
A Derivations

Theorem 1. The weight matrices W and C used to compute VSML RNNs from Equation 4 can be
expressed as a standard RNN with weight matrix W̃ (Equation 5) such that

sabj ← σ(
∑
i

sabiWij +
∑
c,i

scaiCij) (8)

= σ(
∑
c,d,i

scdiW̃cdiabj). (9)

The weight matrix W̃ has entries of zero and shared entries given by Equation 6.

W̃cdiabj =


Cij , if d = a ∧ (d 6= b ∨ c 6= a).

Wij , if d 6= a ∧ d = b ∧ c = a.

Cij +Wij , if d = a ∧ d = b ∧ c = a.

0, otherwise.

(6 revisited)

Proof. We rearrange W̃ into two separate weight matrices∑
c,d,i

scdiW̃cdiabj (10)

=
∑
c,d,i

scdiAcdiabj +
∑
c,d,i

scdi(W̃ −A)cdiabj . (11)

Then assuming Acdiabj = (d ≡ b)(c ≡ a)Wij , where x ≡ y equals 1 iff x and y are equal and 0
otherwise, it holds that ∑

c,d,i

scdiAcdiabj =
∑
i

sabiWij . (12)

Further, assuming (W̃ −A)cdiabj = (d ≡ a)Cij we obtain∑
c,d,i

scdi(W̃ −A)cdiabj =
∑
c,i

scaiCij . (13)

Finally, solving both conditions for W̃ gives

W̃cdiabj = (d ≡ a)Cij + (d ≡ b)(c ≡ a)Wij , (14)

which we rewrite in tabular notation:

W̃cdiabj =


Cij , if d = a ∧ (d 6= b ∨ c 6= a).

Wij , if d 6= a ∧ d = b ∧ c = a.

Cij +Wij , if d = a ∧ d = b ∧ c = a.

0, otherwise.

(15)

Thus, Equation 8 holds and any weight matrices W and C can be expressed by a single weight matrix
W̃ .

14



0k 10k 20k 30k 40k
Gradient step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

ni
ng

 lo
ss

Learning on MNIST
(within distribution)

0k 10k 20k 30k 40k
Gradient step

Learning on Fashion MNIST
(out of distribution)

Cloned BP
Regular SGD

0k 10k 20k 30k 40k
Gradient step

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 a
cc

ur
ac

y

Learning on MNIST
(within distribution)

0k 10k 20k 30k 40k
Gradient step

Learning on Fashion MNIST
(out of distribution)

Cloned BP
Regular SGD

(a) Shallow network arrangement.
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Figure 11: Additional experiments with VSML RNNs implementing backpropagation. Standard
deviations are over 6 seeds.

B Additional Experiments

B.1 Learning algorithm cloning
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Figure 10: We are optimizing VSML RNNs to
implement neural forward computation such that
for different inputs and weights a tanh-activated
multiplicative interaction is produced (left), with
different lines for different w. These neural dy-
namics are not exactly matched everywhere (right),
but the error is relatively small.

VSML RNNs can implement neural forward
computation In this experiment, we optimize
the VSML RNN to compute y = tanh(x)w.
Figure 10 (left) shows how for different inputs
x and weights w the LSTM produces the cor-
rect target value, including the multiplicative
interaction. The heat-map (right) shows that low
prediction errors are produced but the target dy-
namics are not perfectly matched. We repeat
these LSTMs in line with Equation 7 to obtain
an ‘emergent’ neural network.

Learning Algorithm Cloning Curriculum
In principle, backpropagation can be simply
cloned on random data such that forward com-
putation implements multiplicative activation-
weight interaction and backward computation passes an error signal back given previous forward
activations. If the previous forward activations are fed as an input one could stack VSML RNNs that
implement these two operations to mimic arbitrarily deep NNs. By purely training on random data
and unrolling for one step, we can successfully learn on MNIST and Fashion MNIST in the shallow
setting. For deeper models, in practice, cloning errors accumulate and input and state distributions
shift. To achieve learning in deeper networks we have used a curriculum on random and MNIST data.
We first match the forward activations, backward errors, and weight updates for a shallow network.
Next, we use a deep network and provide intermediate errors by a ground truth network. Finally,
we remove intermediate errors and use the RNN’s intermediate predictions that are now close to
the ground truth. The final VSML RNN can be used to train both shallow (Figure 11a) and deep
configurations (Figure 11b).

B.2 Meta learning from scratch

Meta testing learning curves & sample efficiency In Figure 8 we only showed accuracies after
2k steps. Figure 12 provides the entire meta test training trajectories for a subset of all configurations.
Furthermore, in Figure 13 we show the cumulative accuracy on the first 100 examples. From both
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Figure 12: Meta testing learning curves. All 6 meta test tasks are unseen. VSML RNN has been
meta trained on MNIST, Fashion MNIST, EMNIST, KMNIST, and Random, excluding the respective
dataset that is being meta tested on. Standard deviations are over 32 seeds.
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Figure 13: Online learning on various datasets. Cumulative accuracy in % after having seen 100
training examples evaluated after each prediction starting with random states (VSML, Meta RNN,
HebbianFW, FWMemory) or random parameters (SGD). Standard deviations are over 32 meta test
training runs. Meta testing is done on the official test set of each dataset. Meta training is on subsets
of datasets excluding the Sum Sign dataset. Unseen tasks, most relevant from a general-purpose LA
perspective, are opaque.

figures, it is evident that learning at the beginning is accelerated compared to SGD with Adam. Also
compare with our introspection from Section 5.

Ablation: Projection augmentations In the main text (Figure 8) we have randomly projected
inputs during VSML meta training. When not randomly projecting inputs (Figure 14), generalization
of VSML is slightly reduced. In Figure 15 we have enabled these augmentations for all methods,
including the baselines. While VSML benefits from the augmentations, the Meta RNN, Hebbian
fast weights, and external memory baselines do not increase their generalization significantly with
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Figure 14: Same as figure Figure 8 and Figure 13 but with accuracies after having seen 2k training
examples and no random projections for all methods during meta training.

MNIST

Fashion MNIST

EMNIST

Kuzushiji MNIST

Random

Leave out MNIST

Leave out Fashion MNIST

Leave out EMNIST

Leave out Kuzushiji MNIST

Leave out Random

All datasets

N/A

M
et

a 
Tr

ai
ni

ng
 d

at
as

et
s

Meta Testing on MNIST Meta Testing on Fashion MNIST Meta Testing on EMNIST
VSML
MetaRNN
HebbianFW
FWMemory
ADAM shallow
ADAM deep

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy of first 2k examples

MNIST

Fashion MNIST

EMNIST

Kuzushiji MNIST

Random

Leave out MNIST

Leave out Fashion MNIST

Leave out EMNIST

Leave out Kuzushiji MNIST

Leave out Random

All datasets

N/A

M
et

a 
Tr

ai
ni

ng
 d

at
as

et
s

Meta Testing on Kuzushiji MNIST

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy of first 2k examples

Meta Testing on Random

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy of first 2k examples

Meta Testing on Sum Sign

Figure 15: Same as figure Figure 8 and Figure 13 but with accuracies after having seen 2k training
examples and random projections for all methods including baselines during meta training.
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Figure 17: Introspection of how output probabilities change after observing an input and its error at
the output units when meta testing on the full MNIST dataset. We highlight the input class � as
well as the predicted class© for 100 examples in sequence. The top plot shows the VSML RNN
quickly associating the input images with the right label, generalizing to future inputs. The bottom
plot shows the same dataset processed by SGD with Adam which learns significantly slower by
following the gradient.

those enabled. In Figure 16 we show meta test training curves for both the augmented as well as
non-augmented case.
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Figure 16: On the MNIST meta training example
from Figure 6 we plot the effect of adding the
random projection augmentation to VSML and
the Meta RNN. The Fashion MNIST performance
(out of distribution) is slightly improved for VSML
while the effect on the Meta RNN is limited.

Introspect longer meta test training run
Similar to Figure 9 we introspect how VSML
RNNs learned to learn after meta training on
the MNIST dataset. In this case, we meta
test for 100 steps by sampling from the full
MNIST dataset in Figure 17 without repeat-
ing digits. Compared to the previous setup,
learning is slower as there is a larger variety of
possible inputs. Nevertheless, we observe that
VSML RNNs still associate inputs with their
label rather quickly compared to SGD.

Omniglot In this paper, we have focused on
the objective of meta learning a general-purpose
learning algorithm. Different from most contemporary meta learning approaches we tested the dis-
covered learning algorithm on significantly different datasets to assess its generalization capabilities.
These generalization capabilities may affect the performance on standard few-shot benchmarks such
as Omniglot. In this section, we assess how VSML performs on those datasets where the tasks at
meta test time are similar to those during meta training.
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Figure 18: VSML on the Omniglot dataset.

On Omniglot, our experimental setting cor-
responds to the common 5-way, 1-shot set-
ting [25]: In each episode, we select 5 random
classes, sample 1 instance each, and show it to
the network with the label and prediction error.
Then, we sample a new random test instance
from one of the 5 classes and meta train to mini-
mize the cross-entropy on that example. At meta
test time we use unseen alphabets (classes) from
the test set and report the accuracy of the test
instance across 100 episodes.

The results (Figure 18) nicely demonstrate how
common baselines such as the Meta RNN [16,
10, 56] or a Meta RNN with external mem-
ory [42] work well in an Omniglot setting, yet
fail when the gap increases between meta train
and meta test, thus requiring stronger generalization (Figure 6, Figure 8). In contrast, VSML general-
izes well to unseen datasets, e.g. Fashion MNIST, although it does learn more slowly on Omniglot.
Finally, these new results demonstrate how VSML learns significantly faster on Omniglot compared
to SGD with Adam, thus highlighting the benefits of the meta learning approach adopted in this work.
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Figure 20: Convolutions are competitive to the standard fully connected setup.
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Figure 19: Short horizon bias.

Short horizon bias In this paper, we have ob-
served that VSML can be significantly more
sample efficient compared to backpropagation
with gradient descent, in particular for the first
few examples. The longer we unroll the VSML
RNNs, the smaller this gap becomes. In Fig-
ure 19 we run VSML for 12, 000 examples
(24, 000 RNN ticks). From this plot, it is evident
that at some point gradient descent overtakes
VSML in terms of learning progress. We call
this phenomenon the short horizon bias, where
meta test training is fast in the beginning but
flattens out at some horizon. In the current version of VSML we only meta optimize the RNN for
500 examples (marked by the vertical dashed line) starting with a random initialization, not explicitly
optimizing learning beyond that point, resulting in this bias. In future work, we will investigate
methods to circumvent this bias, for example by resuming from previous states (learning progress)
similar to a persistent population in previous meta learning work [20].

Convolutional Neural Networks VSML’s sub-RNNs can not only be arranged to fully connected
layers, but also convolutions. For this experiment, we have implemented a convolutional neural
network (CNN) version of VSML. This is done by replacing each weight in the kernel with a multi-
dimensional RNN state and replacing the kernel multiplications with VSML sub-RNNs. We use a
convolutional layer with kernel size 3, stride 2, and 8 channels, followed by a dense layer. On our
existing datasets, it performs similar to the fully connected architecture, as can be seen in Figure 20.
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Figure 21: Meta Training on CIFAR10 with a CNN
version of VSML.

We also applied our CNN variant to CIFAR10.
Note that in this paper we are interested in the
online learning setting (similar to the one of
Meta RNNs). This is a challenging problem on
which gradient descent with back-propagation
also struggles. Many consecutive examples
(> 105 steps) are required for learning. On-
line performance is generally lower than in the
batched setting which we do not explore here.
When meta training on CIFAR10 (Figure 21) we
observe that meta test-time learning on CIFAR
is initially faster compared to SGD while still
generalizing to Fashion MNIST. On the other
hand, with a sufficiently large meta training dis-
tribution, we would hope to see a similar generalization to CIFAR10 when CIFAR10 is unseen. As
visible in both plots, learning speed decreases at some point. This is probably due to the current
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short-horizon bias as discussed in the previous paragraph. Future improvements are necessary to
further scale VSML to harder learning problems.

C Other Training Details

LSTM implementation We implement the VSML RNN using A · B LSTMs with forward and
backward messages as described in Equation 7. Each LSTM ab at layer k is updated by

z
(k)
ab , h

(k)
ab ← fLSTM(z

(k)
ab , h

(k)
ab ,
−→m(k)

a ,←−m(k)
b ). (16)

The functions f−→m and f←−m are a linear projection to outputs of size N ′ = 8 and N ′′ = 8 respectively.
The state size is given by N = 64 for LA cloning and N = 16 for meta learning from scratch.
A(1) and B(K) are fixed according to the dataset input/output size and others are chosen freely as
described in the respective experiment. We found that averaging messages instead of summing them,
−→m(k)

b := 1
A(k−1)

∑
a′ f−→m(s

(k−1)
a′b ) and ←−m(k)

a := 1
B(k+1)

∑
b′ f←−m(s

(k+1)
ab′ ), improves meta training

stability.

Source code is available at http://louiskirsch.com/code/vsml.

C.1 Learning algorithm cloning

General training remarks During the forward evaluation of layers 1, . . . ,K we freeze the LSTM
state. During the backward pass, we only retain two state dimensions that correspond to the weight
and the bias. We also zero all other LSTM input dimensions in −→m and←−m except the ones that encode
the input x and error e. We maintain a buffer of VSML RNN states from which we sample a batch
during LA cloning and append one of the new states to the buffer. This ensures diversity across
possible VSML RNN states during LA cloning.

Batching for VSML RNNs In Section 3.2 we optimize a VSML RNN to implement backpropa-
gation. To stabilize learning at meta test time we run the RNN on multiple data points (batch size
64) and then average their states corresponding to w and b as an analogue to batching in standard
gradient descent.

Stability during meta testing To prevent exploding states during meta testing we also clip the
LSTM state between −4 and 4.

Bounded states in LSTMs In LSTMs the hidden state is bounded between (−1, 1). For learning
algorithm cloning, we’d like to support weights and biases beyond this range. This can be circum-
vented by choosing a constant, here 4, by which we scale w and b down to store them in the context
state. This is only relevant during learning algorithm cloning.

C.2 Meta learning from scratch

Hyperparameter search strategy The VSML hyper-parameters were searched using wandb’s [5]
Bayesian search during development. Parameters that lead to stable meta learning on MNIST were
chosen. The final parameters were not further tuned and doing so may lead to additional performance
gains. For the Meta RNN we picked parameters that matched VSML RNN as much as possible.
For our SGD and SGD with Adam baselines, we performed a grid search over the learning rate on
MNIST to find the best learning rates.

Meta Training Meta training is done across 128 GPUs using ES as proposed by OpenAI [38] for a
total of 10k steps. We use a population size of 1024, each population member is evaluated on one
trajectory of 500 online examples. We use noise with a fixed standard deviation of 0.05. To apply the
estimated gradient, we use Adam with a learning rate of 0.025 and betas set to 0.9 and 0.999. We
have run similar experiments (where GPU memory is sufficient) with distributed gradient descent
on 8 GPUs which led to less stable training but qualitatively similar results with appropriate early
stopping and gradient clipping.
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VSML RNN architecture Each sub-RNN has a state size of N = 16 and messages are sized
N ′ = N ′′ = 8. We only use a single layer between the input and prediction, thus A equals the
flattened input image dimension and B = 10 for the predicted logits. The outputs are squashed
between ±100 using tanh. We run this layer two ticks per input. States are initialized randomly from
independent standard normals.

SGD baseline architecture and learning rate The deep SGD baseline uses a hidden layer of size
160, resulting in approximately 125k parameters on MNIST to match the number of state dimensions
of the VSML RNN. We use a tanh activation function to match the LSTM setup. The tuned learning
rate used for vanilla SGD is 10−2 and 10−3 for Adam.

Meta RNN baseline We use an LSTM hidden size of 16 and an input size of |image| + |error|
where |error| corresponds to the output size. Inputs are padded to be equal size across all meta
training datasets. This results in about 100k to 150k parameters.

Hebbian fast weight baseline We compare to a Hebbian fast weight baseline as described in
Miconi et al. [25] where a single layer is adapted using learned synaptic plasticity. A single layer is
adapted using Oja’s rule by feeding the prediction errors and label as additional inputs.

Specialization through RNN coordinates In addition to the recurrent inputs and inputs from the
interaction term, each sub-RNN can be fed its coordinates a, b, position in time, or position in the
layer stack. This may allow for (1) specialization, akin to the specialization of biological neurons,
and (2) for implicitly meta learning neural architectures by suppressing outputs of sub-RNNs based
on positional information. In our experiments, we have not yet observed any benefits of this approach
and leave this to future work.

Meta learning batched LAs In our meta learning from scratch experiments, we discovered online
learning algorithms (similar to Meta RNNs [16, 56, 10]). We demonstrated high sample efficiency
but the final performance trails the one of batched SGD training. In future experiments, we also want
to investigate a batched variant. Every tick we could average a subset of each state sab across multiple
parallel running VSML RNNs. This would allow for meta learning batched LAs from scratch.

Optimizing final prediction error vs sum of all errors In our experiments we are interested in
sample efficient learning, i.e., the model making good predictions as early as possible in training.
This is encouraged by minimizing the sum of all prediction errors throughout training. If only good
final performance is desired, optimizing solely final prediction error or a weighting of prediction
errors is an interesting alternative to be investigated in the future.

Recursive replacement of weights Variable sharing in NNs by replacing each weight with an
LSTM introduces new meta variables VM . Those variables themselves may be replaced again by
LSTMs, yielding a multi-level hierarchy with arbitrary depth. We leave the exploration of such
hierarchies to future work.

Alternative sparse shared weight matrices In this paper, we have focused on a version of VSML
where the sparse shared weight matrix is defined by many RNNs that pass messages. Alternative
ways of structuring variable sharing and sparsity may lead to different kinds of learning algorithms.
Investigating these alternatives or even searching the space of variable sharing and sparsity patterns
are interesting directions for future research.

Meta Testing algorithm Meta testing corresponds to unrolling the VSML RNNs. The learning
algorithm is encoded purely in the recurrent dynamics. See Algorithm 2 for pseudo-code.

21



Algorithm 2 VSML: Meta Testing
Require: Dataset D = {(xi, yi)}, LSTM parameters VM
VL = {s(k)ab } ← initialize LSTM states ∀a, b, k
for (x, y) ∈ {(x1, y1), . . . , (xT , yT )} ⊂ D do . Inner loop over T examples
−→m(1)

a1 := xa ∀a . Initialize from input image x
for k ∈ {1, . . . ,K} do . Iterating over K layers

s
(k)
ab ← fRNN (s

(k)
ab ,
−→m(k)

a ,←−m(k)
b ) ∀a, b . Equation 7

−→m(k+1)
b :=

∑
a′ f−→m(s

(k)
a′b) ∀b . Create forward message

←−m(k−1)
a :=

∑
b′ f←−m(s

(k)
ab′) ∀a . Create backward message

ŷa := −→m(K+1)
a1 ∀a . Read output

e := ∇ŷL(ŷ, y) . Compute error at outputs using loss L
←−m(K)

b1 := eb ∀b . Input errors

D Other relationships to previous work

D.1 VSML as distributed memory

Compared to other works with additional external memory mechanisms [53, 29, 40, 27, 42], VSML
can also be viewed as having memory distributed across the network. The memory writing and
reading mechanism implemented in the meta variables VM is shared across the network.

D.2 Connection to modular learning

Our sub-LSTMs can also be framed as modules that have some shared meta variables VM and distinct
learned variables VL. Previous works in modular learning [49, 37, 19] were motivated by learning
experts with unique parameters that are conditionally selected to suit the current task or context. In
contrast, VSML has recurrent modules that share the same parameters VM to resemble a learning
algorithm. There is no explicit conditional selection of modules, although it could emerge based on
activations or be facilitated via additional attention mechanisms.

D.3 Connection to self-organization and complex systems

In self-organizing systems, global behavior emerges from the behavior of many local systems such
as cellular automata [8] and their recent neural variants [28, 52]. VSML can be seen as such a
self-organizing system where many sub-RNNs induce the emergence of a global learning algorithm.
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