descriptions of these modules and the architecture of the baselines.

5.1 Model Details
5.1.1 Multi-modality Encoder. As illustrated in Fig. 4, we em-
ploy the backbone of HRNet [64] to extract features of varying
resolutions from each image. The features are subsequently fused
by upsampling and addition. PointNet++ [55] is used to extract
point-wise features from the human point clouds. Then, an affine
transformation, derived to crop the original image to the input im-
age, is used to project the point cloud features to a new feature
map. The imagery and point cloud features are concatenated and
further processed through multiple convolutional layers within the
Fused-encoder to generate frame-wise multi-modal features.

5.1.2 Temporal Encoder. To leverage temporal information, the
multimodal features are fed into a bidirectional GRU [18], en-
abling the extraction of both frame-wise and segment-wise features.
The frame-wise features are denoted as {𝐹𝐺𝑅𝑈

1 , 𝐹𝐺𝑅𝑈
2 , . . . , 𝐹𝐺𝑅𝑈

𝑚 },
where𝑚 represents the number of frames within the input segment.
The segment-wise feature is denoted as 𝐻𝐺𝑅𝑈 , as shown in Fig. 4.

5.1.3 Multi-task header. The frame-wise features are used to
estimate the 3D positions of the 24 joints of the SMPL model,
denoted as 𝐽𝑖 = 𝐿𝑖𝑛𝑒𝑎𝑟 (𝐹𝐺𝑅𝑈

𝑖
). For action recognition, we replicate

each 𝐹𝐺𝑅𝑈
𝑖

by 24 times and concatenate it with 𝐽𝑖 , denoted as 𝐹𝐶𝑎𝑡
𝑖

=

𝐶𝑎𝑡 (𝐹𝐺𝑅𝑈
𝑖

, 𝐽𝑖 ). The resulting features are then input into a Spatial-
Temporal Graph Convolutional Network (ST-GCN) [79] to produce
action labels, denoted as ˆ𝐴𝑐𝑡 = ST-GCN({𝐹𝐶𝑎𝑡

𝑖
}). The segment-

wise features are utilized to predict the human shape parameters
𝛽 = 𝐿𝑖𝑛𝑒𝑎𝑟 (𝐻𝐺𝑅𝑈 ), and, along with the predicted human joints
{𝐽𝑖 }, are input into HybrIK [41] to estimate human poses. Similar to
the SMPL model, HybrIK represents human motions using a limited
set of parameters: �̂�𝑖 = 𝐻𝑦𝑏𝑟𝐼𝐾 (𝛽, 𝐽𝑖 , 𝜙𝑖 ). The parameter 𝜙𝑖 denotes
the twist along the direction between connected joints.

5.2 Proposed Models
We evaluate three distinct models, including PEAR-Proj, as shown
in Fig. 4, along with two additional models presented in Fig. 5. In
PE-Proj, we exclude the action classification head, which is denoted
as the 3D HPE module. In AR-Proj, we omit the 3D HPE component,
with the𝐻𝐺𝑅𝑈 being directly input into a Linear layer for generating
classification results, denoted as the simple Classifier. These models
aim to investigate potential cross-task synergies between 3D HPE
and HAR, thereby demonstrating the effectiveness of our approach
and dataset.

5.3 Training Paradigm
5.3.1 Model inputs. As the length of clips in our dataset varies,
we have chosen to cut them into segments for training. Frame-
wise annotations are cut in the same manner, while clip-wise an-
notations are applied to the corresponding segments. Consider
an action clip of length 𝑛: 𝐶𝐴𝑐𝑡𝑖𝑜𝑛 = {𝑐1, 𝑐2, ...𝑐𝑛}, let 𝑚 rep-
resent the segment length. The time stride between frames in
this clip is ⌊ 𝑛𝑚 ⌋, resulting in clipped segments: {𝑆1, 𝑆2, ...} =

{{𝑐1, 𝑐 ⌊ 𝑛
𝑚

⌋ , ...𝑐𝑚×⌊ 𝑛
𝑚

⌋ }, {𝑐2, 𝑐 ⌊ 𝑛
𝑚

⌋+1, ...𝑐𝑚×⌊ 𝑛
𝑚

⌋+1}, ...}. For 3D hu-
man pose clips, we randomly set the time stride between frames in
the segment between 1 and 3.

To fully leverage the advantages of various 3D HPE datasets,
our model employs a sampling strategy for different types of



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Multi-modality Encoder

HRNet
Encoder

PointNet++
Encoder

images

point
clouds

Fu
se

d-
En

co
de

r

v

GRU

Frame-wise 
Features

�퐺��

...
�1

퐺��，�2
퐺��，. . . ��

퐺��

Seg-wise
Features

Shape

HybrIK
Solver

standing
walking

...

ST-GCN

    
        

Concat
...

Linear
Linear

Project

UpSample

Temporal Encoder Multi-task Header

Multimodel 
Features

Replicate

Feature 
Encoder

3D HPE
Module

RGB

PC Seg-wise 
Features

Frame-wise 
Features Motions

RGB

PC

Feature 
Encoder

Simple
Classifier 
(Linear)

PE-Proj

AR-Proj

Seg-wise 
Features

Action

Figure 4: The proposed PEAR-Proj model processes sequential images and point clouds as input. It extracts features using a Multimodal
Encoder and a Temporal Encoder. Subsequently, 3D human poses and action categories are generated by a Multi-task Header.
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Figure 5: PR-Proj comprises a Feature Encoder and a 3D HPE
module. AR-Proj consists of the Feature Encoder and a simple
classifier. The Feature Encoder itself is composed of the Multi-
modality Encoder and the Temporal Encoder.

datasets. Given the sampling rate 𝑝𝑎𝑐𝑡 , a clip of 𝐶𝑎𝑐𝑡𝑖𝑜𝑛 =

{𝑅𝐺𝐵, 𝑃𝑜𝑖𝑛𝑡𝐶𝑙𝑜𝑢𝑑, 𝑎𝑐𝑡𝑖𝑜𝑛} is selected with probability 𝑝𝑎𝑐𝑡 , while
a clip of 𝐶𝑆𝑀𝑃𝐿 = {𝑅𝐺𝐵, 𝑃𝑜𝑖𝑛𝑡𝐶𝑙𝑜𝑢𝑑, 𝑆𝑀𝑃𝐿} is chosen with proba-
bility (1 − 𝑝𝑎𝑐𝑡 ). For clips of 𝐶𝑆𝑀𝑃𝐿 , only the L𝑝𝑜𝑠𝑒 is calculated,
and for 𝐶𝑎𝑐𝑡𝑖𝑜𝑛 clips, only the L𝑎𝑐𝑡 is calculated.

5.3.2 Loss function. The overall loss function of our model is
formulated as a weighted sum of 3D HPE loss L𝑝𝑜𝑠𝑒 and HAR loss
L𝑎𝑐𝑡 , with the balance parameter 𝜂 as a hyperparameter.

L = 𝜂L𝑝𝑜𝑠𝑒 + (1 − 𝜂)L𝑎𝑐𝑡 (2)

The action classification loss is computed using a cross-entropy
loss method, which is simple yet effective.

L𝑎𝑐𝑡 = −
𝑛∑︁
𝑖=1

𝐴𝑐𝑡𝑖 log( ˆ𝐴𝑐𝑡𝑖 ) (3)

The 3D HPE loss is composed of the following items:

L𝑝𝑜𝑠𝑒 = 𝜆 𝑗𝑡𝑠24L 𝑗𝑡𝑠24 + 𝜆 𝑗𝑡𝑠17L 𝑗𝑡𝑠17 + 𝜆𝛽L𝛽 + 𝜆𝜃L𝜃 (4)

where L 𝑗𝑡𝑠24 represents the loss associated with the 24 joints
of the SMPL model, and L 𝑗𝑡𝑠17 corresponds to the loss for the
17 joints defined by H36M, these joints are regressed using a
fixed regressor 𝑅ℎ36𝑚 , given �̂�𝑖 = 𝐻𝑦𝑏𝑟𝐼𝐾 (𝛽, 𝐽 24

𝑖
, 𝜙𝑖 ), we obtain

𝐽 17
𝑖

= 𝑅ℎ36𝑚𝑉𝑒𝑟 (�̂�𝑖 ). For L 𝑗𝑡𝑠24 and L 𝑗𝑡𝑠17, we employ the Mean

Squared Error(MSE) metric. Additionally, the human pose param-
eter losses, L𝛽 and L𝜃 , are computed using the Mean Absolute
Error(MAE) metric.

L 𝑗𝑡𝑠24 =
1
𝑛

𝑛∑︁
𝑖=1

(𝐽 24𝑖 − 𝐽 24𝑖 )2

L 𝑗𝑡𝑠17 =
1
𝑛

𝑛∑︁
𝑖=1

(𝐽 17𝑖 − 𝐽 17𝑖 )2

L𝛽 = |𝛽 − 𝛽 |

L𝜃 =
1
𝑛

𝑛∑︁
𝑖=1

|𝜃𝑖 − 𝜃𝑖 |

(5)

6 EXPERIMENTS
In this section, we detail the training settings and experimental
results. We also provide detailed analyses of these experiments,
aiming to assess the quality of our dataset and explore the cross-task
synergies between 3D HPE and HAR.

6.1 Training Details
For comparison purposes, alongside HmPEAR, we employ 3DPW,
SLOPER4D, COCO, H36M, and MPI-INF-3DHP [51] during
the training of various methods. For 3DPW, COCO, H36M,
AMASS [50], MPI-INF-3DHP, and SLOPER4D, we adhere to the
official splits of the training and testing sets. Regarding HmPEAR,
we employed different training and testing settings for 3D HPE and
HAR. Firstly, we selected five subjects from different scenes as the
testing set, denoted as 𝑇𝑡𝑒𝑠𝑡 , and used the remaining data as the
training set, denoted as 𝑇𝑡𝑟𝑎𝑖𝑛 . Secondly, all data in 𝑇𝑡𝑒𝑠𝑡 and 𝑇𝑡𝑟𝑎𝑖𝑛
with action labels were used as the testing and training sets for HAR.
Finally, 2 out of 5 subjects from 𝑇𝑡𝑒𝑠𝑡 and 8 out of 20 subjects from
𝑇𝑡𝑟𝑎𝑖𝑛 were used as the testing and training sets for 3D HPE. This
setting for 3D HPE resulted in a subset of our proposed dataset of
similar size as SLOPER4D.

For our proposed models, all images are cropped to a shape of
256x256 for input. The segment length, 𝑚, is set to 10. During
training, we utilize a pre-trained HRNet. The initial learning rate is
set to 2 × 10−4 and is multiplied by a decay factor of 0.5 at epochs 2
and 5. We employ the Adam optimizer [35] for optimization. The
training is conducted on two NVIDIA GeForce RTX 3090 GPUs for
15 epochs.
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Table 2: RGB-based 3D pose estimation. Models marked with * are cited from previous papers. All HybrIK models are trained
including COCO, H36M, and MPI-INF-3DHP.

Method
Train

Test 3DPW SLOPER4D Ours
MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓

VIBE
AMASS+3DPW 83.2 52.0 100.0 61.5 85.5 47.0

AMASS+SLOPER4D 124.3 66.8 86.6 52.4 - -
AMASS+Ours 122.9 60.9 107.8 49.6 63.2 39.8

HybriK
+3DPW* 71.3 41.8 75.8 50.0 - -

+SLOPER4D* 87.3 49.2 67.6 44.2 - -
+Ours 86.2 46.6 84.8 50.0 55.4 32.7

Table 3: LiDAR-based 3D pose estimation. Performances marked with * are cited from previous papers.

Method
Train

Test LiDARHuman26M SLOPER4D Ours
MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓

LiDARCap
LiDARHuman26M 79.3* 67.0* 228.7* 149.9* - -

SLOPER4D 212.3* 128.3* 86.1* 65.1* 211.4 110.8
Ours 138.7 120.0 85.1 80.9 65.1 57.9

For the evaluation of 3D HPE, we employ the Mean Per Joint
Position Error (MPJPE) and the Procrustes-Aligned Mean Per Joint
Position Error (PA-MPJPE) as metrics. To assess action classifica-
tion, we utilize per-clip and per-segment accuracy measurements.

6.2 Cross-Dataset Evaluation on 3D HPE
6.2.1 RGB based 3D HPE. We evaluate RGB-based 3D HPE
methods, including VIBE and HybrIK, on 3DPW, SLOPER4D and
our dataset(HmPEAR). The results are presented in Tab. 2. As VIBE
requires AMASS for its motion discriminator, we trained all models
from scratch with AMASS included. VIBE, trained on AMASS,
HmPEAR, achieves better PA-MPJPE performance on SLOPER4D
than the same model trained on AMASS, SLOPER4D. This under-
scores the quality and robustness of our proposed dataset. VIBE
trained on {AMASS, HmPEAR} also yields better results when
tested on 3DPW. However, this may be influenced by the domain
gap between the datasets. Following the setting in HybrIK’s origi-
nal paper, we use all additional datasets including COCO, H36M,
and MPI-INF-3DHP. Models trained on {+HmPEAR} demonstrate
competitive performance.

6.2.2 LiDAR Point cloud based 3D HPE. We evaluate the Li-
DARCap [42] on LiDARHuman26M(LH26m), SLOPER4D, and
our HmPEAR, the results are shown at Tab. 3. It is important to note
that the LH26m employs a solid-state LiDAR for point cloud data
collection, while both the SLOPER4D and our dataset utilize a me-
chanical LiDAR. This distinction may account for the performance
decline when models trained on the LH26m dataset are tested on
others, and vice versa. When comparing models trained on differ-
ent datasets, LiDARCap exhibits limited generalization capabilities.
Thought, the model trained on HmPEAR shows relatively better
performance.

6.3 Evaluation of Proposed Models for 3D HPE
6.3.1 Multi-modality based 3D HPE. As shown in Tab. 4, when
trained on the SLOPER4D dataset or our HmPEAR, PE-Proj demon-
strated a degraded performance. This suggests that PE-Proj may
be underperforming due to underfitting, as the SLOPER4D dataset
or a subset of HmPEAR may not provide sufficient information
for comprehensive learning. Notably, when SLOPER4D and our
dataset were combined for training, PE-Proj exhibited improvement
in performance and generalization across different testing sets. This
underscores the supplementary value our dataset contributes to cur-
rent 3D HPE datasets and the capabilities of the multi-modal model.

To investigate the contributions of different modalities, we further
set the feature in PE-Proj of imagery or point cloud to 0, denoted
as input type of ’PC’ and ’RGB’ in Tab. 4. Neither the PE-Proj(PC)
nor the PE-Proj(RGB) could achieve comparable performance as
the multi-modal model. The PE-Proj (PC) showed a more serious
performance degradation, which we suppose should be attributed to
the sparsity of the projected point cloud features.

6.3.2 Multi-task based 3D HPE. For PEAR-Proj, we recorded
the optimal models for 3D HPE and HAR, labeled as ’BestPE’ and
’BestAR’ respectively, as presented in Tab. 4. The PEAR-Proj, when
trained on HmPEAR, demonstrates results comparable to those of
PE-Proj trained on both SLOPER4D and HmPEAR. This highlights
the effectiveness of the cross-task synergies between 3D HPE and
HAR. We further visualize several 3D HPE results in Fig. 6 (please
zoom in for better visualization). The human SMPL models colored
yellow represent the ground truth, while the human SMPL models
colored blue are predictions by the PEAR-Proj.

6.4 Benchmark on HAR
We further evaluate several prevalent action recognition models
on HmPEAR, including both RGB-based and point cloud (PC)
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Table 4: Comparisons of proposed models in 3D HPE.

Method Inputs
Train

Test SLOPER4D Ours
MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓

PE-Proj

RGB+PC SLOPER4D 112.6 80.7 194.7 95.9
RGB+PC Ours 178.1 110.6 129.5 97.2
RGB+PC SLOPER4D+Ours 55.5 38.9 59.9 43.0

RGB SLOPER4D+Ours 67.2 46.0 68.6 53.1
PC SLOPER4D+Ours 85.5 58.7 110.8 75.9

PEAR-Proj(BestPE) RGB+PC Ours 80.0 44.2 62.0 44.6
PEAR-Proj(BestAR) RGB+PC Ours 79.6 45.2 62.4 45.9

Table 5: Benchmark on action recognition. PC: Point cloud data.

Method Input Test(Clip)↑ Test(Seg)↑
PSTNet PC 66.8 64.3
P4-Transformer PC 65.8 63.9

I3D RGB 57.6 55.5
SlowFast RGB 63.7 62.2
TimeSformer RGB 59.3 56.8
Uniformer RGB 63.7 61.6

AR-Proj RGB+PC 62.6 60.6
PEAR-Proj(BestPE) RGB+PC 66.1 64.1
PEAR-Proj(BestAR) RGB+PC 67.5 66.0

based methods. All RGB-based methods, including I3D [14], Slow-
Fast [30], TimeSformer [7] and UniFormer [44] were pre-trained on
the Kinetics-400 [14], utilizing a sequential image input of 8 frames
of 224x224 pixels. The final classification layers of these methods
are adapted for 40 categories. The results are presented in Tab. 5.
PC-based methods show better performance than RGB-based meth-
ods, we infer that there is a domain gap between our HmPEAR and
the Kinetics-400. Additionally, variations of lighting conditions in
the HmPEAR posed greater challenges to RGB-based methods. The
AR-Proj demonstrates comparable performances due to its multi-
modal inputs but is still constrained by its simplistic classification
head. With multi-modality inputs and multi-task output architecture,
PEAR-Proj trained on HmPEAR achieved SOTA performance in
Tab. 5.
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Figure 6: Visualization of 3D HPE results of PEAR-Proj.

6.5 Traning Analysis
We evaluate the performance of the PEAR-Proj at each epoch dur-
ing training on our HmPEAR. The PA-MPJPE and the 𝐴𝑐𝑐𝑐𝑙𝑖𝑝 are

recorded and depicted in Fig. 7. In the joint optimization of 3D HPE
and HAR, PA-MPJPE shows a faster decrease in the initial stages.
As the 3D HPE begins to yield plausible results, 𝐴𝑐𝑐𝑐𝑙𝑖𝑝 increases
more rapidly. 3D HPE and HAR are well entangled in PEAR-Proj.
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Figure 7: The results of validation performed in each training
epoch. Acc denotes the accuracy at the clip level.

7 DISCUSSION
7.1 Limitations
It is important to acknowledge that the process of optimizing human
poses and annotating actions in HmPEAR was resource-intensive.
Consequently, we are unable to provide a large-scale dataset cur-
rently. Additionally, the age of subjects in our dataset falls within
the range of 20 to 30, which may not provide sufficient diversity
for training larger models. Furthermore, our dataset accounts for
variations in time and lighting, but it does not yet include different
weather conditions. In our future work, we plan to expand the dataset
by incorporating a wider range of actions, more subjects, and diverse
scenes with various weather conditions.

7.2 Conclusion
In this work, we introduce HmPEAR, a dataset designed to bridge
the fields of 3D HPE and HAR. Through cross-dataset experiments,
we have demonstrated the quality and robustness of our dataset.
Furthermore, we proposed baseline models that incorporate multi-
modal inputs and multi-task outputs. Comprehensive experiments
and analyses showcased the ability of these models to leverage cross-
task synergies between 3D HPE and HAR, offering a promising
direction for future research on human pose and action analysis.
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