
Supplementary Material for
“Permuton-induced Chinese Restaurant Process”

Masahiro Nakano, Yasuhiro Fujiwara, Akisato Kimura, Takeshi Yamada, Naonori Ueda
NTT Communication Science Laboratories, NTT Corporation

{masahiro.nakano.pr, yasuhiro.fujiwara.kh, akisato.kimura.xn,
takeshi.yamada.bc, naonori.ueda.fr}@hco.ntt.co.jp

A Details of permutation classes (Section 2.1)

We will give more details about the permutation classes mentioned briefly in the text. To identify a
permutation class, we introduce the notion of occurrences. We suppose that τ and σ are permutations
of size k and n, respectively. The occurrences of pattern τ in σ is a subsequence σi1 , . . . , σik that
is order-isomorphic to τ , that is, for all indices s, t ∈ [k], we have σis < σit ⇐⇒ τs < τt. We
denote τ < σ when σ contains τ , that is, τ is the occurrences of σ. One way to identify permutation
classes is to consider sets of permutations which are closed downward under this containment order.
Specifically, C is a class if for all π in C and all σ ≤ π, σ is also in C. We can specify permutation
classes as closures: if A is any set of permutations, its closure is the permutation class

Cl(A) := {σ : σ ≤ π for some π ∈ A}. (1)

However, it is often more popular to specify classes by what they do not contain; for any permutation
class C there is a unique antichain B (the details of which are given immediately below) such that

Av(B) := {σ : σ 6≥ π for all π ∈ B}. (2)

For convenience, we introduce useful notation for representing antichains as follows. Let p = p1 . . . pl
be a permutation and p̂ be obtained by inserting a single dash between some adjacent entries of p.
For example, we have p = 3142 and p̂ = 3-14-2. If there exists some subsequence σ(i1), . . . , σ(il)
of a permutation σ, then we have the following two properties. First, the relative order of the terms
in the subsequence σ(i1), . . . , σ(il) matches the relative order of the entries of σ, that is, for all
j, k ∈ {1, . . . , l}, we have that σ(ij) < σ(ik) if and only if pj < pk. Secondly, if pj and pj+1 are
not separated by a dash in p̂, then ij = ij+1 − 1, that is, σ(ij) and σ(ij+1) are adjacent in σ. If σ
does not contain the pattern p, we can regard that it avoids p. For example, consider σ = 546312.
The subsequence 5612 is an occurrence of the pattern 3-4-1-2 in σ, but is not an occurrence of the
pattern 3-41-2 since the 6 and 1 are non-adjacent in σ. In the following, we regard the antichain as
a set of patterns p and p̂, and introduce some permutation classes with antichains. Specifically, we
introduce the following specific classes of permutations:

• Separable permutation: Av(2413, 3142).

• Separable skew-merged permutation: Av(2143, 2413, 3142, 3412).

• Baxter permutation: Av(2-41-3, 3-14-2).

• 2-clumped permutation: Av(3-51-24, 3-51-42, 24-51-3, 42-51-3).

A.1 Separable permutation

The separable permutations are one of the most popular classes of permutations, which has a bijection
to hierarchical and diagonal rectangulations. They can be built from the permutation 1 by repeatedly
applying two operations, known as direct sum ⊕ and skew sum 	 which are defined, respectively, on
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permutations π of length m and σ of length n by

π ⊕ σ(i) =

{
π(i) (i = 1, . . . ,m)
σ(i−m) +m (i = m+ 1, . . . ,m+ n)

π 	 σ(i) =

{
π(i) + n (i = 1, . . . ,m)
σ(i−m) (i = m+ 1, . . . ,m+ n)

Separable permutations have a bijection to hierarchical and diagonal rectangulations [24, 5], a subset
of hierarchical partitioning, which are expressed as binary trees where nodes represent a vertical or
horizontal separation of a rectangle into two disjoint rectangles.

A.2 Separable skew-merged permutation

A permutation is said to be skew-merged if it is the union of an increasing subsequence and a
decreasing subsequence [25, 6]. In this paper, we specifically focus on the class of separable skew-
merged permutations. Separable skew-merged permutations have a bijection to a special subset of
hierarchical partitioning, in particular, those where only one rectangle is allowed to be further cut in
each layer. As we will see in the next section, this class of permutations has a very prospective shape
in its geometric representation.

A.3 Baxter permutation

The Baxter permutation has been introduced as a class of permutations in the context of fixed points
for the composition of commuting functions [10]. The Baxter permutations have a bijection to
diagonal rectangulations [26, 5, 14], which has a representative in which every rectangle’s interior
intersects the diagonal. Recently, the block-breaking process [18] has successfully used this class
of permutations to extend the stick-breaking process [23] for sequence partitioning to the stochastic
process for rectangular partitioning.

A.4 2-clumped permutation

This class of permutations has received particular attention in recent years due to its close relationship
with rectangular partitioning. This class of permutations has the following properties [20]. A pair σi
and σi+1 of a permutation σ is a descent of σ if σi > σi+1. For every descent of σ, a clump is defined
as a maximal set of consecutive values a, a+ 1, . . . , b with σi > b > a > σi+1 such that either all
elements of {a, a + 1, . . . , b} occur to the left of the descent or all elements of {a, a + 1, . . . , b}
occur to the right of the descent. For example, consider a permutation 167439285. The pair 92 is
just a descent of the permutation 167439285. Four clumps are associated with this descent, {3, 4},
{5}, {6, 7}, and {8}. A permutation σ is a k-clumped permutation if every descent of σ has at most
k associated clumps. The permutation 167439285 is k-clumped for any k ≥ 4 because four clumps
are associated with the descent 92 and fewer clumps are associated with any other descent of the
permutation. The 2-clumped permutation corresponds to the case k = 2. Interestingly, the 2-clumped
permutations have a bijection to generic rectangulations [20].

B Details of permuton designs for PCRP (Section 3.2)

In this section, we discuss the method of designing permuton for PCRP. First of all, in practical terms,
we recommend employing the uniform permuton γ(·) = Leb

(
{·}
)

because it is concise and useful.
More specifically, the advantages of PCRP with the uniform permuton can be listed as follows:

• PCRP with the uniform permuton can represent arbitrary rectangular partitioning, i.e.,
generic rectangulations.

• The inference algorithm can be easily derived.

On the other hand, the disadvantage of PCRP with the uniform permuton is that the probabilities to
all generic rectangulations are not uniform and has some bias, as mentioned in the body of the paper.
Therefore, from a theoretical point of view, in order to compensate for this disadvantage, we need to
design a permuton that is uniformly distributed for some class of rectangular partitioning.
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We start with the relationship between permutation classes, rectangular partitioning classes, and the
existing BNP model. Figure 1 illustrates the overall picture:

Figure 1: Relationship between permutation classes, rectangular partitioning classes and Bayesian
nonparametric models.

The inclusion relations in the set of figures represent the inclusion relations of the respective classes.
As shown by the existing BNP models such as BBP [18], RTP [19], and MP [22, 21], the most
important rectangular partitioning classes in terms of applications in relational data analysis are
hierarchical partitionings and generic rectangulations. Unfortunately, to the best of our knowledge,
however, the permutation class with the one-to-one correspondence with hierarchical partitioning
are still under development, and we do not know how to handle uniform hierarchical partitioning
explicitly through permuton. As for generic rectangulations, the permutation class with one-to-one
correspondence has been actively studied as 2-clumped permutations. However, to the best of our
knowledge, there is still no way to construct the corresponding permuton to uniform 2-clumped
permutations. This means that it is currently tricky to explicitly design a clever permuton that will
always restrict its samples to 2-clumped permutations. Although these facts are certainly regrettable,
the research on permutons is now undergoing rapid development, and it is strongly expected that
methods for handling hierarchical partitionings and generic rectangulations through permutons will
be developed in the near future. In the remainder of this section, we introduce several permutation
classes for which permuton construction methods are now explicitly known. And finally, we discuss
how permutons can be constructed for generic rectangulations from a practical point of view.

B.1 Explicit permuton representation for some permutation classes

Hierarchical partitioning with one place deeper in each layer - Uniform partitioning of this class
can be obtained by restricting the random permutation of coordinates in the CRP tables to uniform
separable skew-merged. Figure 2 shows illustrations of geometric representations of the separable
skew-merged permutations. If σn is a uniform separable skew-merged permutation of size n, then
γσn

converges in distribution to a deterministic permuton γ (See, e.g., Theorem 3.3 and Section 3.2.1
[9]): For all Borel measurable set A of [0, 1]× [0, 1], We have

γ(·) =
1√
2

Leb
({

(v, w) ∈ · : v + w = 0
})

+
1√
2

Leb
({

(v, w) ∈ · : v − w = 0
})
. (3)

Intuitively, the permuton γ has an X-shaped density on [0, 1]× [0, 1].

Figure 2: Examples of geometric representations of separable skew-merged permutation σ. From left
to right, |σ| = 100, |σ| = 200, |σ| = 400, |σ| = 800, and |σ| = 1600.

Hierarchical and diagonal rectangulation - Uniform hierarchical and diagonal rectangulations can
be expressed by uniform separable permutations. If σn is a uniform separable permutation of size
n, then γσn

converges in distribution to the Brownian separable permuton [8, 7, 16]. We consider a
Brownian path (Bt; t ≥ 0). Then, normalized Brownian excursion (et; 0 ≤ t ≤ 1) is defined by

et :=
1√

d1 − g1

∣∣Bg1+t(d1−g1)∣∣ , (4)
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where g1 = sup{t < 1; Bt = 0} and d1 = inf{t > 1; Bt = 0}. We additionally introduce a
function F assigning balanced independent signs {+,−} on the local minima of et, and call (et, F )
the signed Brownian excursion. See also Figure 3.

Figure 3: Illustration of signed Brownian excursion (et, F ).

Finally, using the Lebesgue preserving function ϕ : [0, 1] → [0, 1] such that (a, b) ⊂ [0, 1] is
an inversion if and only if the sign of mint∈[a,b]e(t) (i.e., F (mint∈[a,b]e(t))) is −, we obtain the
Brownian separable permuton:

γ(·) = Leb
{
t ∈ [0, 1]; (t, ϕ(t)) ∈ ·

}
. (5)

In addition, we would like to emphasize that one of the most essential properties of the Brownian
separable permuton is self-similarity (See Theorem 1.6 [16]).

Diagonal rectangulation - Uniform diagonal rectangulations can be expressed by uniform Baxter
permutations. Figure 4 shows illustrations of geometric representations of the Baxter permutations.
If σn is a uniform Baxter permutation of size n, then γσn converges in distribution to the Baxter
permuton [12]. The construction of the Baxter permuton is quite complicated, involving bipolar
orientations and walks in the quadrant, therefore we only sketch it here. Let et = (et,1, et,2) be a
2-dimensional Brownian excursion of correlation (−1/2) conditioned to stay in the non-negative
quadrant. We introduce a family of stochastic differential equations indexed by u ∈ R:{

dZ(u)(t) = I
[
Z(u)(t) > 0

]
det,2 − I

[
Z(u)(t) ≥ 0

]
det,1 (t ≤ u)

Z(u)(t) = 0 (t ≥ u)
(6)

and obtain solutionsZe. Then, we build the following relation≤Z :i ≤Z j ⇐⇒ {i < j andZ(i)(j) <
0} or {i > j and Z(i)(j) ≥ 0} or {i = j}. Finally, we obtain the Baxter permuton:

γ(·) = Leb
{
t ∈ [0, 1]; (t, φZe

(t)) ∈ ·
}
, (7)

where φZe
(t) = {u ∈ [0, 1];u ≤Ze

≤ t}.

Figure 4: Examples of geometric representations of Baxter permutation σ. From left to right,
|σ| = 100, |σ| = 200, |σ| = 400, |σ| = 800, and |σ| = 1600.

B.2 Indirect permuton representation for 2-clumped permutations

As described above, the construction of permutons for various permutation classes is still in the
process of development, and more permutons for various permutation classes are sure to be discovered
in the future. On the other hand, from the viewpoint of the practical use of relational data analysis,
we currently need some way to handle uniform 2-clumped permutations corresponding to generic
rectangulations. Motivated by this, we would like to discuss two possibilities.

(1) Enumeration of generic rectangulations - One way to obtain a uniform random 2-clumped
permutation is to use a enumeration algorithm that has been discovered very recently [17]. This
enumeration algorithm directly use generic rectangulations, according to the one-to-one correspon-
dence between 2-clumped permutations and generic rectangulations, and use the idea of insertion.
See Figure 6. The idea of insertion is to add a new rectangle into the bottom-right corner of the
rectangulation (Figure 6, left). Given the rectangulation with n blocks, we first define a set of points
that can become the top-left corner of the newly added rectangle. If any rectangle r of the given
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rectangulation is tangent to the lower boundary of the outer rectangle, we consider all edges that form
the left side of r and select one interior point (circles in Figure 6, second from left) from such edges.
Similarly, for any rectangle r tangent to the right boundary of the outer rectangle, we consider the set
of all edges forming the top edge of r and select one interior point (circles in Figure 6, second from
left) from such edges. Then we can choose one point v uniformly in the set of such interior points. If
v is a vertical insertion point, then the new rectangulation is obtained from the current rectangulation
by inserting a new rectangle in the lower right corner. In this case, the new rectangle will be located to
the right of v, with all rectangles tangent to the bottom boundary of the outer rectangle exactly above
it, and the new rectangle have all rectangles tangent to the vertical wall through v below v exactly to
the left. Similarly, if v is a horizontal insertion point, the new rectangulation can be obtained from the
current rectangulation by inserting a new rectangle in the lower right corner. Then the new rectangle
have all the rectangles that are below v and tangent to the right boundary of the outer rectangle exactly
to the left, and the new rectangle will have all the rectangles in the outer rectangle that are to the right
of v and tangent to the horizontal wall through v exactly to the top (Figure 6, right).

(2) Use of rejection sampling - Another way is to use rejection sampling to replace permuton, where
the descriptive method is not known but the probability ratio of each 2-clumped permutation sample is
known. Specifically, using γ′(·) = Leb

(
{·}
)

as the proposal distribution instead of the true permuton
γ, if the generated permutation does not result in a 2-clumped permutation, the sample is rejected
and the process is repeated until a 2-clumped permutation is generated. The advantage of this method
is that it is very easy to implement. On the other hand, the disadvantage is that as the length of the
permutation increases, the number of times it is rejected must increase, as Figure 5 implies. Therefore,
it is practical to use enumeration algorithms together when the size of the permutation becomes large.

Figure 5: Examples of geometric representations of uniform permutation σ. From left to right,
|σ| = 100, |σ| = 200, |σ| = 400, |σ| = 800, and |σ| = 1600.

C Details of projectivity and exchangeability for PCRP (Section 4)

This section provides a detailed explanation for Section 4, Intermediate level representation be-
tween SBP and CRP, in the main body of our paper. To emphasize again, just to be clear, the
discussion in this section is not primarily motivated by practical issues in relational data analysis, but
rather to be consistent with the theory of Bayesian nonparametrics. PCRP has become a probabilistic
model with two aspects: CRP table assignment and rectangular partitioning. As a model of CRP
table assignment, PCRP has projectivity and exchangeability, but as a rectangular partitioning model,
it loses projectivity and exchangeability. Therefore, we propose a strategy on how to restore the
projectivity and exchangeability to PCRP as a rectangular partitioning model. First, we introduce
a precise description of rectangular partitioning of matrices indicated by the index set and the
projectors that connect large matrices to small ones. Second, we identify two concepts that are
important properties of the BNP model, namely, exchangeability and projectivity. Thirdly, we point
out that PCRP does not preserve these conditions in terms of rectangular partitioning of matrices.
Finally, to solve this problem, we apply PCRP to the bridging condition of the exact BNP model of
rectangular partitioning.

Index set - Consider a set of rectangular partitioning of a matrix whose rows and columns are indexed
by natural numbers. As the index set E, we will deal with the set of matrices I = I(r) × I(c)

(I ∈ E), where I(r) and I(c) are sets of natural numbers, which correspond to the indices of the
rows and columns, respectively. We here emphasize that the orders of the rows and columns are not
fixed. Consider two pairs I = I(r) × I(c) and J = J (r) × J (c). We define the partial order I � J
as an inclusion, that is, I(r) ⊆ J (r) and I(c) ⊆ J (c). For example, I(c) = {1, 2, 6, 7} ⊂ J (c) =
{1, 2, 5, 6, 7}. We write (v, h)-cell to denote an element of I whose row and column are indexed by
v ∈ I(r) and h ∈ I(c), respectively.
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Figure 6: Illustration of enumeration of 2-clumped permutations via generic rectangulations.

Rectangular partitioning - Plainly, rectangular partitioning can be regarded as making a set of cluster
assignments of all cells of I such that, given suitable orders of rows I(r) and columns I(c), all clusters
form rectangle blocks. Let XI be the collection of all rectangular partitions of I . Each element
xI ∈ XI can be expressed as an equivalence relation xI : I(r) × I(c) × I(r) × I(c) → {0, 1} such
that xI(i, j, i′, j′) = 1 if and only if the (i, j)-cell and the (i′, j′)-cell are in the same cluster.

Projector - The mappingQJ,I : XJ → XI restricts a sample xJ ∈ XJ of rectangular partitioning of J
by keeping the I entries unchanged and removing the remaining entries. The projection of a measure
µI on (XI ,2XI ) is also defined by means of a push-forward, (QJ,IµJ)(AI) := µJ(Q−1J,IAI), for any
AI ∈ 2XI .

Now that we have defined a space of rectangular partitions whose dimension changes according to
the size of the input matrix, we will reveal a BNP model that can handle them in a unified manner.
We consider probability measures µI on (XI ,2XI ), and hope to find the family 〈µI , QJ,I〉I≺J∈E
which satisfy the following conditions.

(C1) Exchangeability: For any I = I(r) × I(c) ∈ E, and any permutation σ : I(r) → I(r) and
σ′ : I(c) → I(c), we consider I ′ = σ(I(r))× σ′(I(c)) ∈ E. Then, for any yI(r)×I(c) ∈ YI ,
we have µIX(xI(r)×I(c) ∈ X IX) = µI

′

X(xσ(I(r))×σ(I(c)) ∈ X I
′

X ).

(C2) Projectivity: For any pair I ≺ J ∈ E, we have µIX(xI) = µJX((QJ,IX )−1xI).

The model that satisfies the two conditions mentioned above is called an infinitly exchangeable
model, and is generally applied to machine learning as a BNP relational model. In fact, IRM [15],
the MP-based model [22, 21], the RTP-based model [19], and the BBP-based model [18], etc. all
satisfy these conditions. Our first concern here is whether PCRP really satisfies these conditions or
not. Unfortunately, unless we choose a special permuton, PCRP does not satisfy these conditions:

Remark C.1 PCRP using the uniform permuton, the Brownian separable permuton, and the Baxter
permuton does not satisfy the conditions of exchangeability (C1) and projectivity (C2). The reason
for this is that the addition of a new table in the CRP table assignment perspective modifies and
affects previous partitions in the rectangular partitioning perspective.

Therefore, in this section, PCRP is treated not as a probabilistic model on rectangular partitioning
of a matrix I , but as a probabilistic model on table assignment of rows I(r) and columns I(c) of I .
As the auxiliary space YI , we introduce the table assignments of I(r) and I(c) by CRP and a set of
coordinates on [0, 1] × [0, 1] of the tables. The corresponding probability model µIY on (YI ,2YI )

should be PCRP. The projector QJ,IY : YJ → YI restricts a sample yJ ∈ YJ (i.e., a sample of
table assignments of J (r) and J (c)) by keeping the I(r) and I(c) entries unchanged removing the
remaining entries, and deleting tables where no one is seated. Then, connecting the bridging state
in the auxiliary space YI with samples in XI , we consider the combined probability model over the
union space XI ∪ YI . To address probabilistic models on the union space XI ∪ YI , we modify the
previous probabilistic models µIX and µIY as follows:

µ̂IX(· ∈ 2XI∪YI ) := µIX(· ∩ XI) and µ̂IY (· ∈ 2XI∪YI ) := µIY (· ∩ YI). (8)

For simplicity of notation, the modified probabilistic models µ̂IX and µ̂IY will be denoted as original
µIX and µIY in the following. Finally, we consider a probabilistic model µI+ in form of

µI+ = αµIX + (1− α)µIY , (9)
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where 0 ≤ α ≤ 1 is a tunable real variable. Fortunately, we can treat this new model µI+ as a BNP
model, that is, there uniquely exists a projective limit of µI+ (I → N× N):

Theorem C.2 Two families 〈µIX , Q
J,I
X 〉I≺J∈E and 〈µIY , Q

J,I
Y 〉I≺J∈E of BNP models are described

as above. Then, there uniquely exists projective limit probability measures µEX and µEY of
〈µIX , Q

J,I
X 〉I≺J∈E and 〈µIY , Q

J,I
Y 〉I≺J∈E , respectively. Moreover, we consider the combined model

give by µI+ = αµIX + (1 − α)µIY ,, and construct a projective system 〈µI+, Q
J,I
+ 〉I≺J∈E , where

QJ,I+ : XI ∪ YI → XI ∪ YI is defined as

QJ,I+ (AJ) := QJ,IX (AJ ∩ XI) ∪QJ,IY (AJ ∩ YI), (10)

for any AJ ∈ 2XI∪YI . Then, there uniquely exists the projective limit probability measure µE+ of
the projective system 〈µI+, Q

J,I
+ 〉I≺J∈E (The projector of the measures is also defined employing a

push-forward) as:

µE+ = αµEX + (1− α)µEY . (11)

Furthermore, for any I = I(r)× I(c) ∈ E and any permutation σ : I(r) → I(r) and σ′ : I(c) → I(c),
the probability measure µI+ satisfies the exchangeability condition (C1).

Proof We show that (a) there uniquely exists the projective limits µEX and µEY of 〈µIX , Q
J,I
X 〉I≺J∈E

and 〈µIY , Q
J,I
Y 〉I≺J∈E , respectively, (b) there uniquely exists the projective limit µE+ of

〈µI+, Q
J,I
+ 〉I≺J∈E , and (c) the probability measure µI+ is exchangeable. As a sketch of the proof, the

former two issues can be obtained by applying Kolmogorov’s extension theorem [11] to the projective
system of each model. The last issue is immediately obtained from exchangeability of µIX and µIY .

(a) Unique existence of projective limits µEX and µEY - By definition, the projective system
〈µIX , Q

J,I
X 〉I≺J∈E has the projectivity condition (C1). More specifically, for any xI ∈ XI we

have

µIX(xI) = µJX((QJ,IX )−1xI). (12)

Thus, owing to Kolmogorov’s extension theorem, there uniquely exists the projective limit µEX . For
the projective system 〈µIY , Q

J,I
Y 〉I≺J∈E , we can ignore the random coordinates of CRP tables, and

then reduce PCRP to the standard CRP. Owing to the projectivity condition for CRP, we can obtain

µIY (yI) = µJY ((QJ,IY )−1yI), (13)

for any yI ∈ YI . As a result, we apply Kolmogorov’s extension theorem to 〈µIY , Q
J,I
Y 〉I≺J∈E , and

obtain the unique projective limit µEY .

(b) Unique existence of projective limit µE+ - Owing to Equations (12), (13), and (10), for any
zI ∈ XI ∪ YI , we have

µI+(zI) = αµIX(zI) + (1− α)µIY (zI)

= αµIX(zI ∩ XI) + (1− α)µIY (zI ∩ YI)
= αµJX((QJ,IX )−1(zI ∩ XI)) + (1− α)µJY ((QJ,IY )−1(zI ∩ YI))
= µJ+((QJ,I+ )−1zI). (14)

Therefore, we apply Kolmogorov’s extension theorem to the projective system 〈µI+, Q
J,I
+ 〉I≺J∈E ,

and obtain the unique projective limit µE+.

(c) Exchangeability of µI+ - By construction, the probability measure µIX is exchangeable, according
to the AHK representation. Moreover, similar to the standard CRP, the probability measure µIY is
also exchangeable. As a result, we can see that µI+ is exchangeable.

D Bayesian inference for PCRP-based relational model (Section 5)

In the main text, we have shown a Bayesian inference method for the PCRP-based relational model
using Gibbs sampling. As another method that is very easy to implement, we introduce here an
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inference method using the Metropolis–Hastings algorithm. The overall picture of the PCRP-based
relational model presented in the text is posted again in order to clarify the notations.

Relational model - The PCRP-based relational model is applied to the input observation matrix
Z = (Zi,j)N×M . We suppose that the input matrix Z consists of categorical elements, i.e., Zi,j ∈
{1, 2, . . . , D} (D ∈ N). The generative model can be constructed as follows. First, a random
table assignment is performed by a single CRP for all rows and columns of the input matrix.
We will denote by ri (∈ N) the index of the table to which the i-th row is assigned and by cj
(∈ N) the index of the table to which the j-th column is assigned. In the process of the table
assignment by CRP, whenever a new table is generated, random coordinates for that table on
[0, 1] × [0, 1] will be drawn from permuton γ. We will denote by Lt (∈ R2) the coordinates
assigned to the t-th table (t = 1, 2, . . . ,K), where K is the number of tables generated by CRP.
With the PCRP table assignments T := (r1, . . . , rN , c1, . . . , cM ) and the PCRP table coordinates
L := (L1, . . . , LK), they can be uniquely transformed into a rectangular partition of the input matrix
Z. For simplicity, we denote by R(T ,L) the rectangular partition derived from T and L. Each
block indexed by k (∈ N) in the rectangular partition R(T ,L) has a latent Dirichlet random variable
ϑk ∼ Dirichlet(α0) (k = 1, 2, . . . ,K), where α0 = (α0, . . . , α0) is a D-dimensional non-negative
hyper parameter. Each element Zi,j is drawn from the categorical distribution with the parameter
ϑk(i,j), where k(i, j) indicates the block index to which the entry with the i-th row and the j-th
column belongs. In summary, it can be viewed as a problem of estimating

• PCRP table assignments - T = (r1, . . . , rN , c1, . . . , cM ).
• PCRP table coordinates - L = (L1, . . . , LK).

given the input data and the hyper-parameters:

• Input matrix - Z := {Zi,j | i = 1, . . . , N, j = 1, 2, . . . ,M}, consisting of categorical
elements, Zi,j ∈ {1, 2, . . . , D} (D ∈ N).

• Permuton - γ, the probability measure on [0, 1]× [0, 1].
• Dirichlet distribution parameters - α0 > 0.
• Concentration parameter of PCRP - η > 0.

Then, the joint probability density is expressed as follows:

p (Z,T ,L | γ, α0, η) = pCRP(T | η) ·

(
K∏
t=1

pperm.(Lt | γ)

)
· pobs.(Z | R(T ,L), α0), (15)

where the first term pCRP(T | η) is the probability distribution for the standard CRP, the second term
pperm.(Lt | γ) is the probability density that Lt is drawn from the permuton γ, and the third term is

pobs.(Z | R(T ,L), α0) ∝
K∏
k=1

(
Γ(Dα0)

Γ(Dα0 +
∑D
d=1Nk,d)

D∏
d=1

Γ(α0 +Nk,d)
Γ(α0)

)
, (16)

where Nk,d denotes the number of elements in both the k-th block and the d-th category of the
categorical distribution.

One way to perform the Bayesian inference algorithms is to repeat the following two update rules:

• Update of table coordinates - For every table where one or more customers are seated,
t = 1, 2, . . . ,K, we generate new candidate table coordinates Lt from the permuton γ
(whose corresponding generic rectangulation also needs to be updated, as discussed in
Section 3 in the main text), and decide whether to accept or reject it by the Metropolis-
Hastings (MH) algorithm using Equation (15).

• Update of table assignments - For every row i = 1, . . . , N and column j = 1, . . . ,M of
the input matrix, we generate a new candidate table assignment ri and cj for itself from
the standard CRP prior except itself, and decide whether to accept or reject it by the MH
algorithm using Equation (15). If a new table is generated, then its random coordinate on
[0, 1]× [0, 1] is drawn from the permuton γ (whose corresponding generic rectangulation
also needs to be updated, as discussed in Section 3 in the main text).
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It is important to note that whenever the table coordinates of PCRP are updated, the corresponding
rectangular partitioning itself is also updated based on the PCRP generative model in Section 3 of the
main text.

E Details of the experimental setup (Section 5)

Datasets - We used four social network datasets [27]: (1) Wiki (top-left) [1], consisting of 7115
nodes and 103689 edges with diameter 7. (2) Facebook (top-right) [2], consisting of 4039 nodes and
88234 edges with diameter 8. (3) Twitter (bottom-left) [3], consisting of 81306 nodes and 1768149
edges with diameter 7. (4) Epinion (bottom-right) [4], consisting of 75879 nodes and 508837 edges
with diameter 14. For each data, we selected the top 1000 active nodes based on their interactions
with others; subsequently we randomly sampled 500× 500 matrix to construct the relational data, as
in [13]. For model comparison, we held out 20% cells of the input data for testing, and each model
was trained by the MCMC using the remaining 80% of the cells.

Relational models - We compare the PCRP-based relational model with the BNP stochastic block
models based on rectangular partitioning: (1) IRM [15]: We employ the product of CRPs, whose
concentration parameters are drawn from the Gamma(1, 1) prior, as in [13, 18]. (2) MP [22]: the
intermediate random function of the AHK representation is drawn from the MP, the budget parameter
of which is set to 3, as in [13, 18]. (3) RTP [19]: we combine the product of SBPs (also used in the
aforementioned IRM) and the RTP is combined to construct the AHK representation, as in [18]. For
the concentration parameters of SBPs are drawn from the Gamma(1, 1) prior. (4) BBP [18]: For all
parameters, we used the default settings provided by the original code [18].

Ethical perspective

Our work does not encourage unethical aspects of machine learning technologies. We are genuinely
pursuing the development of Bayesian methods in a number of application settings. However, as is
often the case with clustering methods, our proposal can be misused in a variety of situations. Since
the PCRP-based relational model may reveal hidden clusters from any input matrices, unanticipated
cues can lead to unanticipated results. This issue highly depends on the choice of input data. Therefore,
what is suitable as input data needs to be carefully considered from an ethical perspective.
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