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ABSTRACT

Test-time adaptation (TTA) has demonstrated significant potential in addressing
distribution shifts between training and testing data. Open-set test-time adaptation
(OSTTA) aims to adapt a source pre-trained model online to an unlabeled target
domain that contains unknown classes. This task becomes more challenging when
multiple modalities are involved. Existing methods have primarily focused on uni-
modal OSTTA, often filtering out low-confidence samples without addressing the
complexities of multimodal data. In this work, we present Adaptive Entropy-aware
Optimization (AEO), a novel framework specifically designed to tackle Multimodal
Open-set Test-time Adaptation (MM-OSTTA) for the first time. Our analysis
shows that the entropy difference between known and unknown samples in the
target domain strongly correlates with MM-OSTTA performance. To leverage this,
we propose two key components: Unknown-aware Adaptive Entropy Optimization
(UAE) and Adaptive Modality Prediction Discrepancy Optimization (AMP). These
components enhance the model’s ability to distinguish unknown class samples
during online adaptation by amplifying the entropy difference between known
and unknown samples. To thoroughly evaluate our proposed methods in the MM-
OSTTA setting, we establish a new benchmark derived from existing datasets. This
benchmark includes two downstream tasks – action recognition and 3D semantic
segmentation – and incorporates five modalities: video, audio, and optical flow
for action recognition, as well as LiDAR and camera for 3D semantic segmenta-
tion. Extensive experiments across various domain shift scenarios demonstrate
the efficacy and versatility of the AEO framework. Additionally, we highlight
the strong performance of AEO in long-term and continual MM-OSTTA settings,
both of which are challenging and highly relevant to real-world applications. This
underscores AEO’s robustness and adaptability in dynamic environments. Our
source code is available at https://github.com/donghao51/AEO.

1 INTRODUCTION

Test-time adaptation (TTA) significantly enhances the robustness and adaptability of machine learning
models by enabling a source pre-trained model to adapt to target domains experiencing distribution
shifts (Wang et al., 2021). This adaptability is crucial for ensuring the applicability of models in
real-world scenarios, such as autonomous driving and action recognition. To address the challenges
posed by distribution shifts, a variety of TTA algorithms have been developed (Niu et al., 2022; Yuan
et al., 2023; Gong et al., 2024). These algorithms adapt specific model parameters using incoming test
samples through unsupervised objectives such as entropy minimization and pseudo-labeling. However,
most of these algorithms are designed for unimodal data, particularly images (Li et al., 2023). As
real-world applications increasingly demand the processing of multimodal data, extending these
approaches to support multimodal TTA across various modalities, including audio-video (Kazakos
et al., 2019) and LiDAR-camera (Dong et al., 2022), has become essential. In response to this, several
methods, such as READ (Yang et al., 2024) and MM-TTA (Shin et al., 2022), have been proposed to
address the complexities inherent in multimodal TTA.
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(a) MM-OSTTA with Tent (b) MM-OSTTA with AEO (Ours) (c) H-score w/o and w/ TTA

Figure 1: (a) Tent minimizes the entropy of all samples, making it difficult to separate the prediction
score distributions of known and unknown samples. (b) Our AEO amplifies entropy differences
between known and unknown samples through adaptive optimization. (c) As a result, Tent negatively
impacts MM-OSTTA performance while AEO significantly improves unknown class detection.

A fundamental assumption in TTA is the alignment of label spaces between the source and target
domains. However, real-world applications like autonomous driving (Blum et al., 2019) often involve
target domains containing novel categories not present in the source label space (Nejjar et al., 2024).
As a result, models adapted under this assumption may struggle with samples from these novel
categories, significantly reducing the robustness of existing TTA methods (Fig. 1). This scenario,
where the target domain contains unknown classes not present in the source domain, is referred to
as open-set TTA. Several unimodal open-set TTA approaches, including OSTTA (Lee et al., 2023)
and UniEnt (Gao et al., 2024), have been developed. However, OSTTA assumes that confidence
values for unknown samples are lower in the adapted model than in the original model, which may
not hold in Multimodal Open-Set TTA (MM-OSTTA) settings. UniEnt relies heavily on the quality
of the embedding space to accurately detect unknown classes. The goal of MM-OSTTA is to adapt a
pre-trained multimodal model from the source domain to a previously unseen target domain with the
same modalities but including samples from unknown classes. The key challenge of MM-OSTTA is
efficiently leveraging complementary information from diverse modalities to improve adaptation and
unknown class detection – areas where current unimodal open-set TTA methods fall short.

Building on our observation that the entropy difference between known and unknown samples in
the target domain is strongly correlated with the MM-OSTTA performance – where a larger en-
tropy difference results in better detection of unknown classes – we introduce the novel Adaptive
Entropy-aware Optimization (AEO) framework. AEO is designed to amplify the entropy difference
between known and unknown samples during online adaptation and consists of two key modules:
Unknown-aware Adaptive Entropy Optimization (UAE) and Adaptive Modality Prediction Discrep-
ancy Optimization (AMP). UAE dynamically assigns weights to each sample based on an entropy
threshold and automatically determines whether to minimize or maximize the entropy for each sample.
AMP adjusts prediction discrepancies between different modalities adaptively. It encourages diverse
predictions between modalities for unknown samples while maintaining consistent predictions for
known samples. Together, these modules enable AEO to significantly amplify entropy differences
between known and unknown samples during online adaptation, leading to substantial improvements
in unknown class detection (Fig. 1 and Fig. 2).

To comprehensively evaluate the MM-OSTTA task, we develop a new benchmark derived from
existing datasets. This benchmark includes two downstream tasks – action recognition and 3D
semantic segmentation – and incorporates five modalities: video, audio, and optical flow for action
recognition, as well as LiDAR and camera for 3D semantic segmentation. Extensive experiments
conducted across various domain shift scenarios demonstrate the efficacy and versatility of the
proposed AEO framework. Furthermore, we evaluate AEO in challenging yet practical long-term
and continual MM-OSTTA settings. AEO is robust against error accumulation and can constantly
optimize the entropy difference between known and unknown samples over multiple rounds of
adaptation, a capability essential for real-world dynamic applications. Our contributions can be
summarized as follows:

• We explore the novel field of Multimodal Open-Set Test-time Adaptation, a concept with
significant implications for real-world applications. MM-OSTTA involves adapting a pre-
trained multimodal model from a source domain to a target domain that shares the same
modalities but includes samples from previously unknown classes.
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• To address MM-OSTTA, we propose Adaptive Entropy-aware Optimization, which ef-
fectively amplifies the entropy difference between known and unknown samples during
online adaptation. Additionally, we establish a new benchmark based on existing datasets to
comprehensively evaluate our method in the MM-OSTTA setting.

• The effectiveness and versatility of our approach are validated through extensive experiments
across two downstream tasks and five modalities, as well as in challenging long-term and
continual MM-OSTTA scenarios.

2 MULTIMODAL OPEN-SET TEST-TIME ADAPTATION

Multimodal Open-set Test-Time Adaptation (MM-OSTTA) aims to adapt a pre-trained source model
to a target domain that experiences both distribution shifts and label shifts across multiple modalities.
Let DS = {(xi, yi)}NS

i=1 represent the source domain dataset with label space CS , which follows
the distribution PS

XY , where each sample xi consists of M modalities, denoted as xi = {xk
i | k =

1, · · · ,M}. Similarly, let DT = {(xi, yi)}NT
i=1 represent the target domain dataset with label space

CT and distribution PT
XY . Let f : X 7→ RC denote a neural network trained on the source distribution

PS
XY , where C is the number of classes in CS . In MM-OSTTA, f consists of M feature extractors

gk(·) and a classifier h(·). Each feature extractor gk(·) processes modality k to produce an embedding
Zk, and the classifier h(·) combines these embeddings to generate a prediction probability p̂:

p̂ = δ(f(x)) = δ(h([g1(x
1), ..., gM (xM )])) = δ(h([Z1, ...,ZM ])), (1)

where δ(·) denotes the softmax function. Additionally, we include separate classifiers hk(·) for each
modality k, yielding modality-specific prediction probabilities p̂k = δ(hk(gk(x

k))).

Given a well-trained multimodal source model f(x) on DS , MM-OSTTA aims to adapt this model
to the target domain DT , where PS

XY ̸= PT
XY . Unlike traditional closed-set TTA, which assumes

CS = CT , MM-OSTTA operates under the condition CS ⊆ CT , meaning the target domain may
contain samples from unknown classes not present in the source domain. In addition to adapting the
model and making predictions, MM-OSTTA involves generating a prediction score S(x) for each
sample and employing an unknown class detector Gη(x), defined as:

Gη(x) =

{
known S(x) ≥ η

unknown S(x) < η
, (2)

where η is a predefined threshold. Samples with S(x) < η are classified as unknown. We use the
Maximum Softmax Probability (MSP) (Hendrycks & Gimpel, 2017) as S(x) by default.

3 METHODOLOGY

3.1 CORRELATION BETWEEN ENTROPY AND MM-OSTTA PERFORMANCE

We begin by exploring the relationship between prediction entropy, defined as H(p̂) =
−∑

c p̂c log p̂c, and the performance of MM-OSTTA. Using a pre-trained model on the source
domain, we generate predictions on the target domain without performing any adaptation. The target
domain consists of both known and unknown samples. To quantify this relationship, we calculate
the average prediction entropy for known (Hknown) and unknown samples (Hunknown) separately,
and then compute the difference (Hunknown −Hknown). We evaluate this entropy difference across
various domain-shift scenarios using the EPIC-Kitchens (Damen et al., 2018) dataset and analyze
its correlation with an MM-OSTTA performance metric (FPR95), which measures the unknown
class detection ability. A lower FPR95 indicates better performance. As shown in Fig. 2, there is
a strong correlation between the entropy difference and MM-OSTTA performance, with a larger
entropy difference corresponding to a lower FPR95. This observation is intuitive, as a higher entropy
difference suggests that unknown samples exhibit significantly greater entropy than known samples,
making them easier to differentiate.

Tent (Wang et al., 2021) minimizes the entropy for all samples, regardless of whether they belong
to known or unknown classes, which inadvertently decreases the entropy difference between these
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classes. This reduction in entropy difference leads to diminished performance, as demonstrated
in Fig. 2 and Fig. 6. To overcome this limitation and amplify the entropy difference between
known and unknown samples during online adaptation, we propose the Adaptive Entropy-aware
Optimization (AEO) framework. AEO consists of two primary components: Unknown-aware
Adaptive Entropy Optimization (UAE) (Sec. 3.2) and Adaptive Modality Prediction Discrepancy
Optimization (AMP) (Sec. 3.3).

3.2 UNKNOWN-AWARE ADAPTIVE ENTROPY OPTIMIZATION
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Figure 2: The entropy difference between known
and unknown samples is positively correlated with
the MM-OSTTA performance. Tent minimizes the
entropy of all samples, regardless of whether they
are known or unknown, thereby failing to increase
entropy differences and leading to poorer perfor-
mances. In contrast, our AEO amplifies entropy
differences via adaptive optimization, significantly
improving unknown detection. Different shapes
represent different domain-shift scenarios.

As discussed in Sec. 3.1, improving MM-
OSTTA performance requires increasing the en-
tropy difference between known and unknown
class samples, i.e., maximizing the entropy of
unknown samples while minimizing that of
known samples. Tent (Wang et al., 2021) min-
imizes the entropy of all samples, failing to en-
hance this difference. Some approaches (Niu
et al., 2023; Yang et al., 2024) apply entropy
minimization selectively to high-confident sam-
ples, but still struggle to increase the entropy dif-
ference. The first step in effectively optimizing
entropy for both known and unknown samples is
to reliably identify potential unknown samples.
To address this, we introduce the Unknown-
aware Adaptive Entropy Optimization (UAE)
loss, which adaptively weights and optimizes
each sample based on its prediction uncertainty.
The UAE loss is defined as:

Wada = Tanh(β · (H(p̂)− α)), (3)
LAdaEnt = −H(p̂) ·Wada, (4)

where Tanh is the hyperbolic tangent function, Wada is the adaptive weight assigned to each sample,
H(p̂) is the normalized entropy of prediction p̂, computed as H(p̂) = −(

∑
c p̂c log p̂c)/log(C), with

C being the number of classes. The parameters α and β are hyperparameters that control the entropy
threshold and scaling, respectively.

The function Tanh(x) is positive when x > 0 and negative when x < 0. Therefore, the UAE loss
LAdaEnt maximizes H(p̂) when H(p̂) > α (i.e. when prediction confidence is low, indicating the
sample is likely unknown) and minimizes H(p̂) when H(p̂) < α (i.e. when prediction confidence is
high, indicating the sample is likely known). Moreover, Tanh(x) asymptotically approaches 1 as
x increases and converges to −1 as x decreases, resulting in higher weights for samples with very
high or very low H(p̂) (i.e. those that most likely to be known or unknown). When H(p̂) is close to
α, the model is uncertain about whether the sample is known or unknown, and there is a higher risk
of wrong predictions. In such cases, the assigned weight approaches 0, effectively neutralizing the
potential negative impact of uncertain samples. In this manner, our UAE loss adaptively optimizes the
entropy for each sample, enhancing the separation between known and unknown samples to ensure
more reliable predictions. More discussion on the importance of Wada are in Appendix C.13.

3.3 ADAPTIVE MODALITY PREDICTION DISCREPANCY OPTIMIZATION

To further enhance the entropy difference between known and unknown samples, we introduce
Adaptive Modality Prediction Discrepancy Optimization (AMP), which optimizes the predictions
across different modalities. To achieve this, AMP first employs an adaptive entropy loss, similar to
the UAE, that increase the entropy of predictions from each modality when confidence is low, and
decrease it when confidence is high. The loss is defined as:

LAdaEnt∗ = −1

2
(H(p̂1) +H(p̂2)) ·Wada, (5)

where Wada is the adaptive weight calculated in Eq. (3). Additionally, we propose maximiz-
ing the prediction discrepancy between modalities for unknown samples to encourage uncertainy
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(i.e., diversifying predictions across modalities increases the uncertainty in the final prediction).
Conversely, for known samples, we enforce consistency across modalities to ensure confident
predictions (i.e., confident predictions should exhibit consistent outputs across all modalities).

Figure 3: Training with AMP further ampli-
fies the entropy difference between known
and unknown samples, leading to improved
performances.

To achieve this, we define the adaptive modality pre-
diction discrepancy loss as:

LAdaDis = −(Dis(p̂1, p̂2)) ·Wada, (6)

where Wada is the adaptive weight from Eq. (3) and
LAdaDis emphasizes samples with either very high
or low H(p̂). Dis(·) measures the prediction discrep-
ancy between two modalities, with L1 distance being
the default choice. As illustrated in Fig. 3, training
with AMP further increases the entropy difference,
leading to improved performance. We also include a
negative entropy loss term LDiv to ensure diversity
in predictions (Zhou et al., 2023; Yang et al., 2024):

LDiv =

C∑
c=1

pc log pc, (7)

where pc is the accumulated prediction probability for class c over one batch. The final loss is
computed as the weighted sum of the previously defined losses:

LAEO = LAdaEnt + γ1(LAdaEnt∗ + LAdaDis) + γ2LDiv. (8)

As shown in Fig. 2, our AEO significantly amplifies the entropy difference between known and
unknown samples at test time, resulting in substantial performance improvements.

4 EXPERIMENTS

We evaluate our proposed method across four benchmark datasets: EPIC-Kitchens and Human-
Animal-Cartoon (HAC) for multimodal action recognition with domain shifts, Kinetics-100-C
for multimodal action recognition under corruptions, and the nuScenes dataset for multimodal 3D
semantic segmentation in Day-to-Night and USA-Singapore adaptation scenarios.

4.1 EXPERIMENT SETTINGS

Datasets. For domain adaptation experiments, we utilize the widely adopted EPIC-Kitchens (Damen
et al., 2018) and HAC (Dong et al., 2023) datasets. Both datasets offer three modalities: video, audio,
and optical flow. The EPIC-Kitchens dataset comprises eight actions (‘put’, ‘take’, ‘open’, ‘close’,
‘wash’, ‘cut’, ‘mix’, and ‘pour’) recorded in three distinct kitchens, forming three domains D1, D2,
and D3. The HAC dataset includes seven actions (‘sleeping’, ‘watching TV’, ‘eating’, ‘drinking’,
‘swimming’, ‘running’, and ‘opening door’) performed by humans (H), animals (A), and cartoon (C)
figures, resulting in three distinct domains: H, A, and C. In our experiments, models are pre-trained
on a source domain and adapted to a target domain online. For the open-set setting, we treat HAC
samples as unknown classes for EPIC-Kitchens and vice versa. To prevent class overlap, we exclude
the ‘open’ class samples from EPIC-Kitchens dataset and the ‘opening door’ class from the HAC
dataset when used as unknowns.

For the corruption robustness experiments, models are trained on clean datasets and adapted to
corrupted test sets. We create the Kinetics-100-C dataset, which includes video and audio modalities,
following the approaches outlined in Hendrycks & Dietterich (2019) and Yang et al. (2024). Kinetics-
100-C consists of 100 classes selected from Kinetics-600 dataset (Carreira et al., 2018), with 21181
videos for training and validation, and 3800 videos for testing. We apply six types of corruptions
on videos (Gaussian, Defocus, Frost, Brightness, Pixelate, and JPEG) and audios (Gaussian, Wind,
Traffic, Thunder, Rain, and Crowd), generating six distinct corruption shifts. For example, Defocus
(v) + Wind (a) indicates defocus corruption on video and wind corruption on audio. All experiments
are conducted under the most severe corruption level 5 (Hendrycks & Dietterich, 2019). For the
open-set setting, we utilize HAC as the unknown classes, applying the same corruption types as in
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Kinetics-100-C, resulting in the HAC-C dataset. By applying identical corruption types, we create
open-set samples from a matching domain shift but with unknown classes.

For multimodal 3D semantic segmentation, we utilize the nuScenes dataset (Caesar et al., 2020),
which includes LiDAR and camera modalities. We examine two realistic adaptation scenarios
following Jaritz et al. (2020): (1) Day-to-Night adaptation: LiDAR exhibits minimal domain shift
due to its active sensing capabilities (emitting laser beams that remain largely unaffected by lighting
conditions). In contrast, the camera, functioning as a passive sensor, experiences a significant domain
gap due to poor light at night, leading to substantial changes in object appearance. (2) USA-Singapore
country-to-country adaptation: The domain gap may vary for both LiDAR and camera modalities.
For certain classes, the 3D shape may shift more significantly than the visual appearance, while for
others, the reverse may hold true. In the open-set setting, we designate all vehicle classes as unknown.
During training, unknown classes are labeled as void and ignored. During inference, the objective is
to segment the known classes while simultaneously detecting unknown classes. Further illustrations
and dataset details are provided in Appendix B.4.

Evaluation Metrics. To evaluate the model’s adaptation performance on known data, we use accuracy
(Acc) for classification tasks and mean Intersection over Union (IoU) for segmentation tasks. To
assess the model’s ability to robustly detect unknown classes, we measure the area under the receiver
operating characteristic curve (AUROC) and the false positive rate of unknown samples when the true
positive rate at 95% (FPR95) for unknown samples. As our objective is to achieve a good balance
between the classification accuracy of known classes and the detection accuracy of unknown classes,
we reformulate a novel version of H-score, defined as the harmonic mean of Acc, AUROC, and
FPR95:

H-score =
3

1
Acc +

1
AUROC + 1

1−FPR95

. (9)

Since a lower FPR95 indicates better performance, we use 1−FPR95 for the H-score calculation in
Eq. (9). AUROC provides a global measure of how well the model distinguishes between known
and unknown classes across all possible thresholds, making it suitable for tasks requiring balanced
performance across thresholds. FPR95 evaluates the model’s performance at a specific recall level
(95% TPR), which is particularly important in applications requiring high recall, such as fraud
detection or outlier detection. To comprehensively evaluate the model under the open-set setting,
both FPR95 and AUROC are included in our H-score calculation. For the segmentation task, we
replace Acc with IoU to calculate H-score.

Baseline models. We compare our method against two unimodal TTA methods, Tent (Wang et al.,
2021) and SAR (Niu et al., 2023), as well as two unimodal open-set TTA methods, OSTTA (Lee et al.,
2023) and UniEnt (Gao et al., 2024), along with one multimodal TTA method, READ (Yang et al.,
2024). Due to space limitations, additional implementation details are provided in Appendix B.2 and
Appendix B.3.

4.2 COMPARISONS WITH STATE-OF-THE-ART

Robustness under domain shifts. We first conduct comprehensive experiments on domain adaptation
benchmarks, where a model is trained on a single source domain and then adapted online to a target
domain with significant distribution shifts. Tab. 1 presents results from the EPIC-Kitchens dataset
using video and audio modalities. Unimodal TTA methods, such as Tent (Wang et al., 2021) and
SAR (Niu et al., 2023), underperform in the multimodal open-set TTA setup, revealing their limited
adaptability in complex scenarios involving multiple modalities and unknown classes. Similarly,
OSTTA (Lee et al., 2023), a unimodal open-set TTA method, struggles to achieve robust performance,
highlighting the inherent challenges of multimodal open-set TTA. In contrast, UniEnt (Gao et al.,
2024), another unimodal open-set TTA method, performs well in this setup. The SOTA multimodal
TTA method READ (Yang et al., 2024) demonstrates competitive performance, improving the
Source baseline H-score by 3.55%. READ achieves this by focusing entropy minimization on high-
confidence predictions while mitigating the noise from low-confidence ones. Our proposed AEO
framework demonstrates strong robustness in the challenging open-set setup, significantly improving
the Source baseline H-score by 22.07%. Notably, in the D1 → D3 adaptation, AEO improves FPR95
metric by a relative value of 59.31%, which is crucial in applications requiring high sensitivity.
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D1 → D2 D1 → D3 D2 → D1 D2 → D3
Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑

Source 48.54 85.79 58.31 27.75 48.31 80.83 63.09 33.82 46.92 62.13 80.06 49.83 51.57 66.72 77.20 48.08
Tent 44.04 93.47 43.45 15.09 48.96 91.05 44.55 19.40 46.06 94.24 62.63 14.20 46.03 94.72 54.86 13.08
SAR 49.12 88.94 63.50 23.71 50.30 93.84 57.58 15.03 46.63 80.89 74.38 34.40 46.11 94.48 64.96 13.75

OSTTA 47.09 97.04 33.94 7.72 50.15 95.57 39.10 11.06 48.79 90.29 64.45 21.58 44.39 89.82 67.34 22.12
UniEnt 47.46 73.10 76.67 42.08 45.58 62.90 85.36 49.50 47.37 45.65 87.98 58.97 51.94 41.82 90.71 63.20
READ 47.73 79.63 68.48 35.44 48.72 78.46 68.69 36.81 49.90 73.36 75.94 42.41 54.20 67.67 77.87 48.21

AEO (Ours) 50.79 42.56 90.92 62.37 48.68 21.52 96.60 68.75 46.87 46.31 89.88 58.72 53.77 26.61 94.85 70.15
D3 → D1 D3 → D2 Mean

Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑
Source 46.31 90.19 59.67 21.38 58.43 89.06 57.28 23.81 50.01 79.12 65.94 34.11

Tent 46.01 91.05 57.45 19.88 51.53 92.39 48.17 17.49 47.11 92.82 51.85 16.52
SAR 45.75 85.79 62.17 27.70 50.97 90.88 54.16 20.31 48.15 89.14 62.79 22.48

OSTTA 45.35 85.54 60.41 27.84 50.88 88.75 54.31 23.63 47.78 91.17 53.26 18.99
UniEnt 49.14 85.39 65.90 28.85 58.12 87.55 63.21 26.47 49.94 66.07 78.30 44.85
READ 49.65 83.72 66.19 31.03 57.50 83.36 61.97 32.04 51.28 77.70 69.86 37.66

AEO (Ours) 49.14 75.43 72.79 40.11 56.33 79.48 68.43 36.99 50.93 48.65 85.58 56.18

Table 1: Multimodal Open-set TTA with video and audio modalities on EPIC-Kitchens dataset.
Mean (video+audio) Mean (video+flow) Mean (flow+audio) Mean (video+audio+flow)

Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑
Source 56.36 78.24 56.68 34.61 57.81 75.69 58.15 37.11 44.32 79.45 63.73 33.50 56.66 76.31 61.81 37.68

Tent 59.05 85.19 59.75 28.87 58.61 86.71 57.78 26.55 44.32 89.01 55.04 21.12 58.86 86.91 53.60 25.42
SAR 60.66 78.95 63.88 35.94 60.17 85.92 59.70 27.19 43.75 82.32 61.29 27.43 60.56 82.34 59.74 31.35

OSTTA 58.84 82.46 63.05 32.58 58.45 86.45 60.95 25.85 41.73 88.26 55.17 21.63 58.52 84.38 57.29 29.13
UniEnt 59.34 75.59 63.35 37.48 60.09 71.51 66.02 41.34 44.62 75.17 68.90 37.60 58.23 72.13 68.25 42.03
READ 58.78 72.83 66.04 42.71 59.03 74.96 66.05 40.17 43.51 76.82 66.14 36.28 57.47 74.26 67.28 41.32

AEO (Ours) 59.53 66.75 72.50 48.31 59.38 65.75 74.96 49.23 44.29 69.44 72.84 42.62 59.76 66.88 72.82 48.50

Table 2: Multimodal Open-set TTA with different combinations of video, audio, and optical flow
modalities on HAC dataset.

To assess the generalizability of our proposed method, we further evaluate it on the HAC dataset using
different modality combinations: video+audio, video+flow, flow+audio, and video+audio+flow,
as presented in Tab. 2. For each modality combination, we consider six adaptation scenarios: H
→ A, H → C, A → H, A → C, C → H, C → A. The results are averaged over six splits (detailed
results are available from Tab. 20 to Tab. 23). Consistent with our findings on the EPIC-Kitchens
dataset, most existing TTA methods struggle to generalize effectively in the challenging multimodal
open-set TTA setup. While UniEnt (Gao et al., 2024) and READ (Yang et al., 2024) perform well and
surpass the Source baseline, other TTA methods fail to achieve robust performance, underscoring the
complexities of multimodal open-set TTA. In contrast, our method demonstrates strong robustness
across all modality combinations, significantly improving the Source baseline H-score by 13.70%,
12.12%, 9.12%, and 10.82% for the respective modality setups. This showcases the effectiveness of
our approach in handling diverse multimodal scenarios under challenging open-set conditions.

Robustness under corruption. We evaluate our method on the challenging Kinetics-100-C cor-
ruption benchmark, which introduces various corruptions to both video and audio modalities. The
results are summarized in Tab. 3. The pre-trained model struggles to generalize to corruptions such as
Gaussian (v) + Gaussian (a) and Frost (v) + Traffic (a), leading to very low H-scores. In contrast, our
proposed AEO adapts effectively to these corruptions in an online manner, improving the H-score over
the Source baseline by 32.78% and 26.50% respectively. Conversely, methods like Tent (Wang et al.,
2021) and SAR (Niu et al., 2023) exhibit severe performance degradation under these corruptions.
Our AEO consistently demonstrates robustness across all types of corruptions, achieving an average
H-score improvement of 22.41% over the Source baseline.
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Figure 4: AEO continuously opti-
mizes entropy difference between
known and unknown samples, re-
sulting in a substantial reduction of
FPR95 after 10 adaptation epochs.

Long-term MM-OSTTA. Models deployed in real-world sce-
narios continuously encounter test samples over extended pe-
riods and must make reliable predictions at any time. Recent
work by Lee et al. (2023) shows that most existing TTA meth-
ods perform poorly in long-term settings, often degrading to
performance levels worse than non-updating models. Following
the methodology of Lee et al. (2023), we simulate long-term
TTA by repeating the adaptation process for 10 rounds without
resetting the model. The results, summarized in Tab. 4, show
a 7.67% increase in H-score after long-term adaptation using
our AEO. This improvement demonstrates that our method is
robust against error accumulation and its ability to continuously
optimize the entropy difference between known and unknown
samples (Fig. 4). In contrast, most of the baseline methods
suffer from significant performance degradation during long-term adaptation.
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Defocus (v) + Wind (a) Frost (v) + Traffic (a) Brightness (v) + Thunder (a) Pixelate (v) + Rain (a)
Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑

Source 60.74 72.63 71.93 44.84 33.24 87.68 55.33 23.20 78.97 59.50 79.13 60.01 70.63 72.11 69.38 46.56
Tent 62.24 85.87 61.09 29.07 50.21 96.26 49.48 9.76 78.05 89.63 59.13 23.78 74.66 92.18 53.82 18.77
SAR 63.32 89.45 64.89 23.81 52.13 95.71 54.57 11.09 76.76 91.42 61.84 20.58 74.82 93.37 55.33 16.46

OSTTA 62.76 81.39 65.19 35.29 51.42 86.45 61.65 27.41 76.11 87.92 67.70 27.10 75.05 79.29 72.57 39.79
UniEnt 63.53 62.50 80.20 54.67 50.26 79.39 71.30 36.39 77.13 46.08 87.65 69.90 74.79 56.58 84.14 62.13
READ 64.24 59.08 80.19 57.17 54.95 67.47 75.62 48.26 77.74 42.21 87.82 72.19 75.63 45.32 87.03 69.77

AEO (Ours) 63.47 54.37 83.12 60.36 54.82 65.82 77.74 49.70 77.42 40.42 89.30 73.35 75.68 42.79 88.67 71.48
JPEG (v) + Crowd (a) Gaussian (v) + Gaussian (a) Mean

Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑
Source 61.11 70.11 69.38 46.70 13.05 98.18 43.90 4.62 52.96 76.70 64.84 37.66

Tent 70.13 93.11 53.47 16.84 35.82 97.26 49.38 7.26 61.85 92.38 54.40 17.58
SAR 70.05 93.71 58.22 15.75 39.08 97.16 54.57 7.58 62.69 93.47 58.24 15.88

OSTTA 69.79 85.24 67.46 30.96 40.47 93.82 59.63 14.76 62.60 85.69 65.70 29.22
UniEnt 69.53 68.18 79.67 51.40 39.18 98.61 56.02 3.93 62.40 68.56 76.50 46.40
READ 71.58 48.42 84.76 66.44 42.97 74.95 69.41 38.66 64.52 56.24 80.80 58.75

AEO (Ours) 71.05 45.87 87.12 68.14 40.82 75.53 67.34 37.40 63.88 54.13 82.22 60.07

Table 3: Multimodal Open-set TTA with video and audio modalities on Kinetics-100-C, with
corrupted video and audio modalities (severity level 5).

Mean
Acc↑ FPR95↓ AUROC↑ H-score↑

Source 56.36 78.24 56.68 34.61
Tent 56.11 97.02 47.82 7.68
SAR 57.68 97.40 45.60 6.87

OSTTA 58.36 88.00 63.22 23.37
UniEnt 50.91 80.27 59.85 30.07
READ 53.83 77.10 61.17 36.97

AEO (Ours) 56.81 50.53 79.64 55.98

Table 4: Long-term Multimodal
Open-set TTA on HAC dataset.

Mean (HAC) Mean (Kinetics-100-C)
Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑

Source 56.36 78.24 56.68 34.61 52.96 76.70 64.84 37.66
Tent 55.48 88.43 54.79 23.13 52.08 94.97 42.70 11.74
SAR 58.81 87.81 58.92 23.89 54.79 95.47 36.42 10.89

OSTTA 55.55 84.36 61.06 29.77 57.53 92.36 50.62 17.05
UniEnt 58.56 80.68 62.52 32.30 59.62 68.33 77.99 46.43
READ 57.76 73.49 65.00 41.85 61.10 48.29 84.49 62.32

AEO (Ours) 60.08 60.38 78.89 53.84 58.74 42.62 87.22 64.19

Table 5: Continual Multimodal Open-set TTA on HAC and
Kinetics-100-C (severity level 5) datasets.

Day → Night USA → Singapore
IoU↑ FPR95↓ AUROC↑ H-score↑ IoU↑ FPR95↓ AUROC↑ H-score↑

Source 41.76 47.97 79.11 53.76 54.27 49.38 83.49 59.81
Tent 41.51 50.50 79.86 52.80 47.92 46.75 82.78 58.00

READ 40.32 47.03 81.84 53.67 50.09 46.39 82.56 59.14
MM-TTA 39.98 52.86 79.30 50.99 51.42 44.13 83.43 60.87

AEO (Ours) 42.04 44.90 82.56 55.51 55.04 41.11 84.57 63.87

Table 6: Multimodal Open-set TTA with LiDAR and camera modalities on nuScenes dataset.

Continual MM-OSTTA. Real-world machine perception systems operate in environments where the
target domain distribution evolves continuously. Recent work by Wang et al. (2022b) has highlighted
that most existing TTA methods perform poorly in continual settings. Following the setup outlined
in Wang et al. (2022b), we simulate continual TTA by sequentially adapting the model across changing
domains (e.g., H → A → C for the HAC dataset and similarly for Kinetics-100-C) without resetting
the model. The results, presented in Tab. 5 (detailed results are in Tab. 18 and Tab. 19), demonstrate
that our method maintains robust performance under this challenging setup, even improving the
H-score. In contrast, most baseline methods, particularly unimodal TTA methods (Wang et al., 2021;
Niu et al., 2023), exhibit significant performance degradation.

Scaling to segmentation task. To further demonstrate the versatility of our AEO method beyond
action recognition task involving video, audio, and optical flow modalities, we conduct experiments
on a novel 3D semantic segmentation task that utilizes LiDAR and camera modalities. As shown
in Tab. 6, baseline methods such as READ (Yang et al., 2024) and MM-TTA (Shin et al., 2022)
struggle to outperform the source model. In contrast, our AEO method consistently demonstrates
strong open-set performance, improving FPR95 with up to 8.22% over the Source baseline. This
significant improvement highlights the effectiveness of AEO in maintaining robust performance
across diverse tasks and modalities, underscoring its potential for reliable deployment in real-world
segmentation applications.

4.3 ABLATION STUDIES AND ANALYSIS

Ablation on each proposed module. We conducted comprehensive ablation studies to evaluate the
contribution of each proposed module, as detailed in Tab. 7. The results indicate that incorporating
UAE effectively increases the entropy difference between known and unknown samples, thereby
enhancing detection performance for unknown classes. Additionally, integrating AMP maximizes the
prediction discrepancy between different modalities for unknown classes, fostering uncertainty in
predictions and further improving unknown class detection. These two modules are complementary,
and their combined implementation achieves the highest performance across all datasets.
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HAC EPIC-Kitchens Kinetics-100-C
UAE AMP Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑

56.36 78.24 56.68 34.61 50.01 79.12 65.94 34.11 52.96 76.70 64.84 37.66
✓ 59.76 67.58 71.53 47.79 51.07 50.12 84.91 55.01 63.49 55.44 81.30 59.01

✓ 56.74 69.33 70.86 45.49 45.79 63.08 80.74 48.03 58.81 56.59 79.90 56.38
✓ ✓ 59.53 66.75 72.50 48.31 50.93 48.65 85.58 56.18 63.88 54.13 82.22 60.07

Table 7: Ablation on each proposed module with video and audio modalities.
Mean (I3D+TSN)

Acc↑ FPR95↓ AUROC↑ H-score↑
Source 54.29 74.63 62.14 38.39

Tent 59.80 85.52 59.18 27.58
SAR 60.08 82.67 62.86 30.40

OSTTA 59.04 84.42 63.06 28.41
UniEnt 57.60 69.47 70.03 42.75
READ 58.00 73.48 66.89 40.89

AEO (Ours) 59.54 66.87 74.14 47.62

Table 8: Ablation on different ar-
chitectures using video and flow
modalities on HAC dataset.

Mean (SAM) Mean (SimMMDG)
Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑

Source 60.25 79.54 55.50 33.87 58.87 78.93 51.23 33.77
Tent 61.24 84.06 59.04 29.77 60.27 80.79 60.44 34.47
SAR 62.23 77.80 64.06 35.78 60.54 78.72 63.02 36.20

OSTTA 61.19 77.49 63.72 38.24 59.80 77.87 63.59 36.59
UniEnt 61.32 76.42 63.97 36.90 62.44 70.22 65.53 44.82
READ 60.48 71.74 67.26 43.86 59.93 70.16 67.62 45.71

AEO (Ours) 60.63 67.06 72.13 48.20 60.93 66.26 70.86 49.16

Table 9: Ablation on different pre-trained models using
video and audio modalities on HAC dataset.

Ablation on hyperparameters in Wada. We evaluate the sensitivity of our method to the hyper-
parameters in Wada by varying one hyperparameter at a time while keeping the others fixed. Our
findings, illustrated in Fig. 5, demonstrate that our method consistently outperforms the best baseline,
READ, across all parameter settings. These results indicate that our approach is robust and less
sensitive to variations in hyperparameter choices.
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Figure 5: Parameter sensitivity analysis using video and
audio modalities on the HAC dataset.

Applicability on different architectures.
To demonstrate the robustness of our AEO
method across different network architec-
tures, we conducted experiments by mod-
ifying the backbone networks. Specifically,
we replaced the video backbone with In-
flated 3D ConvNet (I3D) (Carreira & Zis-
serman, 2017) and the optical flow back-
bone with the Temporal Segment Network
(TSN) (Wang et al., 2016). As illustrated
in Tab. 8, AEO consistently achieves signif-
icant performance improvements in MM-
OSTTA across these alternative architectures. This consistency underscores the versatility and
effectiveness of our approach, regardless of the underlying network design.

Robustness to different pre-trained models. In previous experiments, we pre-trained the model
using the standard cross-entropy loss on the training set of each dataset. To assess the robustness
of our AEO method across various training strategies, we also pre-trained models using advanced
optimization techniques such as Sharpness-aware Minimization (SAM) (Foret et al., 2020) and
SimMMDG (Dong et al., 2023). As demonstrated in Tab. 9, our method successfully adapts to these
differently pre-trained models, consistently achieving the best performance in all configurations.

Prediction score distributions before and after TTA. Fig. 6 illustrates the prediction score distribu-
tions for known and unknown classes generated by various baseline methods on the EPIC-Kitchens
dataset, both before and after applying TTA. Without TTA (Fig. 6 (a)), the score distributions of
known and unknown samples significantly overlap, resulting in poor performance in detecting un-
known classes. Tent (Wang et al., 2021) minimizes the entropy of all samples indiscriminately, and
fails to reduce the separation between known and unknown distributions (Fig. 6 (b)). In contrast, our
method achieves better separation between the score distributions of known and unknown classes
(Fig. 6 (c)), leading to improved performance in unknown class detection. Fig. 7 illustrates the model
prediction entropy for known and unknown samples during online adaptation. Our AEO continuously
optimizes the entropy batch after batch to improve the MM-OSTTA performance.

0.2 0.4 0.5 0.6 0.8
Source 20.83 41.77 57.68 42.27 19.87
UniEnt 53.28 63.49 53.46 58.07 40.90
READ 37.23 58.37 57.76 59.49 55.50

AEO (Ours) 53.78 68.18 65.26 67.77 69.58

Table 10: Ablation on different ra-
tios of unknown samples.

Different ratios of unknown samples. In real-world scenar-
ios, the proportion of unknown samples can vary significantly.
To evaluate how this variability impacts our method’s perfor-
mance, we conducted experiments on the HAC dataset (A →
H) using video and audio modalities. Specifically, we adjusted
the proportion of unknown class samples in each batch, rang-
ing from 20% to 80%, and present the corresponding H-scores
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(a) D1 → D2 (No TTA) (b) D1 → D2 (Tent) (c) D1 → D2 (Ours)

Figure 6: Prediction score distributions of different baseline methods on the EPIC-Kitchens dataset
before and after TTA. AEO achieves better separation between the score distributions of known and
unknown classes, leading to improved performance in unknown class detection.

(a) D1 → D2 (No TTA) (b) D1 → D2 (Tent) (c) D1 → D2 (Ours)

Figure 7: Model prediction entropy for known and unknown samples during online adaptation.
Tent fails to reduce the separation between known and unknown distribution. In contrast, our AEO
continuously optimizes the entropy batch after batch to improve the MM-OSTTA performance.

in Tab. 10. The results indicate that our method remains robust across different proportions of
unknown class samples, consistently achieving the highest H-scores in all scenarios.

Mean
Acc↑ FPR95↓ AUROC↑ H-score↑

Source 56.36 78.24 56.68 34.61
Tent 58.27 91.34 55.75 19.88
SAR 57.62 89.43 58.40 22.53

OSTTA 57.56 81.33 64.40 33.17
UniEnt 57.92 81.64 59.48 29.27
READ 56.67 73.15 66.17 42.78

AEO (Ours) 58.87 65.54 74.52 49.85

Table 11: Ablation under mixed distribu-
tion shifts on HAC dataset using video
and audio.

Robustness under mixed distribution shifts. In this
setup, the test data originate from multiple shifted domains
that are mixed together during adaptaion (Niu et al., 2023),
complicating the problem further. As shown in Tab. 11,
our AEO consistently achieves the best performance in
terms of H-score, suggesting its effectiveness under dif-
ferent challenging scenarios. In contrast, several baseline
methods, such as Tent (Wang et al., 2021), SAR (Niu
et al., 2023), and UniEnt (Gao et al., 2024) suffer from
significant performance degradation.

5 CONCLUSION

In this work, we tackle the challenging task of Multimodal Open-set Test-time Adaptation (MM-
OSTTA) for the first time. Motivated by the observation that the entropy difference between known
and unknown class samples positively correlates with MM-OSTTA performance, we propose Adaptive
Entropy-aware Optimization (AEO). AEO consists of two key components: Unknown-aware Adaptive
Entropy Optimization (UAE) and Adaptive Modality Prediction Discrepancy Optimization (AMP).
Together, these components increase the entropy difference between known and unknown class
samples during online adaptation in a complementary manner. We conduct extensive experiments on
the newly introduced benchmark, encompassing two downstream tasks and five different modalities, to
demonstrate the efficacy and versatility of our proposed AEO. Furthermore, AEO achieves promising
results in both long-term and continual MM-OSTTA settings, where the adaptation process is repeated
over multiple rounds and the target domain distribution evolves over time. These results underscore
the robustness and adaptability of AEO in dynamic, real-world environments.
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A RELATED WORK

A.1 TEST-TIME ADAPTATION

Test-time Adaptation (TTA) seeks to adapt a pre-trained model on the source domain online, address-
ing distribution shifts without requiring access to either source data or target labels. This characteristic
distinguishes TTA from domain generalization (Wang et al., 2022a) and domain adaptation (Wang &
Deng, 2018), giving it broader applicability (Liang et al., 2024). Online TTA methods (Wang et al.,
2021; Yuan et al., 2023) update specific model parameters using incoming test samples based on
unsupervised objectives such as entropy minimization and pseudo-labels. Robust TTA methods (Niu
et al., 2022; Zhou et al., 2023) address more complex and practical scenarios, including label shifts,
single-sample adaptation, and mixed domain shifts. Continual TTA approaches (Wang et al., 2022b;
Gan et al., 2023) target the continual and evolving distribution shifts encountered over test time.
Additionally, several TTA techniques have been developed for specific tasks such as semantic seg-
mentation (Shin et al., 2022) and action recognition (Yang et al., 2024), often involving multiple
modalities.

A.2 OPEN-SET TEST-TIME ADAPTATION

Open-set test-time adaptation (OSTTA) addresses situations where the target domain includes classes
absent in the source domain, presenting greater challenges due to the risk of incorrect adaptation to
unknown class samples, which can cause a significant drop in performance. OSTTA (Lee et al., 2023)
mitigates this by filtering out samples with lower confidence in the adapted model than in the original
model. UniEnt (Gao et al., 2024) distinguishes between pseudo-known and pseudo-unknown samples
in the test data, applying entropy minimization to the pseudo-known data and entropy maximization
to the pseudo-unknown data. STAMP (Yu et al., 2024) optimizes over a stable memory bank rather
than the risky mini-batch, where the memory bank is dynamically updated by selecting low-entropy
and label-consistent samples in a class-balanced manner. However, existing open-set TTA methods
focus exclusively on unimodal settings, overlooking the complexities of multimodal scenarios.

A.3 MULTIMODAL ADAPTATION AND GENERALIZATION

Multimodal domain adaptation (DA) and domain generalization (DG) tackle the challenge of distri-
bution shifts in multiple modalities, such as video and audio. For instance, MM-SADA (Munro &
Damen, 2020) proposes a self-supervised alignment method combined with adversarial alignment
for multimodal DA. Similarly, Kim et al. (2021) employ cross-modal contrastive learning to align
representations across both modalities and domains. Besides, Zhang et al. (2022) introduce an audio-
adaptive encoder and an audio-infused recognizer to mitigate domain shifts. RNA-Net (Planamente
et al., 2022) addresses the multimodal DG problem by introducing a relative norm alignment loss that
balances the feature norms of audio and video modalities. SimMMDG (Dong et al., 2023) presents a
universal framework for multimodal domain generalization by separating features within each modal-
ity into modality-specific and modality-shared components, while applying constraints to encourage
meaningful representation learning. Building on SimMMDG, MOOSA (Dong et al., 2024a) intro-
duces two self-supervised tasks, Masked Cross-modal Translation and Multimodal Jigsaw Puzzles, to
simultaneously address multimodal open-set domain generalization and adaptation. Unlike existing
multimodal DA and DG methods, which typically aim to train models using both labeled source
domain data and unlabeled target domain data simultaneously or to develop more generalizable neural
networks from the source domain, our work focuses on improving the performance of pre-trained
multimodal models during test-time by leveraging unlabeled online data from the target domain.

A.4 OUT-OF-DISTRIBUTION DETECTION

Out-of-Distribution (OOD) detection aims to identify test samples that exhibit semantic shifts without
compromising in-distribution (ID) classification accuracy. Numerous OOD detection algorithms have
been developed, which can be broadly categorized into post hoc methods and training-time regular-
ization (Yang et al., 2022). Post hoc methods design OOD scores based on the classification outputs
of neural networks, offering the advantage of ease of use without modifying the training procedure
or objective. Popular OOD scores include Maximum Softmax Probability (MSP) (Hendrycks &
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Gimpel, 2017), MaxLogit (Hendrycks et al., 2022), Energy (Liu et al., 2020), ReAct (Sun et al., 2021),
ASH (Djurisic et al., 2022), Mahalanobis (Lee et al., 2018), k-Nearest Neighbor (KNN) (Sun et al.,
2022), etc. Training-time regularization methods, such as LogitNorm (Wei et al., 2022), address
prediction overconfidence by imposing a constant vector norm on the logits during training. In
contrast, Outlier Exposure (Hendrycks et al., 2019) uses external OOD samples from other datasets
during training to improve discrimination between ID and OOD samples. Additionally, Du et al.
(2022) propose synthesizing virtual outliers for training-time regularization. While most existing
OOD methods are designed for unimodal scenarios, a recent work (Dong et al., 2024b) introduces
the first benchmark for multimodal OOD detection (Li et al., 2024) along with the Agree-to-Disagree
algorithm, which enhances multimodal OOD detection performance. However, traditional OOD
detection methods assume that both training and test data originate from the same domain – an
unrealistic assumption in real-world conditions and TTA scenarios. In realistic settings, domain shifts
between training and test data pose additional challenges for OOD detection.

B FURTHER IMPLEMENTATION DETAILS

B.1 PSEUDO CODE

This section presents the pseudo-code for our AEO method. From Algorithm 1, test samples are
coming batch by batch. For each sample, we first compute the prediction probability p̂ from all
modalities as well as p̂k from each modality k. We then obtain an initial prediction ŷ from p̂ and
calculate an adaptive weight Wada for each sample. Next, we compute the losses from UAE and
AMP to formulate the final loss LAEO and update model parameters using Adam optimizer. Finally,
we output a prediction as well as a corresponding score for each sample. Samples with scores below
a predefined threshold will be treated as unknown classes.

Algorithm 1 The Pipeline of AEO

Input: Unlabeled test samples DT = {xi}NT
i=1, a pre-trained multimodal model fθt(·).

for each online mini-batch Xb do
Calculate p̂ and p̂k for all x ∈ Xb.
Obtain the prediction ŷ = argmaxc[p̂]c for all x ∈ Xb.
Obtain the adaptive weight Wada for all x ∈ Xb by Eq. (3).
Compute LAdaEnt in UAE by Eq. (4).
Compute LAdaEnt∗ and LAdaDis in AMP by Eq. (5) and Eq. (6).
Compute final loss LAEO using Eq. (8).
Update θt with Adam optimizer.

end for
Output: The prediction and score {ŷi,maxc(p̂c(xi))}NT

i=1.

B.2 IMPLEMENTATION DETAILS ON ACTION RECOGNITION TASK

For the action recognition task, we conduct experiments across three modalities: video, audio, and
optical flow. We use the SlowFast network (Feichtenhofer et al., 2019) to encode video data and
ResNet-18 (He et al., 2016) for audio, and the SlowFast network’s slow-only pathway for optical
flow. The models are pre-trained on each dataset’s training set using standard cross-entropy loss.
The Adam optimizer (Kingma & Ba, 2015) is employed with a learning rate of 0.0001 and a batch
size of 16. Training is performed for 20 epochs on an RTX 3090 GPU, and the model with the best
validation performance is selected. We also pre-train models using advanced training strategies such
as Sharpness-aware Minimization (SAM) (Foret et al., 2020) and SimMMDG (Dong et al., 2023), to
evaluate TTA performance on different models. During open-set TTA, we construct mini-batches
with equal numbers of known and unknown samples. We use a batch size of 64 and the Adam
optimizer with a learning rate of 2e-5 for all experiments. We update the parameters of the last layer
in each modality’s feature encoder as well as the final classification layer. To ensure fairness, we
update the same number of parameters for all baseline models. For hyperparameters in Wada, we set
α to 0.8 and β to 4.0. For hyperparameters in the final loss LAEO, we set both γ1 and γ2 to 0.1.
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Human-Animal-CartoonEPIC-Kitchens Kinetics-600

Video Optical Flow Audio

LiDAR Camera

nuScenes
Figure 8: Illustrations of datasets used in our benchmark. We include three action recognition datasets
with video, optical flow, and audio modalities, as well as one 3D semantic segmentation dataset with
LiDAR and camera modalities.

B.3 IMPLEMENTATION DETAILS ON SEGMENTATION TASK

For the 3D semantic segmentation task, we use ResNet-34 (He et al., 2016) as the backbone for the
camera stream and SalsaNext (Cortinhal et al., 2020) for the LiDAR stream. We adopt the fusion
framework proposed in PMF (Zhuang et al., 2021), modifying it by adding an additional segmentation
head to the combined features from the camera and LiDAR streams. For optimization, we use SGD
with Nesterov (Loshchilov & Hutter, 2016) for the camera stream and Adam (Kingma & Ba, 2015)
for the LiDAR stream. The networks are trained for 50 epochs with a batch size of 3, starting with a
learning rate of 0.0005, which decays to 0 with a cosine schedule. In the open-set setting, all vehicle
classes are treated as unknown. During training, unknown classes are labeled as void and ignored.
To prevent overfitting, we apply various data augmentation techniques, including random horizontal
flipping, random scaling, color jitter, 2D random rotation, and random cropping. During open-set
TTA, we use a batch size of 1 and AdamW optimizer with a learning rate of 0.0001. We update the
batch normalization parameters of both LiDAR and camera streams.

B.4 MORE DETAILS ON BENCHMARK DATASETS

To comprehensively evaluate our proposed methods in the MM-OSTTA setting, we establish a new
benchmark derived from existing datasets. This benchmark includes two downstream tasks – action
recognition and 3D semantic segmentation – and incorporates five different modalities: video, audio,
and optical flow for action recognition, as well as LiDAR and camera for 3D semantic segmentation,
as shown in Fig. 8.

EPIC-Kitchens (Damen et al., 2018). EPIC-Kitchens is a large-scale egocentric dataset collected
from 32 participants in their native kitchen environments. The participants recorded all their daily
kitchen activities, with annotated start and end times for each action. We use a subset of the EPIC-
Kitchens dataset introduced in the Multimodal Domain Adaptation work (Munro & Damen, 2020),
which includes 10, 094 video clips across eight actions (‘put’, ‘take’, ‘open’, ‘close’, ‘wash’, ‘cut’,
‘mix’, and ‘pour’), recorded in three distinct kitchens, forming three separate domains D1, D2, and
D3. We use the provided video and audio modalities.

HAC (Dong et al., 2023). The HAC dataset, designed for multimodal domain generalization, features
seven actions (‘sleeping’, ‘watching tv’, ‘eating’, ‘drinking’, ‘swimming’, ‘running’, and ‘opening
door’) performed by humans, animals, and cartoon figures, spanning three domains H, A, and C. It
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Gaussian Noise Defocus Frost

Brightness Pixelate JPEG

Figure 9: Visualization of various visual corruption types on the constructed Kinetics-100-C bench-
mark.

Gaussian

Raw Audio

RainWind

Thunder CrowdTraffic

Figure 10: Mel spectrogram visualization of the raw audio and the corresponding audio corruption
types on the constructed Kinetics-100-C benchmark.

contains 3, 381 video clips and we use the provided video, optical flow, and audio modalities for our
experiments.

Kinetics-600 (Carreira et al., 2018). Kinetics-600 is a large-scale action recognition dataset
comprising approximately 480k videos across 600 action categories. Each video is a 10-second clip
of action moment annotated from YouTube videos. In our benchmark, we carefully selected a subset
of 100 action classes from Kinetics-600 to mitigate the potential category overlap with the HAC
dataset, with each class comprising roughly 250 video clips, yielding a total of 24, 981 video clips.
We use the provided video and audio modalities to create a new Kinetics-100-C corruption dataset
(Fig. 9 and Fig. 10) following the ideas in Hendrycks & Dietterich (2019) and Yang et al. (2024). We
apply six different types of corruptions (Gaussian, Defocus, Frost, Brightness, Pixelate, and JPEG) on
videos and six others (Gaussian, Wind, Traffic, Thunder, Rain, and Crowd) on audios. We randomly
combine them to generate 6 different corruption shifts and all our experiments are conducted under
the most severe corruption level of 5 ((Hendrycks & Dietterich, 2019)). For example, Defocus (v) +
Wind (a) means we add defocus corruption on video and wind corruption on audio.

nuScenes (Caesar et al., 2020). nuScenes is a large-scale dataset designed for autonomous driving
research. It includes data collected from autonomous vehicles equipped with a comprehensive sensor
suite, including cameras, LiDAR, radar, GPS, and IMU. The dataset provides 360° coverage of urban
environments in Boston and Singapore, offering diverse weather and traffic scenarios. It includes
1, 000 driving scenes with rich annotations, such as 3D bounding boxes for 23 object classes, enabling
tasks like object detection, tracking, and scene understanding. The scenes are split into 28, 130
training frames and 6, 019 validation frames.
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Defocus (v) + Wind (a) Frost (v) + Traffic (a) Brightness (v) + Thunder (a) Pixelate (v) + Rain (a)
Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑

Source 73.82 67.74 75.04 51.84 40.58 86.34 56.37 25.95 80.89 59.13 79.03 60.63 79.00 66.42 73.76 53.58
Tent 73.42 89.66 60.89 23.67 56.47 94.50 52.03 13.71 79.21 87.71 61.44 27.21 78.34 87.63 61.20 27.29
SAR 73.24 89.16 66.78 24.82 57.32 94.97 55.06 12.80 78.58 88.66 64.74 25.78 78.71 88.89 64.57 25.38

OSTTA 73.47 75.24 72.09 44.20 59.53 91.39 61.28 20.10 78.34 78.34 73.70 41.38 77.39 66.05 78.25 54.39
UniEnt 73.63 57.37 84.54 61.39 56.87 79.47 70.69 37.30 78.76 45.11 88.08 70.98 78.16 54.37 84.42 64.44
READ 74.18 48.32 85.06 67.28 60.92 64.61 76.78 52.00 79.08 40.18 88.31 73.74 78.18 41.87 88.02 72.54

AEO (Ours) 74.03 47.45 85.72 67.87 61.11 63.00 78.28 53.41 78.92 37.71 89.68 75.23 77.74 39.00 90.09 74.34
JPEG (v) + Crowd (a) Gaussian (v) + Gaussian (a) Mean

Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑
Source 76.47 64.97 75.25 54.63 41.61 88.13 55.48 23.75 65.40 72.12 69.16 45.06

Tent 78.16 89.47 60.27 24.12 64.00 93.08 55.15 16.83 71.60 90.34 58.50 22.14
SAR 77.76 90.18 64.09 23.02 64.89 93.84 59.27 15.41 71.75 90.95 62.42 21.20

OSTTA 77.50 78.66 71.84 40.71 64.79 91.42 63.27 20.30 71.84 80.18 70.07 36.85
UniEnt 77.53 51.87 85.52 66.13 63.76 84.08 71.09 32.41 71.45 62.04 80.72 55.44
READ 77.95 43.47 86.72 71.34 66.08 55.82 81.82 60.01 72.73 49.05 84.45 66.15

AEO (Ours) 78.08 42.37 88.06 72.26 65.63 54.50 82.74 60.85 72.59 47.34 85.76 67.33

Table 12: Multimodal Open-set TTA with video and audio modalities on Kinetics-100-C, with
corrupted video and audio modalities (severity level 3).
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Figure 11: Detailed results on all 36 possible combinations of corruptions. Our AEO achieves the
best on 31 of them.

B.5 EXTENSION TO MORE MODALITIES

Our AEO framework is not limited to two modalities and can be easily extended to M modalities.
Given a sample x with M modalities, we obtain prediction probabilities p̂ from the combined
embeddings of all modalities, and p̂1, p̂2, ..., p̂M from each modality, all of which are of shape
[1, C], where C represents the number of classes. In this case, LAdaEnt is still in its original form as
in Eq. (4) and LAdaEnt∗ can be defined as:

LAdaEnt∗ = − 1

M

M∑
i=1

H(p̂i) ·Wada, (10)

and LAdaDis becomes:

LAdaDis = − 2

M(M − 1)

M−1∑
i=1

M∑
j=i+1

Dis(p̂i, p̂j) ·Wada. (11)

The final loss is also the same as in Eq. (8). As shown in Tab. 2 and Tab. 23, our framework
demonstrates strong performances when video, audio, and optical flow are all available.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 MORE RESULTS ON KINETICS-100-C DATASET WITH DIFFERENT SEVERITY LEVELS

In previous experiments, we used the most challenging setup (severity level 5) for Kinetics-100-C. In
this section, we evaluate the performance of various methods under milder corruptions (severity level
3). As shown in Tab. 12, our AEO consistently outperforms baselines and achieves the best results at
severity level 3, consistent with the findings at severity level 5.
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Source Tent SAR OSTTA UniEnt READ AEO (ours)

H-score 37.30 16.90 16.11 28.14 45.38 59.11 60.56

Table 13: Average H-score on all 36 possible combinations of corruptions.

Kinetics-100-C
Acc↑ FPR95↓ AUROC↑ H-score↑

Source 61.06 73.09 68.82 43.51
UniEnt 66.87 59.55 80.31 56.37
READ 68.65 52.52 82.31 62.44
AEO (Ours) 68.39 49.85 84.70 64.39

Table 14: Multimodal Open-set TTA with video and audio modalities on Kinetics-100-C, with
corrupted video and audio modalities (severity level 5). The corruptions for open-set data (HAC
dataset) are mixed.

C.2 EVALUATION RESULTS ON ALL 36 POSSIBLE COMBINATIONS OF CORRUPTIONS

In the previous experiments, we applied six types of corruption separately to video and audio, then
randomly combined them to generate six distinct corruption shifts (e.g., Defocus (v) + Wind (a), Frost
(v) + Traffic (a), Brightness (v) + Thunder (a), etc.). In total, there are 36 possible combinations. In
this section, we comprehensively evaluate various baselines across all 36 combinations and present the
results in Fig. 11 and Tab. 13. Our AEO achieves the best performance on 31 out of 36 combinations
and obtains the highest average H-score, demonstrating its robustness under diverse corruption
scenarios.

C.3 ROBUSTNESS UNDER MIXED CORRUPTIONS FOR OPEN-SET DATA

By default, the corruptions applied to the open-set data (HAC dataset) are the same as those applied
to the closed-set data (Kinetics-100) for each configuration on Kinetics-100-C. For instance, in the
Defocus (v) + Wind (a) configuration, Defocus corruption is applied to video and Wind corruption to
audio for both the HAC and Kinetics-100 datasets. In this section, we evaluate a more challenging
setup, where the corruptions for the open-set data are mixed and randomly sampled from all six
possible corruptions. For example, in the Defocus (v) + Wind (a) configuration, Defocus corruption
is applied to video and Wind corruption to audio for Kinetics-100, while one of the six possible
corruptions is randomly assigned to each sample in the HAC dataset. As shown in Tab. 14, our AEO
consistently outperforms the baselines in this challenging setup.

C.4 ROBUSTNESS UNDER DIFFERENT SCORE FUNCTIONS

The score function in Eq. (2) is flexible, with several options such as MSP (Hendrycks & Gimpel,
2017), MaxLogit (Hendrycks et al., 2022), Energy (Liu et al., 2020), and Entropy (Liu et al., 2023).
In this paper, we use MSP as the default and evaluate other score functions on the HAC dataset using
both video and audio, as shown in Tab. 15. Our AEO demonstrates low sensitivity to the choice of
score functions, achieving comparable performance across different metrics.

C.5 INFLUENCE OF LDiv TO THE PERFORMANCES

We investigate the impact of LDiv in Eq. (7) to the performances, a negative entropy loss term widely
used in prior works (Zhou et al., 2023; Yang et al., 2024) to promote diversity in predictions. As
shown in Tab. 16, removing LDiv results in performance on the EPIC-Kitchens dataset remaining
comparable to the original, while significantly reducing performance on the HAC and Kinetics-100-C
datasets. This demonstrates the critical role of LDiv in ensuring diversity in predictions.

C.6 ABLATION ON EACH COMPONENT IN AMP

We analyze the contributions of each term in Adaptive Modality Prediction Discrepancy Optimization
(AMP), specifically LAdaEnt∗ and LAdaDis. The LAdaEnt∗ term adaptively maximizes or minimizes
the prediction entropy of each modality and LAdaDis dynamically adjusts the prediction discrepancy
between modalities based on whether the samples are known or unknown. As shown in Tab. 17, with
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MSP MaxLogit Energy Entropy

Acc↑ 59.53 59.53 59.53 59.53
FPR95↓ 66.75 65.25 65.02 66.14

AUROC↑ 72.50 73.07 73.31 73.52
H-score↑ 48.31 49.69 49.86 49.04

Table 15: Ablation on different score functions on HAC dataset.

HAC EPIC-Kitchens Kinetics-100-C
Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑

w/o LDiv 59.54 67.74 73.05 46.62 48.79 45.78 86.11 56.40 61.47 66.26 78.25 50.15
w/ LDiv 59.53 66.75 72.50 48.31 50.93 48.65 85.58 56.18 63.88 54.13 82.22 60.07

Table 16: Ablation on LDiv to the final performances.

HAC
LAdaDis LAdaEnt∗ Acc↑ FPR95↓ AUROC↑ H-score↑

59.76 67.58 71.53 47.79
✓ 59.49 67.48 72.39 47.60

✓ 59.85 67.41 72.36 47.74
✓ ✓ 59.53 66.75 72.50 48.31

Table 17: Ablation on each component in AMP on HAC dataset.
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Figure 12: Sensitivity to loss hyperparameters γ1 and γ2.

only LAdaEnt∗ or LAdaDis, the performance is very close to using LAdaEnt alone. The best results
are achieved when they are combined, which means LAdaEnt∗ and LAdaDis are complementary to
each other.

C.7 SENSITIVITY TO LOSS HYPERPARAMETERS

We evaluate the sensitivity of our method to the hyperparameters γ1 and γ2 in Eq. (8) by varying one
hyperparameter at a time while keeping the others fixed. As shown in Fig. 12, our method consistently
outperforms the best baseline, READ, across all parameter configurations. These results highlight the
robustness of our approach and its low sensitivity to changes in hyperparameter settings.

C.8 MORE VISUALIZATIONS ON PREDICTION SCORE DISTRIBUTIONS

Fig. 13 presents the prediction score distributions generated by various methods on the EPIC-
Kitchens dataset before and after TTA. The score distributions of known and unknown samples
exhibit significant overlap without TTA (Fig. 13 (a), (d), and (g)), leading to poor detection of
unknown classes. Tent (Wang et al., 2021) minimizes the entropy of all samples, whether known or
unknown, further compressing the score distributions (Fig. 13 (b), (e), and (h)) and making separation
more difficult. In contrast, the score distributions produced by our method achieve better separation
between known and unknown samples (Fig. 13 (c), (f), and (i)), thereby improving unknown class
detection.

Fig. 14 depicts the model prediction entropy for known and unknown samples during online adapta-
tion, evaluated batch by batch. Without TTA (Fig. 14 (a), (d), and (g)), the entropy values for known
and unknown samples also show considerable overlap, resulting in weak unknown class detection.
Tent (Wang et al., 2021) minimizes the entropy of all samples, further narrowing the gap between
known and unknown samples (Fig. 14 (b), (e), and (h)). In contrast, the entropy values generated by
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(g) D2 → D3 (No TTA) (h) D2 → D3 (Tent) (i) D2 → D3 (Ours)

(a) D1 → D3 (No TTA) (b) D1 → D3 (Tent) (c) D1 → D3 (Ours)

(d) D2 → D1 (No TTA) (e) D2 → D1 (Tent) (f) D2 → D1 (Ours)

Figure 13: Prediction score distributions of different methods on the EPIC-Kitchens dataset before
and after TTA.

our method enable better separation between known and unknown samples during online adaptation
(Fig. 14 (c), (f), and (i)), thus enhancing the detection of unknown classes.

C.9 DIFFERENT RANDOM SEEDS

We run experiments three times using different seeds on HAC dataset using video and audio (A
→ H adaptation) and then calculate the mean H-score to demonstrate the statistical significance
of our methods. As illustrated in Fig. 15, training with AEO is statistically stable and consistently
outperforms the baselines across various random seeds. In contrast, most baseline methods exhibit
instability, with large variances across different runs.

C.10 DETAILED RESULTS ON KINETICS-100-C DATASET IN CONTINUAL MM-OSTTA
SETTING

Tab. 18 presents the detailed results on the Kinetics-100-C dataset under the continual MM-OSTTA
setting, where the target domain distribution continually changes over time without resetting the
model. We simulate continual TTA by repeating adaptation across continually changing domains
(Defocus (v) + Wind (a) → Frost (v) + Traffic (a) → Brightness (v) + Thunder (a) → ...). Notably,
our method achieves a 4.12% increase in H-score after continual adaptation, indicating its robustness
to error accumulation and its ability to continually optimize the entropy difference between known
and unknown samples. Instead, most baseline methods suffer from severe performance degradation
after continual adaptation.
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(g) D2 → D3 (No TTA) (h) D2 → D3 (Tent) (i) D2 → D3 (Ours)

(a) D1 → D3 (No TTA) (b) D1 → D3 (Tent) (c) D1 → D3 (Ours)

(d) D2 → D1 (No TTA) (e) D2 → D1 (Tent) (f) D2 → D1 (Ours)

Figure 14: Model prediction entropy for known and unknown samples during online adaptation.

Figure 15: Experiments using three random seeds on HAC dataset using video and audio (A →
H adaptation). Foreground points in bold show results averaged across three different seeds while
background points, shown feint, indicate results from the underlying individual seeds.

C.11 DETAILED RESULTS ON HAC DATASET IN CONTINUAL MM-OSTTA SETTING

Tab. 19 provides detailed results on the HAC dataset in the continual MM-OSTTA setting, where the
target domain distribution continually changes over time and the model is never reset. We simulate
three continual TTA scenarios (H → A → C, A → C → H, and C → H → A). Similar to the results
on Kinetics-100-C, our method improves the H-score by 5.53% after continual adaptation, further
demonstrating its robustness against error accumulation and its capability to constantly optimize the
entropy difference between known and unknown samples. Meanwhile, most baseline methods show
severe performance degradation after continual adaptation.
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t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Defocus (v) + Wind (a) Frost (v) + Traffic (a) Brightness (v) + Thunder (a) Pixelate (v) + Rain (a)

Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑
Source 60.74 72.63 71.93 44.84 33.24 87.68 55.33 23.20 78.97 59.50 79.13 60.01 70.63 72.11 69.38 46.56

Tent 62.24 85.87 61.09 29.07 45.53 95.26 43.62 11.73 66.39 95.18 44.55 12.25 62.76 97.45 38.64 6.91
SAR 63.32 89.45 64.89 23.81 49.34 98.21 32.27 4.92 70.11 94.18 36.09 14.03 66.68 97.37 28.08 6.96

OSTTA 62.76 81.39 65.19 35.29 48.66 94.18 50.23 14.13 71.97 92.08 56.24 18.99 68.76 94.39 47.72 14.03
UniEnt 63.53 62.50 80.20 54.67 48.66 74.97 76.13 40.74 73.18 46.34 88.74 68.86 71.97 58.18 85.84 60.66
READ 64.24 59.08 80.19 57.17 54.84 64.00 78.98 51.13 76.76 33.92 91.76 76.81 73.05 29.97 92.80 77.43

AEO (Ours) 64.21 57.68 81.08 58.21 54.05 59.74 82.40 54.08 74.71 25.74 94.57 80.16 69.95 21.21 94.64 79.88
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

JPEG (v) + Crowd (a) Gaussian (v) + Gaussian (a) Mean
Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑

Source 61.11 70.11 69.38 46.70 13.05 98.18 43.90 4.62 52.96 76.70 64.84 37.66
Tent 53.84 98.13 34.23 5.15 21.74 97.95 34.05 5.33 52.08 94.97 42.70 11.74
SAR 58.95 97.08 25.98 7.54 20.34 96.55 31.22 8.09 54.79 95.47 36.42 10.89

OSTTA 62.13 94.32 46.19 14.03 30.92 97.82 38.14 5.80 57.53 92.36 50.62 17.05
UniEnt 65.37 69.32 82.03 49.93 35.00 98.68 55.01 3.73 59.62 68.33 77.99 46.43
READ 66.84 34.53 90.82 72.73 30.89 68.21 72.41 38.64 61.10 48.29 84.49 62.32

AEO (Ours) 61.37 28.55 92.16 72.92 28.15 62.82 78.46 39.91 58.74 42.62 87.22 64.19

Table 18: Continual Multimodal Open-set TTA with video and audio modalities on Kinetics-100-C,
with corrupted video and audio modalities (severity level 5).

t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
H → A A → C A → C C → H

Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑
Source 57.28 87.53 45.90 25.12 38.79 98.99 22.49 2.83 44.85 87.78 58.24 24.73 67.99 58.26 74.93 57.68

Tent 57.51 78.59 65.63 37.82 31.25 98.16 39.60 4.99 54.87 91.27 55.23 19.88 66.62 92.00 52.79 18.87
SAR 58.50 77.70 68.39 39.19 41.82 97.06 48.43 7.80 55.33 90.26 60.35 21.85 67.48 92.65 59.20 17.88

OSTTA 55.63 76.82 72.14 40.01 31.53 88.97 63.08 21.70 52.76 89.34 57.61 23.06 67.74 89.83 55.83 22.90
UniEnt 60.15 78.04 64.02 38.57 39.71 99.63 29.20 1.09 52.21 93.75 55.99 15.23 65.25 85.94 68.75 29.70
READ 57.84 68.87 69.58 47.03 42.65 87.78 54.99 24.30 54.14 84.10 58.05 30.43 68.93 61.21 71.49 55.27

AEO (Ours) 58.39 65.78 73.30 50.01 47.24 82.08 70.49 32.91 53.86 72.33 70.31 43.52 70.01 37.20 90.76 72.77
t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

C → H H → A Mean
Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑

Source 61.36 71.67 67.72 45.21 67.88 65.23 70.81 52.07 56.36 78.24 56.68 34.61
Tent 62.94 78.73 65.22 38.35 59.71 91.83 50.29 18.86 55.48 88.43 54.79 23.13
SAR 66.91 74.41 66.88 43.49 62.80 94.81 50.27 13.13 58.81 87.81 58.92 23.89

OSTTA 63.52 78.30 64.44 38.79 62.14 82.89 53.24 32.15 55.55 84.36 61.06 29.77
UniEnt 66.26 64.38 76.11 53.28 67.77 62.36 81.07 55.90 58.56 80.68 62.52 32.30
READ 61.07 69.79 69.55 46.98 61.92 69.21 66.31 47.09 57.76 73.49 65.00 41.85

AEO (Ours) 64.10 61.28 79.70 55.58 66.89 43.60 88.80 68.27 60.08 60.38 78.89 53.84

Table 19: Continual Multimodal Open-set TTA with video and audio modalities on HAC dataset,
with corrupted video and audio modalities.

H → A H → C A → H A → C
Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑

Source 57.28 87.53 45.90 25.12 38.79 98.99 22.49 2.83 67.99 58.26 74.93 57.68 44.85 87.78 58.24 24.73
Tent 57.51 78.59 65.63 37.82 41.64 94.03 47.25 14.11 70.58 87.82 61.63 26.67 54.87 91.27 55.23 19.88
SAR 58.50 77.70 68.39 39.19 46.32 95.04 48.67 12.31 70.22 72.39 68.88 46.17 55.33 90.26 60.35 21.85

OSTTA 55.63 76.82 72.14 40.01 44.49 89.98 58.36 21.52 71.09 86.59 61.74 28.62 52.76 89.34 57.61 23.06
UniEnt 60.15 78.04 64.02 38.57 40.99 98.71 31.86 3.61 68.85 64.10 72.81 53.46 52.21 93.75 55.99 15.23
READ 57.84 68.87 69.58 47.03 45.40 86.95 56.73 25.80 70.51 58.62 73.60 57.76 54.14 84.10 58.05 30.43

AEO (Ours) 57.84 67.11 72.16 48.74 45.59 89.71 57.02 21.95 70.44 47.95 81.33 65.64 53.86 72.33 70.31 43.52
C → H C → A Mean

Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑
Source 61.36 71.67 67.72 45.21 67.88 65.23 70.81 52.07 56.36 78.24 56.68 34.61

Tent 62.94 78.73 65.22 38.35 66.78 80.68 63.56 36.38 59.05 85.19 59.75 28.87
SAR 66.91 74.41 66.88 43.49 66.67 63.91 70.11 52.66 60.66 78.95 63.88 35.94

OSTTA 63.52 78.30 64.44 38.79 65.56 73.73 64.03 43.52 58.84 82.46 63.05 32.58
UniEnt 66.26 64.38 76.11 53.28 67.55 54.53 79.28 60.72 59.34 75.59 63.35 37.48
READ 61.07 69.79 69.55 46.98 63.69 68.65 68.72 48.27 58.78 72.83 66.04 42.71

AEO (Ours) 64.10 61.28 79.70 55.58 65.34 62.14 74.46 54.40 59.53 66.75 72.50 48.31

Table 20: Multimodal Open-set TTA with video and audio modalities on HAC dataset.

C.12 DETAILED RESULTS ON HAC DATASET USING DIFFERENT COMBINATION OF
MODALITIES

Tab. 20 through Tab. 23 summarize the detailed results on the HAC dataset using different combina-
tions of modalities. Most existing TTA methods struggle to generalize effectively in the challenging
multimodal open-set TTA setup. While UniEnt (Gao et al., 2024) and READ (Yang et al., 2024)
perform well and exceed the Source baseline, other TTA methods fail to achieve robust perfor-
mance, underscoring the complexities of multimodal open-set adaptation. In contrast, our method
demonstrates strong robustness across all modality combinations, significantly improving the Source
baseline H-score by 13.70%, 12.12%, 9.12%, and 10.82% for the respective modality setups. These
improvements highlight the effectiveness of our approach in handling diverse multimodal scenarios,
even under challenging open-set conditions.
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H → A H → C A → H A → C
Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑

Source 63.13 85.43 50.36 28.75 44.03 98.90 25.55 3.09 72.39 52.70 77.53 62.69 48.44 84.19 52.72 29.16
Tent 62.69 78.37 65.36 38.72 42.19 96.05 46.36 10.05 69.14 85.94 60.09 29.35 49.72 94.03 46.67 14.35
SAR 63.58 75.06 69.16 42.68 46.78 95.40 50.39 11.60 70.87 87.53 62.11 27.17 52.02 96.69 44.88 8.73

OSTTA 62.25 65.56 75.25 51.38 44.03 91.36 58.60 19.29 66.76 90.99 59.61 21.02 50.92 96.69 44.97 8.72
UniEnt 64.24 84.33 62.54 31.46 45.40 99.08 33.38 2.63 70.66 38.57 88.95 71.99 53.22 77.57 62.07 37.74
READ 63.69 62.03 77.71 54.64 41.54 93.29 54.26 15.66 70.37 67.34 69.70 50.70 53.31 88.33 51.81 24.24

AEO (Ours) 64.02 56.95 81.81 58.74 46.32 85.57 64.39 28.19 68.93 48.67 86.21 65.81 52.30 83.55 62.14 31.25
C → H C → A Mean

Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑
Source 57.82 67.56 70.46 48.14 61.04 65.34 72.28 50.79 57.80 75.69 58.15 37.11

Tent 66.33 82.84 64.21 33.74 61.59 83.00 63.97 33.08 58.61 86.71 57.78 26.55
SAR 64.96 82.91 65.34 33.63 62.80 77.92 66.34 39.33 60.17 85.92 59.70 27.19

OSTTA 66.11 89.55 63.13 23.69 60.60 84.55 64.16 30.99 58.45 86.45 60.95 25.85
UniEnt 61.36 66.83 75.03 50.19 65.67 62.69 74.15 54.04 60.09 71.51 66.02 41.34
READ 62.58 70.44 71.20 46.98 62.69 68.32 71.60 48.79 59.03 74.96 66.05 40.17

AEO (Ours) 61.93 58.04 80.45 57.24 62.80 61.70 74.73 54.14 59.38 65.75 74.96 49.23

Table 21: Multimodal Open-set TTA with video and optical flow modalities on HAC dataset.

H → A H → C A → H A → C
Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑

Source 57.40 65.34 71.75 49.83 29.60 92.83 45.70 15.37 54.72 78.73 69.16 37.62 40.26 89.34 57.20 22.04
Tent 54.75 71.96 70.43 44.04 29.78 98.35 40.91 4.52 55.37 88.18 57.74 25.00 35.85 96.60 47.36 8.74
SAR 55.74 54.75 79.80 57.07 29.50 96.42 50.35 9.01 54.87 93.73 58.80 15.41 35.66 96.97 45.59 7.89

OSTTA 52.76 70.20 73.31 45.35 29.04 97.70 42.94 6.09 52.05 83.20 59.64 31.41 35.39 97.52 43.84 6.60
UniEnt 57.84 48.12 84.59 62.00 29.22 88.79 60.47 21.43 53.79 71.38 73.36 44.67 37.50 88.14 54.84 23.22
READ 54.53 61.15 77.81 52.70 29.96 88.97 61.09 21.37 53.42 72.53 71.41 43.40 36.86 86.58 52.07 24.82

AEO (Ours) 54.42 52.21 83.62 58.53 31.99 83.64 66.76 27.94 54.72 64.10 77.39 50.80 36.76 86.31 53.01 25.19
C → H C → A Mean

Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑
Source 39.01 79.24 65.85 33.71 44.92 71.19 72.72 42.42 44.32 79.45 63.73 33.50

Tent 41.38 90.56 56.27 20.29 48.79 88.41 57.51 24.16 44.32 89.01 55.04 21.12
SAR 43.33 75.78 66.57 37.79 43.38 76.27 66.61 37.40 43.75 82.32 61.29 27.43

OSTTA 39.29 92.72 54.98 16.57 41.83 88.19 56.34 23.75 41.73 88.26 55.17 21.63
UniEnt 43.69 79.09 69.89 35.29 45.70 75.50 70.28 39.00 44.62 75.17 68.90 37.60
READ 39.37 76.42 67.89 36.35 46.91 75.28 66.55 39.06 43.51 76.82 66.14 36.28

AEO (Ours) 42.03 66.47 79.03 45.27 45.81 63.91 77.24 48.01 44.29 69.44 72.84 42.62

Table 22: Multimodal Open-set TTA with optical flow and audio modalities on HAC dataset.

H → A H → C A → H A → C
Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑

Source 64.57 80.79 55.25 35.03 36.86 96.32 36.79 9.20 68.85 50.76 80.07 63.40 47.24 75.37 68.33 39.26
Tent 63.25 74.28 64.27 42.70 38.42 93.01 48.26 15.81 69.57 91.28 53.05 20.28 53.86 96.88 38.63 8.22
SAR 64.02 70.42 69.26 46.97 41.36 95.77 47.92 10.66 70.15 77.72 67.02 40.51 55.33 97.15 42.49 7.64

OSTTA 64.02 68.21 69.56 48.82 40.53 91.08 53.52 19.30 66.83 87.67 56.27 26.35 57.08 94.39 44.78 13.75
UniEnt 63.91 74.28 68.10 43.35 38.88 95.96 44.73 10.15 68.71 43.40 85.23 68.25 50.92 68.20 71.56 46.11
READ 63.91 61.26 76.13 54.95 42.74 87.22 59.05 25.30 66.33 60.99 73.51 55.23 51.38 83.92 60.28 30.54

AEO (Ours) 64.90 57.62 79.36 58.13 43.84 86.76 60.72 26.13 67.27 48.74 82.69 64.56 54.23 76.47 65.08 39.32
C → H C → A Mean

Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑ Acc↑ FPR95↓ AUROC↑ H-score↑
Source 58.76 78.01 64.88 38.51 63.69 76.60 65.52 40.71 56.66 76.31 61.81 37.68

Tent 64.02 81.69 60.43 34.57 64.02 84.33 56.97 30.93 58.86 86.91 53.60 25.42
SAR 67.84 74.62 66.86 43.42 64.68 78.37 64.89 38.91 60.56 82.34 59.74 31.35

OSTTA 57.97 83.27 59.30 31.95 64.68 81.68 60.29 34.63 58.52 84.38 57.29 29.13
UniEnt 60.85 79.52 69.03 37.62 66.11 71.41 70.85 46.72 58.23 72.13 68.25 42.03
READ 60.85 76.86 68.50 40.41 59.60 75.28 66.21 41.47 57.47 74.26 67.28 41.32

AEO (Ours) 64.31 63.23 78.41 54.05 64.02 68.43 70.63 48.82 59.76 66.88 72.82 48.50

Table 23: Multimodal Open-set TTA with video, audio, and optical flow modalities on HAC dataset.

C.13 FURTHER DISCUSSIONS ON THE NOVELTY OF THE PROPOSED FRAMEWORK

C.13.1 COMPARISON WITH OOD DETECTION METHODS

The primary contribution of Liu et al. (2020) is the proposal of energy as an inference-time OOD
score. While Liu et al. (2020) also uses energy as a learning objective, assigning lower energies
to in-distribution (ID) data and higher energies to OOD data, it relies on auxiliary OOD training
data. This assumption—knowing whether a sample is ID or OOD during training—does not hold
in MM-OSTTA, where the task is to differentiate between ID and OOD samples without prior
knowledge of their status. Therefore, the energy learning objective proposed in Liu et al. (2020)
can’t be used for MM-OSTTA directly. Additionally, Liu et al. (2020) assigns equal weights to all
samples in the energy loss, which is impractical in MM-OSTTA. In MM-OSTTA, both distribution
and label shifts are present, and the network often encounters samples with high uncertainty, making it
unclear whether they are ID or OOD. Assigning equal weights to such samples can hinder adaptation
performance.

To address the first challenge, we use entropy as a robust indicator of known and unknown samples to
make an initial differentiation. Then we address the second challenge by assigning dynamic weights
to samples based on their distance to an entropy threshold. This mitigates the impact of noisy or
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HAC EPIC-Kitchens Kinetics-100-C
Consistent Prediction 47.61 55.12 58.91
AEO (ours) 48.31 56.18 60.07

Table 24: Ablation on consistent predictions across modalities to the final performances. The H-score
is reported.

ambiguous samples, focusing optimization on reliable ones. These adaptations make our Unknown-
aware Adaptive Entropy Optimization substantially different from the energy-based approach in Liu
et al. (2020).

C.13.2 COMPARISON WITH MULTIMODAL TTA METHODS

Both Shin et al. (2022) and Xiong et al. (2024) address the multimodal closed-set TTA by introducing
a consistency loss between predictions of different modalities to make them close. However, this
approach can be detrimental for open-set TTA, especially when dealing with unknown samples.

For known samples, enforcing consistent predictions across modalities helps the model make confident
and accurate final predictions, as each modality supports the others. For unknown samples, enforcing
consistent predictions across modalities can be detrimental. If both modalities have predictions with
high entropy on unknown samples, enforcing consistent predictions across them has minimal impact.
However, when the model suffers from overconfidence issues and outputs high prediction certainty
(low entropy) for unknown class samples (Fig. 6 (a)), enforcing consistent predictions can make the
model output final predictions with high certainty aligned with known classes, degrading the open-set
performances.

To address this, we propose Adaptive Modality Prediction Discrepancy Optimization, which adap-
tively enforces consistency or discrepancy based on whether a sample likely belongs to a known
or unknown class. This approach ensures that consistency is enforced only when beneficial, while
discrepancy is maintained for unknown samples to prevent misalignment with known classes. Our
ablation study highlights the necessity of this adaptive strategy. Enforcing consistent predictions
across all modalities degrades performance across all datasets, as shown in Tab. 24.

C.13.3 COMPARISON WITH OPEN-SET METHODS

Safaei et al. (2024) and Gao et al. (2024) also utilized the entropy difference between known and
unknown samples in open-set settings. However, our work goes beyond merely leveraging this
difference. In Sec. 3.1, we provide a deeper and more comprehensive analysis of this phenomenon.
Specifically, we investigate the relationship between entropy differences and the performance of
MM-OSTTA across various baselines, identifying potential failure modes that previous works did not
address. Building on these insights, we propose the Adaptive Entropy-aware Optimization (AEO)
framework, specifically designed for the MM-OSTTA setup to amplify the entropy difference between
known and unknown samples dynamically during online adaptation.

C.13.4 COMPARISON WITH SELECTIVE ENTROPY MINIMIZATION METHODS

Both SAR (Niu et al., 2023) and EATA (Niu et al., 2022) select reliable samples according to their
entropy values for adaptation, excluding high-entropy samples from adaptation and assigning higher
weights to test samples with lower prediction uncertainties. While they achieve better performance
than Tent, they face two key limitations in the multimodal open-set TTA setting:

Limited handling of unknown classes. SAR and EATA focus solely on minimizing the entropy of
samples with lower prediction uncertainties (likely belonging to known classes) while leaving the
high-entropy samples (potentially unknown classes) unaddressed. This selective approach restricts
their ability to amplify the entropy difference between known and unknown samples. In contrast, our
proposed Adaptive Entropy-aware Optimization (AEO) dynamically optimizes the entropy of both
known and unknown classes, resulting in a significantly larger entropy difference, as demonstrated in
Fig. 2.

Sensitivity to overlapping score distributions. In the challenging open-set setting, the initial score
distributions of known and unknown samples are often closely aligned and difficult to distinguish, as
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shown in Fig. 6 (a). In such cases, SAR and EATA could potentially minimize the entropy of unknown
samples incorrectly, leading to degraded performance that may even fall below the Source baseline.
AEO addresses this issue by progressively increasing the entropy difference between known and
unknown samples, mitigating the risk of negative adaptation and ensuring more reliable performance.

Additionally, we introduce Adaptive Modality Prediction Discrepancy Optimization, which exploits
cross-modal interactions to further enhance the separation between known and unknown classes.
These complementary approaches strengthen our framework’s ability to handle open-set challenges
more effectively than selective entropy minimization methods.

C.13.5 PERFORMANCE IMPROVEMENT IN ACCURACY

While our AEO framework is indeed primarily designed to enhance unknown sample detection, it
does not compromise accuracy (Acc) for closed-set adaptation. On the contrary, our results show that
AEO achieves competitive accuracy across all datasets.

To clarify, the assertion that AEO sacrifices Acc for its advantages in unknown sample detection is not
supported by our findings. For example, while READ excels on EPIC-Kitchens and Kinetics-100-C,
it performs poorly on the HAC dataset. Conversely, SAR performs well on HAC dataset but poorly on
EPIC-Kitchens and Kinetics-100-C datasets. Our AEO, however, consistently performs well across
all datasets. To provide further clarity, we have computed the average Acc across all datasets (EPIC-
Kitchens, HAC (video+audio, video+flow, flow+audio, video+audio+flow), and Kinetics-100-C).
As shown in Tab. 25, our AEO achieves the highest overall performance in Acc, demonstrating its
robustness.

Moreover, we have computed the average values of other metrics (FPR95, AUROC, and H-score)
across all datasets. As shown in Tab. 26, AEO achieves the best overall performance across all
metrics, with notable improvements in FPR95, AUROC, and H-score. While the improvement in
Acc is relatively modest, it is significant that AEO balances both closed-set adaptation and unknown
sample detection effectively.

In summary, our work is the first to tackle the challenging and practical problem of Multimodal
Open-set Test-time Adaptation. AEO does not trade Acc for improved unknown sample detection
but instead achieves a well-rounded performance across both closed-set and open-set adaptation
objectives.

Source Tent SAR OSTTA UniEnt READ AEO (ours)

Acc↑ 53.02 54.97 56.00 54.65 55.77 55.77 56.30

Table 25: Average accuracy (Acc) across all datasets.

Acc↑ FPR95↓ AUROC↑ H-score↑
Source 53.02 77.58 61.86 35.78
Tent 54.97 88.84 55.40 22.68
SAR 56.00 85.36 60.94 26.71
OSTTA 54.65 86.40 59.24 26.23
UniEnt 55.77 71.51 70.22 41.62
READ 55.77 72.14 69.36 42.81
AEO (Ours) 56.30 (+0.30) 61.93 (+9.58) 76.82 (+6.60) 50.82 (+8.01)

Table 26: Average value of different metrics on all datasets.
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