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A IMPLEMENTATION DETAILS

We implement our algorithm and all baselines based on the codebase of C-bet (Cui et al., 2022). For
WL-DM and V-BET, we consider only observations in the trajectory, and for V-DT and VIMA, we
consider both observations and actions in the trajectory, which aligns with the implementation stated
in the paper of C-bet (Cui et al., 2022), DT Chen et al. (2021b) and VIMA (Jiang et al., 2023). For
WL-DM, V-BET, and V-DT, we use the same transformer model as stated in C-bet, which contains
multiple self-attention layers to process video information and trajectory information at the same
time. For VIMA, we use alternating cross-attention and self-attention layers as described in its
paper (Jiang et al., 2023).

For all experiments, we set the learning rate to be 3 x 10~ and set the window size for the trajectory
to be 20 (for V-DT and VIMA, it means 20 observation-action pairs). For WL-DM, the window size
of future video segments is sampled from [20, 40]. As we use the codebase of C-bet, all methods
use the same action decoder, where we set the number of bins for action discretization to 32, and
the id of each cluster will also be used for the representation of skills for WL-DM. For the Franka
Kitchen environment (Gupta et al., 2020), we use decoders with 3 layers, and 3 heads and set the
hidden dimension to be 60 (for VIMA, it means in total 3 self-attention layers and 3 cross-attention
layers). We train all methods for 10 epochs. For WL-DM, «; is fixed to be 1 x 1072 and v is fixed
to be 1 x 10~! during the training process. For the Meta World environment (Yu et al., 2020), we
use decoders with 6 layers, and 6 heads and set the hidden dimension to be 120 (for VIMA, it means
in total 6 self-attention layers and 6 cross-attention layers). We train all methods for 30 epochs. For
WL-DM, q is set to be 0 in the beginning and fixed to be 1 x 103 after 10 epochs, and o is fixed
to be 10 during the training process.

B PROOF OF THEOREM 1

Theorem 1. If we have MI(hy; Vother |8, Veur) = 0, then Dgi, (7r(a|57 v)||7(als, chr)) = 0 for all
state-video pairs (s,v) € S x V with non-zero probability P(s,v) > 0.

Proof. By expanding the mutual information MI(Vother; fv, ]S, Veur), We can have the following
equality:

MI(Vother; hv7 CL|S, chr)

P(Votheu Py, 0,‘8, chr) }

=E 5,Ve E v, als,ve |:1
Ploveu ) EP(Votmer hualsveu) | 108 P(Vother |Sachr)P(hv7a|sachr)
:EP(S’chr)]EP(VOtherfhv:a‘svvcur) |:10g P(hv»a|57chr;Vother) —log P(hv, alS,chr):|

) FE |:10g P(hv|$7vcuravother) + P(a|hv7$7vcuravother):|
—EP(s,veur) P (Vother s ho,als,veur) | log P(hy$, Veur) — 10g Palhuy, $, Veur)

:]EP(s7vcu,7vothcr) |:DKL (P(hv |57 Veur) Vother) | |P(hv |57 chr))}
+ EP(hv,s,vcur,vother) |:DKL(P(a|hva S, Veurs Vother) | ‘P<a‘hv; S, chr)):|

== MI(hva Vother ‘57 chr) + MI(CL, Vother |57 Veur, hv)-

Similarly, we can also have:

MI(Vother; hva a|57 chr) = Ml(a7 Vother |57 chr) + MI(hv, Vother |S; Vcur) a)'

Combining these two equality, we can have:

MI(hv7 Vother |57 chr) + MI((Z, Vother Isa Veur, hv)
= MI(Q; Vother ‘57 chr) + Ml(hu; Vother |87 Veurs a)-

As a and vegher become independent with each other when h, is given, we have
MI(a; Vother |8, Veurs o) = 0. As we also have MI(hy; Vother |S, Veur, @) > 0, we can have the
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following inequality, which basically gives us the conditional version of data processing inequal-
ity (Cover, 1999):

Ml(hvy Vother ‘37 chr) 2 MI(G, Vother |87 chr)-

Since MI(a; Vother |$, Veur) > 0, if we can also have MI(hy; Vother |8, Veur) = 0, then we can
conclude that:

MI(a; Vother | S, Veur) = 0.
By expanding this mutual information term, we have:
MI(a; Vother |8, Veur)
“Ep (o v voiner) | DRLOT(a]3, Veur, Vouner) |7 (als, veur))

~E (o) [ Dic(w(als,) I (als, Vour))
=0.

Since the KL divergence is non-negative, for the above expectation to be zero, there must be for all
state-video pairs (s,v) € S x V with non-zero probability P(s,v) > 0, we have the KL divergence
to be zero, Dkr,(m(als, v)||m(a|s, Veur)) = 0, and conclude our proof. O

C VISUALIZATION
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Figure 3: Visualization of h, over timesteps.

In this section, we present the visualization result of our method. We visualize how h,, of WL-DL
changes over timesteps. As shown in Figure 3, we can observe that h,, of WL-DM tends to converge
at adjacent timesteps. It is worth noting that since we use a GPT-like transformer architecture as the
encoder, the information of video tokens and obs tokens are mixed together in h,. Furthermore, we
do not introduce any task-level information (such as task-level video segmentation annotations), so
the clustering results of h,, do not fully correspond to the task.
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D ADDITIONAL EXPERIMENTS

D.1 ABLATION: TYPES OF TASK COMBINATIONS

We further include an experiment about the effect of the number of task combinations in the training
set in the Meta World environment. In Section 5.2, we included 17 task combinations (7/3 split) in
the training set, and here we further consider cases where we have 15 task combinations (6/4 split)
and 20 task combinations in the training set. As shown Table 3, experimental results, WL-DM still
outperforms other baselines, further demonstrating the effectiveness of our method.

WL-DM  V-BET V-DT VIMA

6/4 1.93+026 1.34+078 0.86+0s84 0.43+078
7/3 (main exp) 2.57+09 1.18+0ss 1.24+086 0.87+0:s4
8/2 1.88+036 0.631+086 0.9410s8 0.81+061

Table 3: The performance of all methods with different number of task combinations in the training
set on MW tasks.

D.2 ABLATION: NUMBER OF VIDEOS FOR EACH TASK COMBINATION

We also include an experiment about the number of videos corresponding to each task combination
in the Meta World environment. In Section 5.2 we considered 20 different videos for each task
combination, and here we further consider cases with 40 different videos for each task combination.
As shown Table 4, experimental results, WL-DM still outperforms other baselines, which again
demonstrates the effectiveness of WL-DM.

WL-DM  V-BET V-DT VIMA

20 (main exp) 2.57+09 1.18+0ss 1.24+086 0.87+0s4
40 2211081 1.71x063 1.332090 1.09+063

Table 4: The performance of all methods with different number of videos for each task combination
on MW tasks.

D.3 MORE BASELINE: VIP

Tasks
Env Methods Avg
ODWB DOBW DBWO WBOD BDOW BDWO BWDO
WL-DM  3.33 2.00 2.00 2.00 2.67 2.00 4.00 2.57+09
V-BET 1.87 2.00 0.73 1.33 0.33 0.00 1.97  1.18+0ss
V-DT 1.33 2.13 1.23 1.93 0.37 0.83 0.83  1.24+o0s6
VIMA 1.80 1.00 0.37 0.37 1.17 0.57 0.83  0.87+o0s84
ViP 2.80 2.20 2.00 1.87 1.63 1.10 1.80  1.91+oss

MW

Table 5: The performance of all methods including ViP on all MW tasks.

We have added a new video-conditioned baseline: ViP (Chane-Sane et al., 2023). Although the
purpose of ViP is to learn a video-conditioned policy, it has a different setting from our method.
Thus, we have made the following modifications to adapt it to our setting:

* Since we do not consider human videos as input, we have removed the part that uses human
videos for pre-training.
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* Since we do not assume access to video labels, we have changed its supervised contrastive
learning part to unsupervised contrastive learning on robot videos.

We used the same codebase as WL-DM to implement ViP with minimal modifications, and con-
ducted experiments in the MetaWorld environment. The experimental results are shown in Table
5. ViP outperformed other baselines in this environment, demonstrating its effectiveness as video-
conditioned policy. However, its performance still lags behind WL-DM, which further demonstrates
the effectiveness of WL-DM.

D.4 MORE DATASET

To further evaluate our method, we construct script in a similar way of Lee et al. (2024) to convert
state-base observations of the original dataset of the Franka Kitchen environment into image-based
observation, and train all methods on this dataset. For WL-DM, we use a linear schedule for o,
where coef_start is set to be 0 and coef_end is set to be 1 x 104, and for a, we fix it tobe 1 x 10~?
during the training process. As shown in Table 6, WL-DM still outperforms other methods, which
further demonstrates the effectiveness of our method.

Tasks
Env Methods Avg
BTLS BTSH MBTS MBTH MLSH MBTL MKBH

WL-DM 243 1.63 2.63 2.57 2.27 2.27 2.5 2.33+0.74
V-BET 1.23 1.43 2.33 1.53 2.10 1.70 2.17  1.79+o0s0
V-DT 1.63 2.20 1.40 1.80 1.47 1.73 220  1.78+0s83
VIMA  0.87 1.27 2.20 1.80 1.80 1.43 223 1.66+080

FK(new)

Table 6: The performance of all methods on new FK dataset.

D.5 MORE BASE ALGORITHM

As WL-DM can be seen as a method using information bottleneck-based loss on top of V-BET. To
further validate our approach, we applied the information bottleneck-based loss of WL-DM to both
V-DT and VIMA and conducted experiments in the Meta World environment. As shown in Table
7, WL-DM+V-DT and WL-DM+VIMA both outperform its base algorithm, which further validates
the effectiveness of the proposed information bottleneck-based loss.

WL-DM  V-BET ‘ WL-DM+V-DT V-DT ‘ WL-DM+VIMA  VIMA
MW  2.57+o09 l.lSio.ss‘ 1.72+0.68 1.24:{:0,86‘ 1.84+0.84 0.87+0s84

Table 7: The performance of all methods on MW tasks, we applied the information bottleneck-based
loss on different base algorithms and compare their performance.

D.6 COEFFICIENT SELECTION

“2 01 1 10
aq
0.1 0.95+077  2.09+060 2.16+071
0.01 0.82+086 1.83+0s53 2.05+o062

0.001 1.03+080 1.79+041 2.57+090

Table 8: The performance of WL-DM with different coefficients on MW tasks.
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Coefficients for mutual information loss should be adjusted according to the environment. Specifi-
cally, we conducted a grid search to select optimal coefficients. Taking experiments in Meta World
environment as an example, the performance of different coefficients is shown in Table 8.
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