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ABSTRACT

Evaluating robot control policies is difficult: real-world testing is costly, and
handcrafted simulators require manual effort to improve in realism and generality.
We propose a world-model-based policy evaluation environment (WorldGym), an
autoregressive, action-conditioned video generation model which serves as a proxy
to real world environments. Policies are evaluated via Monte Carlo rollouts in
the world model, with a vision-language model providing rewards. We evaluate a
set of VLA-based real-robot policies in the world model using only initial frames
from real robots, and show that policy success rates within the world model highly
correlate with real-world success rates. Moreoever, we show that WorldGym is
able to preserve relative policy rankings across different policy versions, sizes, and
training checkpoints. Due to requiring only a single start frame as input, the world
model further enables efficient evaluation of robot policies’ generalization ability
on novel tasks and environments. We find that modern VLA-based robot policies
still struggle to distinguish object shapes and can become distracted by adversarial
facades of objects. While generating highly realistic object interaction remains
challenging, WorldGym faithfully emulates robot motions and offers a practical
starting point for safe and reproducible policy evaluation before deployment.1

1 INTRODUCTION

Robots can help humans in ways that range from home robots performing chores (Shafiullah et al.,
2023; Liu et al., 2024) to hospital robots taking care of patients (Soljacic et al., 2024). One of
the major road blocks in the development robots lies in evaluation — how should we ensure that
these robots will work reliably without causing any physical damage when deployed in the real
world? Traditionally, people have used handcrafted software simulators to develop and evaluate robot
control policies (Tedrake et al., 2019; Todorov et al., 2012; Erez et al., 2015). However, handcrafted
simulation based on our understanding of the physical world can be limited, especially when it
comes to hardcoding complex dynamics with high degrees of freedom or complex interactions such
as manipulating soft objects (Sünderhauf et al., 2018; Afzal et al., 2020; Choi et al., 2021). As a
result, the sim-to-real gap has hindered progress in robotics (Zhao et al., 2020; Salvato et al., 2021;
Dulac-Arnold et al., 2019).
With the development of generative models trained on large-scale video data (Ho et al., 2022; Villegas
et al., 2022; Singer et al., 2022), recent work has shown that video world models can visually emulate
interactions with the physical real world, by conditioning on control inputs in the form of text (Yang
et al., 2023; Brooks et al., 2024) or keyboard strokes (Bruce et al., 2024). This brings up an interesting
question — could video world models be used to emulate robot interactions with the real world,
hence being used as an environment to evaluate robot policies in the world model before real-world
testing or deployment?
Learning a dynamics model from past experience and performing rollouts in the learned dynamics
model has been extensively studied in model-based reinforcement learning (RL) (Hafner et al., 2019;
Fonteneau et al., 2013; Zhang et al., 2021; Kaiser et al., 2019; Yu et al., 2020). However, most of the
existing work in model-based RL considers single-task settings, which puts itself at a disadvantage
compared to model-free RL, since learning a dynamics model can be much harder than learning a
policy in the single-task setting. Nevertheless, we make the important observation that

1See videos and code in supplementary materials.
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While there can be many tasks and policies, there is only one physical world in
which we live that is governed by the same set of physical laws.

This makes it possible to learn a single world model that, in principle, can be used as an interactive
environment to evaluate any policies on any tasks.

Actions

Generated video

Validation frame

OOD language

OOD image
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Initial frame and
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Octo OpenVLA

WorldGym

VLM as Reward

Figure 1: Overview of WorldGym. Given an
initial frame and an action sequence predicted
by a policy, WorldGym uses a world model to
predict future frames, serving as a generative
simulator. WorldGym then passes the gener-
ated rollout to a VLM which provides rewards.
WorldGym can easily be used to test policies
on OOD tasks and environments by changing
the input language instruction or directly mod-
ifying the initial image.

Inspired by this observation, we propose a
world-model-based policy evaluation environment
(WorldGym), as shown in Figure 1. WorldGym
first combines knowledge of the world across di-
verse environments by learning a single world model
that generates videos conditioned on actions. To
enable efficient rollouts of policies which predict
different-length action chunks, WorldGym aligns
its diffusion horizon length with policies’ chunk
sizes at inference time. With video rollouts from
the world model, WorldGym then uses a vision-
language model (VLM) to determine tasks’ success
from generated videos.
Our experiments show that WorldGym can emulate
end-effector controls across different control axes
highly effectively for robots with different morpholo-
gies. We then use the world model to evaluate VLA-
based robot policies by rolling out the policies in
the world model starting from real initial frames,
and compare their success rates (policy values) in
WorldGym to those achieved in real-world exper-
iments. Our result suggests that policy values in
WorldGym are highly correlated with policy perfor-
mance in the real world, and the relative rankings of different policies are preserved.
Furthermore, as WorldGym requires only a single initial frame as input, we show how we can easily
design out-of-distribution (OOD) tasks and environments and then use WorldGym to evaluate robot
policies within these newly “created” environments. We find that modern robot policies still struggle
to distinguish some classes of objects by their shape, and can even be distracted by adversarial facades
of objects.
Although simulating realistic object interactions remains challenging, we believe WorldGym can
serve as a highly useful tool for sanity check and testing robot policies safely and reproducibly before
deploying them on real robots. Key contributions of this paper include:
• We propose to use video world model to evaluate robot policies across different robot morphologies,

and perform a comprehensive set of studies to understand its feasibility.
• We propose flexibly aligning diffusion horizon length with policies’ action chunk sizes for efficient

rollouts of a variety of policies over hundreds of interactive steps.
• We show a single world model learned on data from diverse tasks and environments can enable

policy value estimates that highly correlate with real-world policy success rates.
• We demonstrate the ease of testing robot policies on OOD tasks and environments within an

autoregressive video generation-based world model.

2 PROBLEM FORMULATION

In this section, we define relevant notations and review the formulation of offline policy evaluation
(OPE). We also situate OPE in practical settings with partially observable environments and image-
based observations.
Multi-Task POMDP. We consider a multi-task, finite-horizon, partially observable Markov
Decision Process (POMDP) (Puterman, 2014; Kaelbling et al., 1995), specified by M =
(S,A,O,G,R, T, E , H), which consists of a state space, action space, observation space, goal
space, reward function, transition function, emission function, and horizon length. A policy π inter-
acts with the environment for a goal starting from an initial state g, s0 ∼ G, producing a distribution
π(·|st, g) over A from which an action at is sampled and applied to the environment at each step
t ∈ [0,H]. The environment produces a scalar reward rt = R(st, g), and transitions to a new state
st+1 ∼ T (st, at) and emits a new observation ot+1 ∼ E(st+1). We consider the sparse reward setting
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with R(sH , g) ∈ {0, 1} and R(st, g) = 0, ∀t < H , where g is a language goal that defines the task.
Data is logged from previous interactions into an offline dataset D = {g, s0, o0, a0, ..., sH , oH , rH}.
The value of a policy π can be defined as the total expected future reward:

ρ(π) =E[R(sH , g)|s0, g ∼ G, at ∼ π(st, g),
st+1 ∼ T (st, at), ∀t ∈ [0, H]]. (1)

Estimating the value of ρ(π) from previously collected data D, known as offline policy evaluation
(OPE) (Levine et al., 2020), has been extensively studied (Thomas & Brunskill, 2016; Jiang & Li,
2016; Fu et al., 2021; Yang et al., 2020; Thomas et al., 2015b). However, existing work in OPE
mostly focuses on simulated settings that are less practical (e.g., assumptions about full observability,
access to ground truth states).
Model-Based Evaluation. Motivated by characteristics of a real-robot system such as image based
observations, high control frequencies, diverse offline data from different tasks/environments, and
the lack of access to the ground truth state of the world, we consider the use of offline data to learn
a single world model T̂ (·|o,a), where o represents a sequence of previous image observations and
a represents a sequence of next actions. A sequence of next observations can be sampled from the
world model o′ ∼ T̂ (o,a). With this world model, one can estimate the policy value ρ(π) with
Monte-Carlo sampling using stochastic rollouts from the policy and the world model:

ρ̂(π) =E[R̂([o0, ..., oH ], g)|s0, g ∼ G,a ∼ π(o, g),

o′ ∼ T̂ (o,a),o = o′], (2)
where R̂ is a learned reward function. Previously, model-free policy evaluation may be more
preferable since in a single task setting, dynamics models are potentially harder to learn than policy
values themselves, and doing rollouts in a dynamics model may lead to compounding errors (Xiao
et al., 2019). However, we make the key observations that while there can be many tasks and many
policies, there is only one physical world that is governed by the same set of physical laws. As a
result, learning a world model can benefit from diverse data from different tasks and environments
with different state spaces, goals, and reward functions. More importantly, a world model can be
directly trained on image-based observations, which is often the perception modality of real-world
robots.

3 BUILDING AND EVALUATING THE WORLD MODEL

In this section, we first describe our implementation of world model training and inference. Then, we
discuss how we validate our world model’s performance prior to rolling out real robot policies within
it in the next section.

3.1 BUILDING THE WORLD MODEL

First, we describe the architecture and key implementation details, followed by our proposed inference
scheme for policy rollouts.

3.1.1 WORLD MODEL TRAINING

We train a latent Diffusion Transformer (Peebles & Xie, 2023) on sequences of frames paired with
actions, using Diffusion Forcing (Chen et al., 2024) to enable autoregressive frame generation. Per-
frame robot action vectors are linearly projected to the model dimension and added elementwise to
diffusion timestep embeddings, the result of which is used to condition the model through AdaLN-
Zero modulation, similar to class conditioning in Peebles & Xie (2023). To ensure the world model is
fully controllable by robot actions, we propose to randomly drop out actions for entire video clips, and
use classifier-free guidance to improve the world model’s adherence to action inputs. Conditioning
on previous frames’ latents is achieved via causal temporal attention blocks interleaved between
spatial attention blocks, as in Bruce et al. (2024); Ma et al. (2025). See Appendix A for additional
implementation details.

3.1.2 ROLLING OUT A POLICY IN THE WORLD MODEL

Our policy evaluation pipeline operates through an iterative loop between the robot policy and the
world model. First, the world model is initialized with an initial observation o0, which is then passed
as input to a policy π which produces a chunk of actions apred. The actions are passed back to the
world model, which predicts a new frame for each action in apred. The latest frame produced by the
world model is then returned to the policy as its next input observation.

3
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Figure 2: Qualitative evaluation of the world model on Bridge, RT-1, VIOLA, and Berkeley
UR5. In each group, top row shows the ground truth video from the real robot. Bottom row shows
the generated video from the world model conditioned on the same actions as the original video. The
world model closely follows the true dynamics across different robot morphologies.

Since different robot policies output a different number of actions at once (Kim et al.; Brohan
et al., 2022; Chi et al., 2023), WorldGym needs to support efficient prediction of a chunk of videos
conditioned on a chunk of (variable length) actions. By virtue of being trained with Diffusion
Forcing, as well as our usage of a causal temporal attention mask, we can flexibly control how many
frames our world model denoises in parallel at inference time, i.e. its prediction horizon length.
We propose setting the horizon equal to the policy’s action chunk size, |apred|. This has the benefit
of efficient frame generation for policies with differing action chunk sizes, all from a single world
model checkpoint. This contrasts with prior diffusion world models for robotics, such as Cosmos
(NVIDIA et al., 2025), which, due to being trained with bidirectional attention and a fixed context
length, must always denoise 16 latent frames in parallel. This constraint results in wasted compute
for action chunk sizes less than the context length and unrealized parallelism for chunk sizes which
are larger. On the other hand, our design allows parallelism to flexibly match the number of actions,
thus utilizing hardware more effectively (see Appendix F.2).

3.1.3 VLM AS REWARD

We opt for GPT-4o (OpenAI et al., 2024) as a reward model, passing in the sequence of frames from
the generated rollout and the language instruction (see the prompt for the VLM in Appendix B). In
certain cases where both policies being evaluated fail to perform a task end-to-end, it is still helpful to
get signals on which policy is closer to completing a task. We can specify these partial credit criteria
to the VLM to further distinguish performance between different policies, which has been done
manually using heuristics in prior work (Kim et al.). We validate the accuracy of VLM-predicted
rewards in Appendix B.2.

3.2 EVALUATING THE WORLD MODEL

Next, we describe how we validate the performance of our world model prior to policy evaluation,
ensuring that it exhibits realistic robot movement and adheres to arbitrary action controls.

3.2.1 AGREEMENT WITH VALIDATION SPLIT

First, we test the world model’s ability to generate similar videos as running a robot in the real world.
Specifically, we take the validation split of initial images from the Open-X Embodiment dataset, and
predict videos conditioned on the same action sequences as in the original data. Figure 2 shows that
the generated rollouts generally follow the real-robot rollouts across different initial observations and
different robot morphologies.

3.2.2 END-EFFECTOR CONTROL SWEEPS

Next, we need a way to evaluate whether our world model can emulate arbitrary action sequences,
beyond the kinds of action sequences present in the training data. We propose hard-coding a robot

4
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Figure 3: Results on end-effector control across action dimensions. Generated videos closely follow
the gripper controls such as open and close the gripper as well as moving in different directions
starting from any initial observation frame. Results for control sweeps on the Bridge robot can be
found in Figure 16 in Appendix E.1.
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(a) Per-Task Task Success Rates. Each point repre-
sents a task from Table 5, with different policies being
represented by different shaped markers. There is a
strong correlation (r = 0.78) between policy perfor-
mance in our world model (y-axis) and within the real
world (x-axis).
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(b) Mean Success Rates. Robot policies’ mean suc-
cess rates in the world model differ by an average of
only 3.3% between from the real world, near the stan-
dard error range for each policy. Relative performance
rankings between RT-1-X, Octo, and OpenVLA are
also preserved.

Figure 4: Success rates of modern VLAs, as evaluated within WorldGym and the real world.

control policy by only moving one action dimension at once (and keeping the other action dimensions
as zeros). The robot is then expected to move along that one action dimension with non-zero input,
corresponding to moving in different horizontal and vertical directions as well as open and close
its gripper. Figure 3 shows that the generated videos faithfully follow the intended end-effector
movement,2 despite the fact that these particular sequences of controls are not present in the training
data.

4 EVALUATING POLICIES IN WORLDGYM

Having established confidence in the world model’s performance, we now use the world model
to evaluate policies. We begin by rolling out three recent VLA policies in WorldGym and check
whether WorldGym reflects real-world success. (Section 4.1). We then assess whether relative
policy performance is preserved, comparing different versions, sizes, and training stages of the
same models (Section 4.2). Finally, we explore WorldGym’s potential to test policies on out-of-
distribution (OOD) tasks and environments (Section 4.3), including novel instructions and altered
visual contexts.

4.1 CORRELATION BETWEEN REAL-WORLD AND SIMULATED POLICY PERFORMANCE

Qualitative Evaluation. To ensure WorldGym is useful for policy evaluation, we test whether
policy performance within the world model is similar to that of the real world. To do so, we perform
a direct comparison with the Bridge evaluation trials from OpenVLA (Kim et al.). Specifically, the
OpenVLA Bridge evaluation consists of 17 challenging tasks which are not present in the Bridge V2
(Walke et al., 2023) dataset. We use WorldGym to evaluate the three open-source policies evaluated

2Results are best viewed as videos in the supplementary material.
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Figure 5: Qualitative policy rollouts on Bridge and Google Robot for RT-1-X, Octo, and OpenVLA.
OpenVLA rollouts often lead to more visual successes than the other two policies across environments.
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Figure 6: Success Rates of different model
versions in WorldGym. We evaluate different
generations of Octo and OpenVLA in the world
model, showing that WorldGym assigns higher
score to larger and more recent versions.
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Figure 7: Success Rate within WorldGym
throughout training. We train a video-based
policy and a diffusion policy from scratch and
evaluate it within our world model as it trains.
We see that mean task success rate within the
world model increases with additional training
steps.

in Kim et al.: RT-1-X (O’Neill et al., 2023), Octo (Octo Model Team et al., 2024), and OpenVLA
(Kim et al.). For each task and each policy, Kim et al. perform 10 trials, each with randomized initial
object locations. We obtain the first frame of the recorded rollouts for all trials of all tasks. We
then simulate each of the 10 real-world trials by using the original initial frame to roll out the policy
within the world model as described in Section 3.1.2. We show qualitative rollouts in WorldGym
from different policies in Figure 5, which shows that rollouts from OpenVLA generally perform
better than rollouts from RT-1-X and Octo on the Bridge robot (top two rows). We further show that
WorldGym can be easily used to perform rollouts in other environments with other robots, such as
the Google Robot (bottom row in Figure 5).
Quantitative Evaluation. Using the simulated rollouts from WorldGym, we then compute the
average task success rate similar to Kim et al., and plot the success rate for each task for each policy in
Figure 4a. We find that real-world task performance is strongly correlated with the task performance
reported by the world model, achieving a Pearson correlation of r = 0.78. While per-task policy
success rates within WorldGym still differ slightly from those in the real world (see Table 5), the
mean success rates achieved by these policies within WorldGym are quite close to the their real-world
values, as shown in Figure 4b. The success rates differ by an average of only 3.3%, with RT-1-X
achieving 18.5% in the real world vs 15.5% in the world model, Octo achieving 20.0% vs 23.82%,
and OpenVLA achieving 70.6% vs 67.4%, respectively. See quantitative results of evaluating the
three policies on the Google Robot in Appendix E.2

4.2 POLICY RANKING WITHIN A WORLD MODEL

Now we test whether WorldGym can preserve policy rankings known a priori. We evaluated policies
across different versions, sizes, and training stages within WorldGym on the OpenVLA Bridge

6
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evaluation task suite, and found their in-world-model performance rankings to be consistent with
prior knowledge of their relative performance.
Different VLAs with Known Ranking. First, we average success rates across all 17 tasks and find
that the relative performance rankings between RT-1-X, Octo, and OpenVLA are the same (Figure
4b) within both WorldGym and the real-world results reported in OpenVLA (Kim et al.).
Same Policies across Versions and Sizes. We further examine whether WorldGym preserves
rankings between different versions and sizes of the same policy. In particular, we compare Octo-
Small 1.5 against Octo-Base 1.5, and OpenVLA v0.1 7B, an undertrained development model, against
OpenVLA 7B. As shown in Figure 6, the larger and more recent models outperform their smaller
or earlier counterparts within WorldGym, consistent with the findings of real-world experiments
performed in Octo Model Team et al. (2024) and Kim et al.. This provides additional evidence that
WorldGym faithfully maintains relative rankings even across model upgrades.
Same Policy across Training Steps. To examine whether WorldGym provides meaningful signals
for policy training, hyperparameter tuning, and checkpoint selections, we train two robot policies
from scratch. Building on prior evidence of WorldGym’s effectiveness in evaluating VLA-based
policies, we extend our study to two additional families: a video prediction–based policy (UniPi) (Du
et al., 2023a) and a diffusion-based policy (DexVLA) (Wen et al., 2025), both trained on the Bridge
V2 dataset (see Appendix C and Appendix D). We evaluate checkpoints of the video prediction policy
at 2K, 8K, 12K, and 18K steps, and the diffusion policy at 10K, 20K, 40K, and 60K steps.
As shown in Figure 7, WorldGym tends to assign higher success rates to checkpoints as they increase
in training steps, consistent with the lower mean squared error these policies achieve on their
validation splits. This demonstrates WorldGym’s ability to preserve policy rankings across models
with different amounts of training compute.
Thus, we have shown how WorldGym can be used to obtain reasonable policy rankings. In particular,
for the VLA-based policies we evaluate, we arrive at the same conclusions as real-world experiments
about their relative performances. Notably, this is achieved all without the manual effort of setting
up real robot evaluation environments and monitoring policy rollouts. While real-world evaluation
can sometimes take days to complete, all WorldGym rollouts reported here can be completed in under
an hour on a single GPU and require only initial images for each trial.

4.3 OUT-OF-DISTRIBUTION INPUTS

In this section, use WorldGym to explore policies’ performance on both OOD input images and OOD
language instructions.

Pick red

Pick blue

Figure 8: OOD: Color Classification. We add
place red and blue pieces of paper on a table,
and ask the policies to “pick red” or “pick blue”
(OOD image and language). OpenVLA excels,
picking the correct colored paper in all trials,
whereas all other policies score near chance.

OOD Image Input. Using modern image genera-
tion models like Nano Banana (Google, 2025), we
can easily generate new input images to initialize our
world model with. We evaluate robot policies under
three OOD settings: unseen object interaction, dis-
tractor objects, and object classification (see detailed
results in Table 6).

• Unseen Objects: We edit a scene to contain both
a carrot and an orange, asking the policy to pick up
the orange (Figure 9). OpenVLA grabs whichever
object is closer until we edit the carrot’s color to
be red, after which it always grabs the orange cor-
rectly. This suggests that it struggles to distinguish
carrots and oranges by their shape.

• Distractor Objects: We use the image editing
model to add a computer displaying an image of
a carrot (Figure 10, left). We see that OpenVLA
mistakenly to grabs the carrot on the computer
screen in 15% of trials, suggesting limited 3D/2D
object distinction.

• Classification: We add a piece of paper on each
side of a desk. We first color one paper red and
the other blue and instruct the model to “pick
red”/“pick blue” (Figure 8). OpenVLA achieves a perfect score, always moving towards the

7
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Put orange on plate

Image
Model

Put orange on plate

Legend

Image Edit Prompt

Robot Policy Instruction

(a) add an 
orange

Put orange on plate

Image
Model

(b) swap carrot 
and orange

Image
Model

(c) turn the 
carrot red

Figure 9: OOD: Unseen object. We use Nano
Banana (Google, 2025) to add an orange to the
world model’s initial frame. When both the or-
ange and the carrot are present, (a-b) OpenVLA
grabs whichever is closer. After (c) editing the
carrot’s color to red, however, the orange is cor-
rectly picked up.

Pick Carrot

Pick Carrot

Pick Carrot

Pick Cat

Pick Cat

Pick Taylor Swift

Pick Square

Figure 10: OOD: Failure modes. Left: We add
a laptop to the scene, which displays an image
of a carrot. In 15% trials, OpenVLA grabs the
laptop instead of the real carrot. Right: We test
the ability distinguish to between squares and
circles, celebrity faces, and cats and dogs, with
all policies scoring near-chance.

A) Put yellow corn in red cup B) Put plate on drying rack

C) Move pot with grapes into drying rack D) Move the pot to the counter

Figure 11: OOD Language Instructions. We pick a set of tasks from the OpenVLA Bridge
evaluation suite and modify the language instruction, e.g. changing the the target object and/or its
goal destination.

correct color. Octo and RT-1, on the other hand, typically move towards whichever paper is closer,
scoring no better than chance. We also try more advanced classification tasks, (Figure 10, right),
but find that the policies all score near-chance.

For a more quantitative study, we modify all the initial frames of the OpenVLA’s Bridge evaluation
task suite to include random OOD distractor items (see Figure 12), keeping the language instructions
the same. We then repeat the rollout procedure from Section 4.1 in order to measure the degree to
which the addition of unrelated objects affects policy performance. We find that all the tested VLAs
degrade in performance, with OpenVLA being the most robust of the three (Figure 13).
OOD Language. Additionally, even without access to an image editing model, we demonstrate that
WorldGym can be used to evaluate policies’ performance on OOD language instructions. Starting
from a set of initial frames from the tasks listed in Table 5, we modify each task’s language instruction,
e.g. changing the target object and/or its goal state. Figure 11 shows rollouts from OpenVLA for
these OOD language tasks. We can then easily obtain success rates for these unseen tasks by rolling
them out within WorldGym, finding that OpenVLA generalizes best (see Table 1). Policies struggle
across the board on the “Move the pot to the counter” task, with only OpenVLA achieving a single
success. We suspect that OpenVLA consistently outperforms Octo and RT-1-X on OOD language
tasks due to its strong VLM backbone and richer robot pretraining dataset (Kim et al.).
The ability to use WorldGym to quickly design and evaluate policies within OOD tasks and envi-
ronments thus leads us to new findings about policies’ strengths and weaknesses. Future research
could be prioritized to address these issues, all without spending extra effort to set up additional
experiments in the real world or within handcrafted simulators.
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Task RT-1-X Octo OpenVLA

Move Pot Into Drying Rack 3 0 7
Move The Pot To The Counter 0 0 1
Put Plate On Drying Rack 4 2 8
Put Yellow Corn In Red Cup 1 2 3

Table 1: Policy Evaluations Results on Bridge
OOD Language Tasks. “Move the pot to the
counter” is perhaps the most challenging because
the Bridge dataset does not contain trajectories
which move objects outside of the sink basin.
OpenVLA has the strongest performance, which
we attribute to its more powerful language model
backbone.

Image
Model

add 
distractions

Image
Model

add 
distractions

Figure 12: OOD Distraction Examples. We use
Nano Banana (Google, 2025) to add distractions
to every image of the OpenVLA Bridge task
suite. The resulting change in mean success rates
can be seen in Figure 13.
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Effect of OOD Distractors on Success Rates
World Model
World Model (with OOD input image)

Figure 13: Effect of OOD Distractors. We use
an image editing model to add distractor objects
to the Bridge evaluation suite, finding that RT-1-
X drops in performance by 51%, Octo by 83%,
and OpenVLA by 41.5%, making OpenVLA the
most robust to distractors. See Table 7 for details.

5 RELATED WORK

Action-Conditioned Video Generation. Previous work has shown that video generation can
simulate real-world interactions (Yang et al., 2023; Brooks et al., 2024), robotic plans (Du et al., 2024;
2023b), and games (AI et al., 2024; Bruce et al., 2024; Valevski et al., 2024; Alonso et al., 2024) when
conditioned on text or keyboard controls. Prior work (NVIDIA et al., 2025) has begun to explore
applying video generation to simulating complex robotic controls. We take this a step further by using
video-based world models to quantitatively estimate robot policy success rates. WorldGym draws
architectural inspirations from prior work on video generation such as Diffusion Forcing (Chen et al.,
2024) and Diffusion Transformers (Peebles & Xie, 2023), but experiments with variable horizon
lengths to support efficient long-horizon rollouts for policies with a variety of action chunk sizes.
Policy Evaluation. Off-policy and offline policy evaluation has long been studied in the RL
literature (Farajtabar et al., 2018; Jiang & Li, 2015; Kallus & Uehara, 2019; Munos et al., 2016;
Precup et al., 2000; Thomas et al., 2015a). Some of these approaches are model-based, learning a
dynamics model from previously collected data and rolling out the learned dynamics model for policy
evaluation (Fonteneau et al., 2013; Zhang et al., 2021; Yu et al., 2020; Hafner et al., 2020). Since
learning a dynamics model is challenging and subject to accumulation of error, a broader set of work
has focused on model-free policy evaluation, which works by estimating the value function (Le et al.,
2019; Duan & Wang, 2020; Sutton et al., 2009; 2016) or policy correction (Kanamori et al., 2009;
Nguyen et al., 2010; Nachum et al., 2019). WorldGym performs model-based policy evaluation,
but proposes to learn a single world model on image-based observation that can be used to evaluate
different policies on different tasks. SIMPLER (Li et al., 2024) aims to evaluate realistic policies by
constructing software-based simulators from natural images and showed highly correlated curves
between simulated evaluation and real-robot execution, but it is hard to evaluate OOD language and
image input in SIMPLER without significant hand engineering of the software simulator. Li et al.
(2025) proposes to evaluate robot policies in a world model in a specific bi-manual manipulation
setup, whereas WorldGym focuses on evaluating policies across diverse environments and robot
morphologies while enabling testing OOD language and image inputs.

6 CONCLUSION

We have presented WorldGym, a world-model-based environment for evaluating robot policies.
WorldGym emulates realistic robot interactions and shows strong correlations between simulated
evaluation and real-world policy outcomes. WorldGym further provides the flexibility for evaluating
OOD language instructions and performing tasks with an OOD initial frame. While not all interactions
emulated by WorldGym are fully realistic, WorldGym serves as an important step towards safe and
reproducible policy evaluation before deployment.
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Appendix
A ADDITIONAL DETAILS OF THE AUTOREGRESSIVE DIFFUSION

TRANSFORMER

Implementation details: We use the VAE from Stable Diffusion 3 Esser et al. (2024) to independently
encode 256×256 image frames into latent space. We employ a 16-layer transformer with 1024 hidden
dimensions and 16 attention heads. We train the world model on a diverse set of data sources,
including 9 of the robot datasets from Open-X Embodiment whose action spaces can be unified,
such as Bridge V2 (Walke et al., 2023) and RT-1 (Brohan et al., 2022). We encode actions from a
7-dimensional vector, using the 6-dimensional end-effector position and binary gripper state as our
action space. Action spaces from different robots are aligned by normalizing each component’s 10th-
and 90th-percentile values to those of the RT-1 dataset. We train with a context length of 20 frames;
for longer rollouts, we condition on a sliding window of the last 20 frames.

Hyperparameter Value
Total parameters 609 M
Image Resolution 256×256
DiT Patch Size 2
Input Channels 16
Hidden Size 1024
Layers 16
Attention Heads 16
MLP Ratio 4
Optimizer AdamW (weight decay = 0.002, β1 = 0.9, β2 = 0.99)
Learning rate 8e-5
Batch size 16
Action dimension 7
Training hardware 2xA100 80GB
Training steps 300k
Diffusion noise schedule sigmoid
Sampling timesteps 10
Prediction target v

Table 2: Hyperparameters for training WorldGym’s video prediction model.

Algorithm 1 WorldGym policy evaluation loop.

Require: World model T̂ with training context length Ntrain and prediction horizon h, rollout length
Nrollout, policy π with action chunk size |apred|, reward model R̂, initial observation o0, goal g
o← [o0]
a← [anull]
n = 0
while n ≤ Nrollout do

apred ← π(on, g)
for i = 0 to ⌈|apred|/h⌉ − 1 do

actx ← a−Ntrain:

octx ← o−Ntrain:

opred ← T̂ (octx,actx||apred,h·i:h·(i+1)) ▷ predict a block of h frames in parallel
o← o||opred ▷ concatenate generated block of observation frames with observation history
a← a||apred,h·i:h·(i+1)

end for
n← n+ nchunk

end while
r ← R̂(o)

Algorithm 1 shows the detailed algorithm for performing a sliding window rollout of a policy with
action chunk size |apred| and a world model with prediction horizon h. Note that in practice we
always choose h = |apred| at inference time.
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B DETAILS OF VLM AS REWARD

B.1 PROMPT FOR VLM AS REWARD

Prompt GPT-4o as Reward R̂. Note that has_partial is True if the chosen task has a partial
credit criteria, which is the case for some tasks used in OpenVLA (Kim et al.).

Here i s a s e q u e n c e o f f r am es from a r o b o t p o l i c y which has
been r o l l e d o u t i n a video − g e n e r a t i o n − based wor ld model .

I need your h e l p d e t e r m i n i n g whe the r t h e p o l i c y i s s u c c e s s f u l
. How s u c c e s s f u l l y does t h e r o b o t c o m p l e t e t h e f o l l o w i n g
t a s k ?

I n s t r u c t i o n : { i n s t r u c t i o n }
{ r u b r i c . s t r i p ( ) }

P r o v i d e b r i e f r e a s o n i n g (2 −3 s e n t e n c e s ) . Then o u t p u t EXACTLY
one f i n a l l i n e :

F i n a l Score : X
Where X i s { ’ one o f 0 , 0 . 5 , o r 1 ’ i f h a s _ p a r t i a l e l s e ’0 o r

1 ’ } .
No e x t r a numbers a f t e r t h a t l i n e .
Note : S i n c e t h i s v i d e o was g e n e r a t e d by a v i d e o p r e d i c t i o n

model ( c o n d i t i o n e d on r o b o t a c t i o n s ) , i t may c o n t a i n some
a r t i f a c t s due t o t h e v i d e o model c a p a c i t y .

If there is a partial credit criteria, the rubric is:

0 = F a i l u r e : l i t t l e o r no p r o g r e s s toward : "{ i n s t r u c t i o n }"
0 . 5 = P a r t i a l : "{ p a r t i a l _ d e s c }" a c h i e v e d BUT t h e i n s t r u c t i o n

n o t f u l l y comple t ed
1 = S u c c e s s : I n s t r u c t i o n f u l l y comple t ed ( c o u n t s even i f

p a r t i a l a l s o t r u e )

Otherwise, the rubric is:

Sco re r u b r i c :
0 = F a i l u r e : i n s t r u c t i o n "{ i n s t r u c t i o n }" n o t comple t ed .
1 = S u c c e s s : i n s t r u c t i o n comple t ed .

B.2 VALIDATING VLM SUCCESS PREDICTIONS

To determine whether a VLM can serve as a reliable reward function, we pass rollout videos from
the RT-1 dataset, along with the prompts constructed from the templates above, as inputs to query
GPT-4o. We use whether the task is successful according to the RT-1 data (validation split) as the
ground truth. Table 3 shows that GPT-4o achieves high true positive and true negative rate for real
Table 3: Performance of VLM as reward (mean and standard error across 4 runs) on videos from
RT-1 (Brohan et al., 2022) using ground truth task success labels. GPT-4o achieves high true positives
and true negatives. Notably, GPT-4o as reward has very low false positive rate, which is especially
important for not over-estimating a policy value.

RT-1 Success RT-1 Fail

VLM Success 0.81 ± 0.14 (TP) 0.03 ± 0.05 (FP)
VLM Fail 0.19 ± 0.14 (FN) 0.97 ± 0.05 (TN)
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videos, indicating that it is an effective evaluator of task success. Notably, GPT-4o achieves very low
false positives (i.e., the rollout is a failure but the VLM thinks it is a success), which is highly useful
in policy evaluation.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C ARCHITECTURE AND TRAINING DETAILS OF VIDEO BASED POLICY

Our video-based policy follows the framework of UniPi Du et al. (2023a), combining a language-
conditioned video prediction model with an inverse dynamics model.
The video prediction module shares the same architecture as our world model, but replaces the
conditioning on robot actions at each timestep with language instructions. For language conditioning,
we employ the pretrained and frozen UMT5-xxl encoder Chung et al. (2023) to obtain token-level
embeddings. These embeddings are aggregated via mean pooling to form a 4096-dimensional
instruction representation. This representation is projected to match the model dimensionality and is
used to modulate the diffusion transformer through adaptive layer normalization (adaLN-Zero). In
this way, task semantics are directly integrated into the video prediction process. We train our video
generation model for 180k steps on Bridge V2 (Walke et al., 2023). The visualization of the video
generation policy on validation scenes can be seen in Figure 14.
The inverse dynamics model predicts the action sequence given a short video clip of 10 frames. Each
frame is encoded with a ResNet 50 backbone He et al. (2015), producing per-frame features ft. To
capture motion, we compute both ft and temporal differences ∆ft = ft+1 − ft, concatenate them,
and flatten across the clip. The resulting representation is passed through an MLP to predict 10× da
outputs, corresponding to the action dimension da at each timestep. Input images are normalized
with ImageNet statistics, and the model is trained with mean squared error on ground-truth actions.
The inverse dynamics model is trained independently on the Bridge V2 dataset for 200k steps.

C.1 VALIDATION VISUALIZATION OF LANGUAGE CONDITIONED VIDEO GENERATION MODEL

Figure 14: Validation Visualization of the language-conditioned video generation model on Bridge-
V2. At inference, the model takes a UMT5-xxl instruction encoding and an initial frame, then predicts
the next nine frames to complete the task.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D ARCHITECTURE AND TRAINING DETAILS OF DIFFUSION POLICY

We followed the recipe of DexVLA (Wen et al., 2025) for training the diffusion policy. We load
the Qwen2-VL-2B (Wang et al., 2024) backbone and the pre-trained control head, and perform an
adaptation on BridgeV2 using LoRA (Hu et al., 2022), which inserts low-rank adapter matrices inside
the backbone’s attention and feed-forward blocks. These matrices along with the policy head are the
only trainable modules in the adaptation stage. This preserves the backbone’s general vision-language
competence, and makes adaptation compute and memory efficient. We fine-tune the model with
adapters on Bridge-V2 for 60k steps. During training, we rescale the actions to (−1, 1) to match the
diffusion target range.
DexVLA’s policy head is trained as a denoising diffusion model with the standard ϵ-prediction
DDPM objective, i.e. at each update Gaussian noise is added to ground-truth action sequences at a
randomly sampled diffusion step and the network is trained to predict that noise using an MSE loss.
At inference, actions are generated with DDIM in a small number of steps, progressively denoising
from a Gaussian initialization to a trajectory. We choose AdamW for the optimizer, using standard
decoupled weight decay which applies decay to linear/attention weights, but exclude biases and
LayerNorm parameters.
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E ADDITIONAL EXPERIMENTAL RESULTS

E.1 ADDITIONAL RESULTS ON REAL-ROBOT VIDEOS
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Figure 15: Additional Qualitative Evaluation of simulating actions from different robots. The
world model generally generates the video that look very similar to the original video conditioned on
the same actions that produced the original video in the real world.

Right Right Left Right Right Left

Backward Backward Forward Backward Backward Forward

Close Open Close Close Open Close

Figure 16: Additional End-Effector Control Sweep on Bridge. We simulate different gripper
controls along different action dimensions corresponding to left-right, forward-backward, and gripper
open-close. The world model generally generates videos that follow the actions.
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E.2 ADDITIONAL RESULTS ON GOOGLE ROBOT

To assess the generalizability of WorldGym, we performed rollouts with different policies on Google
Robot. For our analysis, we chose a subset of tasks from the RT-1 dataset (Brohan et al., 2022).
A partial score of 0.5 was assigned to a rollout if the robot attempted to reach the target location.
OpenVLA again outperformed Octo and RT-1-X (see Table 4). However, in this environment Octo
and RT-1-X are narrowly behind. The strong performance of RT-1-X might be due to a higher
proportion of Google Robot trajectories than WidowX in its pretraining mix.
Table 4: Policy rollouts on Google Robot (RT-1 subset). OpenVLA outperforms RT-1-X and Octo,
but by a smaller margin than on the Bridge dataset.

Task # Trials RT-1-X
# Successes

Octo
# Successes

OpenVLA
# Successes

Close Bottom Drawer 10 9 8.5 6
Open Left Fridge Door 10 4.5 3.5 4
Pick Blue Chip Bag 10 5 5.5 9
Place Redbull Can Upright 10 1.5 3 3.5
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E.3 DETAILED RESULTS ON THE OPENVLA BRIDGE EVALUATION TASKS

Table 5: Detailed Bridge Evaluation Results comparing RT-1-X (O’Neill et al., 2023), Octo (Octo
Model Team et al., 2024), and OpenVLA (Kim et al.) on the Bridge evaluation suite of tasks from
Kim et al.. Real-world task success rates are taken directly from (Kim et al.), WorldGym success
rates are from rolling out policies within our world model.

Task # Trials RT-1-X Octo OpenVLA

Real-world
# Successes

WorldGym
# Successes

Real-world
# Successes

WorldGym
# Successes

Real-world
# Successes

WorldGym
# Successes

Put Eggplant into Pot (Easy Version) 10 1 1 5 1 10 7
Put Eggplant into Pot 10 0 0 1 2 10 6
Put Cup from Counter into Sink 10 1 3 1 3 7 9
Put Eggplant into Pot (w/ Clutter) 10 1 0.5 3.5 3.5 7.5 8
Put Yellow Corn on Pink Plate 10 1 3 4 6 9 9.5
Lift Eggplant 10 3 2 0.5 1.5 7.5 7.5
Put Carrot on Plate (w/ Height Change) 10 2 0.5 1 3 4.5 6
Put Carrot on Plate 10 1 0 0 1 8 4
Flip Pot Upright 10 2 3 6 1 8 5
Lift AAA Battery 10 0 1 0 0 7 4
Move Skull into Drying Rack 10 1 2 0 3 5 5
Lift White Tape 10 3 1 0 1 1 6
Take Purple Grapes out of Pot 10 6 5 0 2 4 4
Stack Blue Cup on Pink Cup 10 0.5 0 0 0 4.5 6
Put {Eggplant, Red Bottle} into Pot 10 2.5 0.5 4 5 7.5 9
Lift {Cheese, Red Chili Pepper} 10 1.5 2.5 2.5 2.5 10 10
Put {Blue Cup, Pink Cup} on Plate 10 5 1.5 5.5 5 9.5 8.5

Mean Success Rate 18.5±4.0% 15.5±3.4% 20.0±5.3% 23.82±4.3% 70.6±6.1% 67.4±4.9%

We report the mean success rate across tasks with standard error (SE) computed as

SE =
sd(r1, . . . , rT )√

T
,

where ri is the per-task success rate and T is the number of tasks.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

E.4 DETAILED RESULTS ON OOD IMAGE EVALUATION TASKS

Table 6: Detailed Bridge OOD Image task results. OpenVLA appears to be more robust across the
different OOD settings of object generalization, distractions and classification.

Category Task # Trials RT-1-X
# Successes

Octo
# Successes

OpenVLA
# Successes

Object Generalization Pick up Orange (Carrot closer to Gripper) 10 1 1 4
Object Generalization Pick up Orange (Orange closer to Gripper) 10 3 4 9
Object Generalization Pick up Orange (Replace Carrot with Radish) 10 1 4 10
Distractor Robustness Pick up Carrot (With Computer on side) 10 6 7 9
Distractor Robustness Pick up Carrot (Computer closer to gripper) 10 3 1 8
Classification Pick {Red, Blue} 20 8 10 20
Classification Pick {Circle, Square} 20 8 10 12
Classification Pick {Taylor Swift, Snoop Dogg} 20 7 10 11

Table 7: Policy rollout performance comparison in the presence of unrelated distractions.
OpenVLA is more robust to distractions over RT-1-X and Octo. However, all policies suffer significant
performance drop in the presence of distractors.

Task # Trials RT-1-X
# Successes

Octo
# Successes

OpenVLA
# Successes

Put Eggplant into Pot (Easy Version) 10 1 1 3
Put Eggplant into Pot 10 0 0 6
Put Cup from Counter into Sink 10 0 1 8
Put Eggplant into Pot (w/ Clutter) 10 0 0 4
Put Yellow Corn on Pink Plate 10 0 0 2
Lift Eggplant 10 0 1 7
Put Carrot on Plate (w/ Height Change) 10 0 0 2
Put Carrot on Plate 10 0 2 4
Flip Pot Upright 10 0 0 0
Lift AAA Battery 10 1 0 1
Move Skull into Drying Rack 10 3 0 5
Lift White Tape 10 0 0 4
Take Purple Grapes out of Pot 10 7 0 3
Stack Blue Cup on Pink Cup 10 0 0 4
Put {Eggplant, Red Bottle} into Pot 10 0 0 5
Lift {Cheese, Red Chili Pepper} 10 1 2 6
Put {Blue Cup, Pink Cup} on Plate 10 0 0 3

Mean Success Rate 7.6±4.3% 4.1±1.7% 39.4±5.1%
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F ABLATION STUDIES

F.1 DATASET SIZE ANALYSIS

Table 8: Dataset ablation. Larger training dataset improves all three metrics comparing generated
videos and ground-truth validation videos. ↑ means higher the better.

Subset (Bridge V1) Full (Bridge V2)

MSE ↓ 0.015 0.010
LPIPS ↓ 0.131 0.073
SSIM ↑ 0.735 0.827

We measure MSE, LPIPS, and SSIM on generated videos from a model that is trained on less video
data (Bridge V1 (Ebert et al., 2021)) and compare with a model that is trained on more data (Bridge
V2 (Walke et al., 2023)). Table 8 shows that the model trained on more data leads to improvements
in all three metrics.

F.2 PARALLELISM EFFICIENCY ANALYSIS

Table 9: Parallelism efficiency comparison. Inference time for generating 40-frame video rollouts
on an A100 GPU with different horizon lengths, demonstrating the efficiency gains from parallel
frame denoising.

Prediction Horizon Time (s)

h = 1 93
h = 4 33

Increasing the horizon from 1 to 4 frames achieves a 2.8× speedup. This is particularly useful for
evaluating robot policies with differing action chunk sizes. For instance, OpenVLA (Kim et al.)
predicts just a single action per frame, while Octo (Octo Model Team et al., 2024) predicts 4 actions
per frame. Using the same world model checkpoint, we can improve the efficiency of rollout
generations by matching the horizon to the policy’s chunk size at inference time.
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