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ABSTRACT 1 INTRODUCTION

Multi-task dense prediction plays an important role in the field
of computer vision and has an abundant array of applications. Its
main purpose is to reduce the amount of network training param-
eters by sharing network parameters while using the correlation
between tasks to improve overall performance. We propose a task-
conditional network that handles one task at a time and shares most
network parameters to achieve these goals. Inspired by adapter tun-
ing, we propose an adapter module that focuses on both spatial-
and channel-wise information to extract features from the frozen
encoder backbone. This approach not only reduces the number
of training parameters, but also saves training time and memory
resources by attaching a parallel adapter pathway to the encoder.
We additionally use learnable task prompts to model different tasks
and use these prompts to adjust some parameters of adapters to
fit the network to diverse tasks. These task-conditional adapters
are also applied to the decoder, which enables the entire network
to switch between various tasks, producing better task-specific
features and achieving excellent performance. Extensive experi-
ments on two challenging multi-task benchmarks, NYUD-v2 and
PASCAL-Context, show that our approach achieves state-of-the-art
performance with excellent parameter, time, and memory efficiency.
The code is available at https://github.com/jfzleo/Task-Conditional-
Adapter.
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Dense prediction is an important research direction in computer
vision, involving tasks including semantic segmentation, depth esti-
mation, edge detection, surface normal estimation, etc. These tech-
niques are widely applied in various domains including autonomous
driving [15, 23, 36], robotics [37, 51], virtual reality [31, 46, 52],
among others. Different dense prediction tasks share part of the in-
formation when understanding the scene, which makes Multi-Task
Dense Prediction (MTDP) a popular research direction. Typically,
MTDP networks perform multiple prediction tasks in a unified
framework. The advantages of this approach over training several
single-task networks are twofold: first, learning a single network
that can tackle multiple tasks will have fewer parameters, less com-
putational cost, and less memory usage; second, complementary
tasks will have mutual benefits [35, 38, 47].

With the rise of deep learning, researchers have recently pro-
posed many deep learning-based MTDP methods. Typical MTDP
methods handle multiple dense prediction tasks concurrently and
exhibit excellent performance [5, 7, 13, 39, 42, 44-48, 53]. Nev-
ertheless, they still require a substantial number of task-specific
parameters to model distinct tasks, which hinders their ability to
fully achieve the goal of parameter reduction [32, 39, 44, 46, 53]. An
alternative approach to solve these problems is the task-conditional
paradigm [20, 28-30, 35], which performs only one task at a time.
These methods typically share the majority of their parameters
across different tasks, greatly reducing the overall number of net-
work parameters. This design endows them with better scalability
when dealing with a multitude of tasks and makes the paradigm
flexible for different application scenarios without extra comput-
ing resources. However, some of the methods concentrate solely
on modulating the encoder [20, 30], while others focus only on
adapting parts of the decoder [35]. This may not be sufficient for
optimal performance in MTDP scenarios [29]. Recently, several task-
conditional approaches [28, 29] have attempted to adjust both the
encoder and decoder components simultaneously. These methods
have shown improvements over previous task-conditional methods.
Yet, there is still a performance gap between these methods and
traditional MTDP methods [29, 35].

It is also worth noting that many recent works on parameter
efficient transfer learning [4, 6, 18, 19] aim to adapt large powerful
pre-trained networks to different downstream tasks, by inserting
trainable adapters or prompts to a frozen transformer structure.
These methods are notable for their efficiency, as they allow for the
adaptation procedure with a small number of trainable parameters
[17, 18]. This idea exactly coincides with our goal of reducing train-
ing parameters. Nevertheless, as stated in [6, 22], simply inserting
prompts into a frozen backbone may be effective for image classifi-
cation tasks, but it does not perform well for dense prediction tasks.
What’s more, adapters designed specifically for dense prediction
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tasks [25, 49, 50] only focus on channel-dimensional adaptation,
ignoring an important fact: channel and spatial information are
both important for various dense prediction tasks [14, 47]. Addi-
tionally, traditional adapter tuning approaches involve inserting
adapter modules sequentially into each transformer block[4, 19, 21].
While this does indeed reduce the number of parameters the net-
work needs to train, the gradients still have to pass through the
entire backbone during backpropagation [10, 49]. This results in
these methods still consuming a significant amount of time and
memory resources. In recent efforts [28, 29], the integration of
adapters and prompts into the task-conditional paradigm has been
explored. However, both of them only serve to guide the network’s
conditioning between tasks, and there is still a need to train all
the parameters of the network, thus failing to realize the origi-
nal purpose of adapters and prompts, which is to save training
parameters.

In light of the aforementioned issues, our goal is to train an
MTDP network with competitive performance, not only minimiz-
ing the number of training parameters but also reducing training
time and memory consumption. To achieve this, our approach lever-
ages the scalability advantages of the task-conditional paradigm.
We propose a task-conditional adapter with two major functions.
First, it extracts features from the frozen backbone network. This
adapter differs from previous ones designed for dense prediction
tasks by employing channel and spatial attention to focus on in-
formation in two dimensions. Specifically, we introduce channel
attention and spatial attention modules from Convolutional Block
Attention Module (CBAM) [41], which are responsible for focusing
on channel features and spatial features respectively. These two
modules are able to achieve competitive performance with only a
small fraction of training parameters, enhancing their spatial local-
ization accuracy and feature representation capability. Second, it
modulates the whole network to accommodate various tasks. To
represent different tasks, we assign a learnable task-specific prompt
to each task type. Based on these prompts, we propose a simple yet
effective task-conditional module for network parameter switching.
This modulation strategy is applied to both the encoder and decoder,
which enhances the model’s flexibility and accuracy in handling
multiple tasks. This enables the network to learn and adapt to the
needs of diverse tasks more effectively, thereby achieving better
performance in MTDP scenarios. Moreover, the proposed adapters
are incorporated into the encoder in a parallel manner, forming
a gradient highway [49]. By freezing the backbone network and
avoiding the propagation of gradients through it during training,
this approach not only conserves the count of parameters that need
to be trained but also significantly cuts down on both the time and
memory resources required for training. The adapter is connected
in series behind each transformer block for the decoder, performing
more direct modulation.

The application of the aforementioned approaches results in a
parameter and computationally efficient task-conditional network.
It achieves state-of-the-art performance in task-conditional meth-
ods with a similar number of training parameters, and compared
to traditional MTDP methods, our proposed approach achieves a
comparable level of performance with significantly lesser training
parameters, time, and memory consumption.

In summary, the main contributions of this work are as follows:
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e We propose a task-conditional MTDP network, which switches
between various tasks based on task-specific prompts. Our
model shares almost all of its parameters and reduces the
task-specific parameters to a considerable degree.

e We design a novel transformer adapter that learns channel-
and spatial-wise features at the same time. We freeze the
backbone encoder and attach parallel adapter layers to it,
reducing training parameters, training time, and memory us-
age further. The adapters also adjust part of their parameters
according to learnable task prompts and are employed in the
decoder as well to execute the task conditioning strategy on
the entire model.

o Extensive experiments are done on two challenging multi-
task dense prediction benchmarks, i.e., PASCAL-Context and
NYUD-v2. The results show that our method achieves state-
of-the-art performance and only requires training a small
fraction of the network parameters.

2 RELATED WORK

2.1 Multi-task Learning for Dense Prediction

As a popular topic in computer vision, multi-task learning (MTL)
aims to tackle multiple tasks while maintaining parameter effi-
ciency and computational efficiency [3, 8, 38]. Many previous works
[32, 39, 42, 53] have made numerous attempts in different aspects of
this field. In particular, Cross-stitch networks [32] share information
among the encoders of various single-task prediction networks, by
incorporating activation layers from the networks. PAD-Net [42]
uses a shared encoder among different tasks, and applies multi-
modal distillation to perform cross-task interaction in the decod-
ing phase. Taking it a step further, MTI-Net [39] utilizes a shared
backbone that extracts multi-scale features, explicitly performing
cross-task information interaction at multiple scales by employing
a feature propagation module at each level.

The aforementioned methods are mostly implemented based on
CNNs. With the promising performance of transformers [11, 26]
in the domain of computer vision, it has been introduced in many
recent researches[1, 5, 7, 13, 43—48]. Specifically, InvPT [46] lever-
ages the long-range perceptual capabilities of Vision Transformer
(ViT) structure by a carefully designed transformer decoder that
models the spatial and cross-task relationships simultaneously.
Taskprompter [47] proposes spatial and channel task prompts,
which help the model to learn task-specific information and per-
form cross-task information interaction in both aspects. In addition,
there are many excellent works that mainly focus on designing
various network structures based on Mixture of Experts (MoE)
[5, 7, 13, 45, 48], which is an alternative way for MTL. In partic-
ular, TaskExpert [48] utilizes Memorial MoE to equip the model
with cross-layer interactions. MLoRE [45] proposes low-rank ex-
perts to enlarge the capacity of feature representations. Although
these methods have achieved impressive performance, they suffer
from large parameter numbers and high computational costs due to
either employing different modules for different tasks or using dif-
ferent features to represent them. In this work, the network shares
most of the parameters among tasks, and the backbone encoder is
frozen during the training phase. The proposed adapter extracts
spatial and channel information from the frozen backbone. Thus,
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Figure 1: Network overview. The proposed network is a single-encoder-single-decoder architecture. We utilize adapters to
transfer the frozen backbone transformer encoder to dense prediction tasks and condition the whole network among tasks.
The encoder is attached with parallel adapter layers, while the decoder has adapters sequentially inserted into it. Each task
type is assigned with a trainable task-specific prompt. These prompts are used to condition the adapters in both the encoder
and decoder, enabling the network to produce better task-specific features.

we can save a significant number of training parameters and reduce
computational costs while achieving excellent performance.

2.2 Task-conditional Paradigm

Many MTDP methods output predictions of all tasks by a single for-
ward pass [32, 39, 42, 53]. Another type of MTDP method is based on
task-conditional architectures [20, 30, 35], which execute only one
task at a time. Typically, these methods involve employing different
modules or adjusting network weights for different tasks. To be
more specific, ASTMT [30] and RCM [20] utilize task-conditional en-
coders, which perform model adaptation by attention modules and
model reparameterization, respectively. Instead of modifying the
encoder, TSNs [35] conditions the task features during the decoding
phase for different tasks, which allows the model to specialize to
different tasks while still benefiting from the shared representation
learned by the encoder. However, these methods either focus only
on the encoder [20, 30] or only on the decoder [35], which limits
their capacity to extract better task-specific features by modulating
the entire network. Recently emerged task-conditional networks
[28, 29] have been dedicated to adjusting both the encoder and
decoder simultaneously, achieving better performance compared to
the aforementioned approaches. Specifically, PGT [29] introduces
task-specific prompts to model different tasks, and directly incorpo-
rate them in the self-attention mechanism to condition the whole
network across multiple tasks. Nevertheless, visual prompts, as men-
tioned in [6, 22], are designed for image classification and perform
suboptimally in dense prediction tasks because simply introduc-
ing prompts cannot fully model or represent all the fine-grained
information required for dense prediction. TIT [28] also conditions

the encoder and decoder at the same time, with the guidance of
task indicating matrix and vector, respectively. However, it lacks a
unified representation for each task, as it employs different repre-
sentational forms for the tasks in the encoder and decoder. In this
paper, we achieve state-of-the-art performance by simultaneously
conditioning the encoder and decoder based on the task type. We
attain this by modeling diverse tasks using consistent, task-specific
prompts and uniformly modulating task-conditional adapters in
the encoder and decoder, improving the network’s adaptability to
various tasks while obtaining better task-specific features.

2.3 Adapters and Prompts for Vision
Transformer

Adapters are a few trainable modules attached to large transformer
models, and prompts are specific templates to reformulate down-
stream tasks. They both aim to transfer powerful pre-trained net-
works to different tasks while maintaining parameter efficiency.
They are first introduced for language tasks [17, 24, 54], and many
recent researches [1, 4, 6, 19, 25, 28, 49, 50] have shown that they
also perform well in dense prediction tasks with vision transform-
ers. Specifically, ViT-Adapter [6] injects features extracted from
the feed-forward network into each transformer block for different
dense prediction tasks such as object detection and semantic seg-
mentation. Furthermore, Yin et al. [49] introduced a parallel adapter
architecture that enables the model to adapt to diverse tasks effec-
tively. This architecture directly extracts and adapts multi-scale
features from the frozen hierarchical transformer backbone, further
saving time and memory resources. Moreover, Bhattacharjee et al.
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Figure 2: The proposed adapter (a), encoder layer (b) and decoder layer (c). The proposed adapters (a) integrate channel and
spatial attention modules to capture channel- and spatial-wise features. The task-conditional module is guided by a task
prompt to perform task-specific conditioning. In (b), blue rectangles represent frozen backbone transformer modules, and green
rectangles denote the trainable adapters. The adapters form a parallel pathway to extract features from the frozen backbone
efficiently. It not only reduces the number of training parameters but also saves training time and memory consumption. In (c),
adapters are inserted in the decoder layers sequentially, which performs direct modulation on the decoder.

[1] proposed an adapter bottleneck that utilizes a task-adapted at-
tention mechanism to perform cross-task reasoning, which enables
the model to tackle multiple dense prediction tasks at the same
time. Nevertheless, these approaches only focus on modulating
channel dimension. For MTDP tasks, spatial dimension information
is as crucial as channel dimension information [14, 47]. Performing
channel-dimensional modulation alone overlooks spatial feature in-
teractions, leading to a suboptimal performance. To address this, we
introduce channel and spatial modules as the adapter kernel which
pays attention to channel- and spatial-dimensional information
respectively. This dual attention mechanism enhances the feature
extraction capabilities across both dimensions, thereby improving
the perception and modeling of the environment. In addition to
this, we adopt a parallel adapter architecture to further reduce both
training time and memory consumption.

3 METHOD

In this section, we first overview the network architecture we pro-
pose. Second, we detail the adapter module, which integrates the
channel and spatial attention module, as well as the task-conditional
module. Next, we introduce the encoder and decoder equipped with
the proposed adapter. Finally, we give a brief introduction to task-
specific heads and training loss.

3.1 Overall Architecture

As shown in Figure 1, the network constitutes a multi-scale single-
encoder-single-decoder architecture. To overcome the parameter
bloating problem for traditional multi-task structures [29, 35], we
adopt a task-conditional network paradigm and training approach
[20, 30, 35], which takes a single RGB image and the specified task
type as input, and outputs the corresponding task prediction map.
By sharing the vast majority of its parameters across different tasks,

the network enhances parameter efficiency and reduces the overall
number of trainable parameters.

As laid out in the introduction, we put forth that modulating
both the encoder and the decoder is necessary. Therefore, we at-
tach adapter layers to the encoder in a parallel manner and insert
adapter modules into the decoder sequentially. All of the adapters
are modulated among tasks, aiming at enhancing the adaptability of
the entire network to diverse tasks. Detailed explanations of these
modules will be provided below. To explicitly model the tasks, we
assign a learnable task-specific prompt e; € R¥ X 1 to each task 7.
The input of our network would then be a pair of image and task
prompt, i.e., (X, e;). The image X is then fed into the pre-trained
backbone to produce the required features. The task prompt e;
is used to guide some parameters of the adapters to switch when
conducting different tasks.

3.2 Task-Conditional Adapter

Many recent works on adapters have shown their potential in
various vision tasks with remarkable efficiency [4, 25, 49, 50]. They
attach adapters to specific locations of the pre-trained backbone
model, and only train adapters and layer-normalizations, while
the remaining parameters remain fixed. Formally, typical adapter
layer A consists of a down-projection D € R¥X" 2 GeLU non-
linearity [16], and an up-projection U € Rk, where k is the input
dimension, and r is the kernel dimension for the adapter layer. Thus,
typical adapter layers can be written as

A(x) =U (GeLU (D (x))) + x, (1)

where x denotes the input feature.

Our task-conditional adapter serves two major functions: first,
applying transfer learning techniques to the backbone network
to tailor it for dense prediction tasks, and second, modulating the
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Param+ Semse Depth Normal Edge Param+ Semseg Parts Sal Normal Edge

Model Backbone M mloU '% RMgE | mErr] 0cls£§ ) Model Backbone M mloUT mloUT maxFT mErr] odsFT
Cross-Stitch [32] ResNet-50 80.1 44.22 0.5703 - - Cross-Stitch [32] ResNet-18 80.3 66.12 60.66 66.81 13.89 69.90
PAD-Net [42] ResNet-50 52.6 50.23 0.5818 - - PAD-Net [42] ResNet-18 32.1 63.23 59.34 64.31 15.20 60.20
MTI-Net [39] HRNet-18 27.2 38.61 0.5935 - - MTI-Net [39] HRNet-18 15.7 64.35 62.10 68.02 14.78 73.40
InvPT [46] ViT-L 402.1 53.56 0.5183 19.04 78.10 InvPT [46] ViT-L - 79.03 67.61 84.81 14.15 73.00
TaskPrompter [47] ViT-L 492.2 55.30 0.5152 18.47 78.20 Taskprompter [47] ViT-L 493.0 80.89 68.89 84.83 13.72 73.50
TaskExpert [48] ViT-L - 55.35 0.5157 18.54 78.40 TaskExpert [48] ViT-L 420 80.64 69.42 84.87 13.56 73.30
MLORE [45] ViT-L - 55.96 0.5076 18.33 78.43 MLORE [45] ViT-L 407 81.41 70.52 84.90 13.51 75.42
ASTMT [30] ResNet-50 45.0 32.16 0.5700 23.18 74.50 ASTMT [30] ResNet-50 49.4 68.00 61.12 65.71 14.68 72.40
RCM [20] ResNet-18 39.0 34.20 0.5700 22.41 68.44 RCM [20] ResNet-18 46.1 65.70 58.12 66.38 13.70 71.30
TSNs [35] Swin-T 39.2 32.38 0.6874 22.25 75.69 TSNs [35] Swin-T 39.1 67.30 61.11 64.29 14.55 74.04
TIT [28] Swin-T 30.9 41.36 0.5925 19.68 77.30 TIT [28] Swin-T 31.3 70.04 62.68 66.14 14.43 73.91
PGT [29] Swin-T 28.4 4161 05900 2006  77.05  PGT [29] Swin-T 28.5 6758 6258 6559 1395  73.93
PGT [29] Swin-B - 47.42 0.5502 19.12 78.28 M3ViT [13] ViT-S 42 72.80 62.10 - 14.50 71.70
Ours Swin-T 12.4 46.08 0.5902 19.66 77.60 Mod-Squad [7] ViT-S 50 74.10 62.70 - 13.70 72.00
Ours Swin-B 17.6 5330 05235  19.07  77.90  Ours Swin-T 12.7 7736 6532 8405 1418  73.00
Ours Swin-L 38.4 54.56 0.5197 18.65 78.00 Ours Swin-L 38.7 82.08 69.85 84.06 B8 73.30

(a) Comparison with state-of-the-arts on NYUD-v2

(b) Comparison with state-of-the-arts on PASCAL-Context

Table 1: Comparison with state-of-the-art methods on NYUD-v2 (a) and PASCAL-Context (b). ‘7’: lower better, ‘|’: higher better,
‘’: number of training parameters. The upper parts are traditional MTDP methods and the lower parts are task-conditional
methods. Our method clearly outperforms all of the task-conditional methods by a large margin, while achieving competitive

results among the traditional methods.

backbone’s output features specifically for each distinct task. So as
shown in Figure 2 (a), the adapter structure primarily consists of
two parts: the adaptation module and the task-conditional module.

For the adaptation part, our approach differs from standard
adapter architectures in two main aspects. First, we introduce a
kernel module between down-projection and GeLU activation, fol-
lowing [21, 25, 49]. Second, as previously discussed, both spatial
and channel information is indispensable for a wide range of dense
prediction tasks [14, 47]. So we adopt the kernel structure from
Convolutional Block Attention Module (CBAM) [41]. The design
of this kernel pays attention to both the channel dimension and
spatial dimension information of features.

To be specific, we borrow the channel and spatial attention mod-
ule from CBAM [41] to focus on information about channel and
spatial dimension, respectively. They use average pooling and max
pooling to aggregate this information to obtain channel and spatial
weight matrices, and finally diffuse the channel and spatial attention
information into the input features through element-wise multipli-
cation. Formally, given the down-projected feature y € R/ <HIXWr|
we define channel attention map as M, € R"*1X1 and spatial at-
tention map as Ms € R"<HXWI wwhere r; is the kernel dimension
at adapter layer [, H; and W is the height and width of the input
feature map, respectively. Thus, the spatial-channel kernel can be
written as

Y =Mc(y) ®y, @
y' =Ms(y) ey +y,
where ® denotes the Hadamard product with broadcasting. More-
over, channel attention map M, can be obtained by
M. (y) = 0 (MLP (AvgPool. (y)) + MLP (MaxPool. (y))), (3)

and spatial attention map M can be obtained by
M (y) = o (77 (LAogPools () ; MaxPool, (y)])),  (4)

where o (-) denotes sigmoid activation, f”*7 denotes convolutional
layer with a filter size of 7 X 7, [; ] denotes concatenation operation,

¢ and s denotes the pooling layer for channel and spatial dimen-
sion, respectively. Thus, leveraging spatial and channel attention
modules, the adapters are able to focus on both spatial and channel
dimensions. This dual focus allows the adapter to better capture
channel and spatial information, leading to better performance in
various dense prediction tasks.

For the task-conditional part, we propose a simple yet effective
task-conditional module that enables the adapter to switch between
different tasks, which enables the entire network to adapt to a
variety of dense prediction tasks. We achieve this by adapting the
features of the entire kernel part based on the additional task-
specific prompt input. Specifically, given the input task prompt
e; € R¥! which represents task t, this module uses two linear
layers, W, € R"1%d and Wpg e R Xd o learn two normalization
weight vectors to modulate the output of the spatial-channel kernel
y'’ e R"*HiWi Therefore, the task-conditional module TCM can
be written as

TCM (y”,e;) =Wye: 0 y” +Wge;. (5)

This enables the adapters to condition their parameters between
tasks, thereby enabling the network to extract superior task-specific
features, which in turn enhances the network’s comprehensive
understanding of the environment. Then the whole adapter module
can be written as

A(y.er) =U (GeLU (TCM (K (D (y))) . 1)) +y, (6)

where K denotes the spatial-channel kernel introduced above. More-
over, as illustrated in Figure 1, by applying the proposed adapter
to both the encoder and decoder, the network is able to adapt effi-
ciently and flexibly to different task requirements. This flexibility is
crucial for multi-task learning scenarios where the network must
perform well across a variety of tasks with varying demands.

3.3 Task-Adapted Encoder

Our encoder is built upon Swin Transformer [26]. As discussed
above, we freeze the backbone encoder and utilize adapter modules
to further reduce the training parameters, and serve as a modulator
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Param+ | Semseg Depth  Normal Edge  MTL Gain

EA DA TCM cA  SA M mloUT RMSE] mErr] odsF7T Am [%] T
STL Baseline 351.9 52.19 0.5433 20.04 78.00 0.00
MTL Baseline 88.8 51.61 0.5512 20.47 76.50 -1.66
v 17.5 49.45 0.5550 20.55 77.20 -2.74
v v 17.5 51.38 0.5379 20.00 77.50 -0.25
v v 17.6 50.53 0.5606 20.47 77.40 -2.31
v v v 17.6 52.00 0.5439 19.97 77.50 -0.19
v v v v 17.6 52.07 0.5326 19.67 77.50 0.74
v v v v v 17.6 53.30 0.5235 19.07 77.90 2.82

Table 2: Effectiveness of different modules on NYUD-v2. “EA” means encoder adapter, “TCM” means task-conditional module,
“CA” means channel attention module, “SA” means spatial attention module and “DA” means decoder adapter.

that adjusts the encoder to adapt to various tasks. Different from
previous works on adapters [4, 17, 25, 50] which insert adapter
modules directly into backbone transformer blocks, our encoder
structure adopts a parallel adapter architecture [49] as illustrated
in Figure 2(b). The blue boxes denote the frozen modules in the
backbone transformer, while the green boxes are the proposed
adapters that are trainable.

The proposed task-conditional adapter extracts features from
each attention layer and each MLP layer in the backbone, and ad-
justs the features according to task-specific prompt e;, utilizing
the task-conditional module mentioned above. The extracted and
adapted features would then be added into a parallel pathway. Be-
fore the reduction module of each layer, the features of the adapter
pathway are summed with the backbone features to obtain the
encoder output features, which follows the residual structure of
standard adapter methods and imitates skip connections in trans-
former blocks [11, 26]. This parallel adapter pathway structure
serves as a gradient backpropagation highway [49]. In this way,
only the gradients on this highway need to be computed, which
allows the encoder to avoid calculating the gradients of frozen pa-
rameters, which not only saves the number of training parameters
but also reduces memory usage and training time.

The output features then pass through independent normal-
ization layers specific to each scale, thereby producing the final
multi-scale feature representations. Subsequently, these refined fea-
tures serve as the input to the task-conditioned decoder, whose
details will be unfolded below.

3.4 Task-Conditioned Decoder

Following the idea in [1, 2, 26], our decoder consists of four stages,
with a patch expand module [2] between each stage to double the
spatial resolution and halve the channel dimension. The last three
stages of the decoder each contain two transformer blocks. Dif-
ferent from the encoder backbone, our decoder does not have a
pre-trained model, so fine-tuning is required. Consequently, there
is no need for a parallel pathway in the decoder to shorten the gra-
dient backpropagation path. Moreover, using a parallel structure
in a decoder that requires fine-tuning would weaken the modu-
lating effect of the adapter on the decoder, leading to suboptimal
information reconstruction and decoding outcomes.

Therefore, as illustrated in Figure 2(c), we follow typical adapter
structures [4, 21, 25], sequentially connecting the adapters directly
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Figure 3: Parameter efficiency analysis. Our method, while
not entirely independent of the number of tasks, is mini-
mally affected by it.

after each attention module and MLP module in the decoder. This
method applies direct modulation to each layer of the decoder,
enabling more fine-grained adjustments to the decoder. This allows
it to generate more representative features based on task-specific
information, thereby improving performance.

After expanding the final output to the original image size HX W,
we apply an independent convolutional layer specifically to each
task to obtain the final prediction map with a shape of K x H X W,
where K denotes the output channels for different tasks.

3.5 Training Loss

We perform unified end-to-end training on adapters and the de-
coder. Each training step is only performed on one task, and only
one ground truth map is utilized to calculate losses. For a fair
comparison, we define our loss function following previous works
[44, 46, 47]. We adopt task-specific loss a; L; with weight a; for
task t, and align them with [46, 47].

4 EXPERIMENTS
4.1 Experimental Setup

Datasets. We evaluate the proposed network on two widely used
datasets on multi-task dense prediction, i.e., NYUD-v2 [34] and
PASCAL-Context [33]. NYUD-v2 dataset consists of 795 training
and 654 testing images of various indoor scenes such as offices
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and living rooms. It provides labels for four tasks of edge detection
(Edge), semantic segmentation (SemSeg), surface normal estimation
(Normal) and depth estimation (Depth). PASCAL-Context dataset
is established from PASCAL dataset [12]. It contains 4,998 images
in the training split and 5,105 in the testing split. The content of
these images includes both indoor and outdoor scenes. This dataset
provides pixel-wise annotations for semantic segmentation, edge
detection, surface normal estimation, human parts segmentation
(Parts) and saliency detection (Sal).

Evaluation metrics. We adopt widely used evaluation metrics
following existing works [40, 46, 47]. Specifically, semantic seg-
mentation and human parts segmentation utilize mean Intersection
over Union (mloU) metric to evaluate the predictive performance.
Monocular depth estimation uses Root Mean Square Error (RMSE)
for evaluation. Surface normal estimation uses mean error (mErr)
of predicted angles. Saliency detection is evaluated with maximal
F-measure (maxF). Edge detection adopts optimal-dataset-scale
F-measure (osdF). Moreover, we adopt Ap, evaluation metric intro-
duced in[30] to measure multi-task gain (MTL Gain).
Implementation details. Our method is built upon Swin Trans-
former [26] backbones pre-trained on ImageNet-22K [9]. We use
two SwinBlocks at each decoding level, set task-specific prompt
length N, to 128, and down projection ratio p to 16 unless stated oth-
erwise. To preserve robustness within the adapter layer, we incor-
porate the sharing of spatial attention modules and task-conditional
modules internally within each adapter layer. We train our model
for 100 epochs on PASCAL-Context dataset and 500 epochs on
NYUD-v2 dataset. Our experiments were conducted on 4 NVIDIA
RTX A6000 GPUs with a batch size of 4. We use AdamW optimizer
[27] and set the learning rate to 1 x 1074,

4.2 Parameter Efficiency Analysis

As one of the goals of this work, parameter efficiency needs to be
carefully analyzed. According to previous studies [29, 35], the total
number of parameters within a network directly increases with
the addition of more task-specific parameters. Thus, in terms of
handling numerous tasks, it becomes crucial to limit the number of
task-specific modules and the parameters they contain.

From Figure 3, it can be observed that some traditional MTDP
methods, such as PAD-Net [53] and MTI-Net [39], have a parame-
ter count that scales quadratically with the number of tasks. This
is because these methods design independent modules to model
the relationships between each pair of tasks. Other approaches,
like Taskprompter [47], DeMT [44], ASTMT [30], and RCM [20],
all incorporate task-specific modules to model different tasks, re-
sulting in a linear increase in the number of parameters as the
number of tasks grows. It is noteworthy that TSNs [35] is an excel-
lent task-conditional architecture where all parameters are shared
across tasks, hence its parameter count remains unchanged re-
gardless of the number of tasks. In contrast, our method includes
task-specific parameters that consist only of learnable task prompts
and simple task-specific output heads. Therefore, the incremental
increase in parameters compared to the overall network parameters
is negligible. Based on the analysis of parameter efficiency, we can
demonstrate that our proposed network shares the vast majority of
parameters across different tasks, with the total parameter count
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Length ‘ Param* | Semseg Depth Normal Edge
M mloUT RMSE| mErr] odsFl

32 17.6 52.79 0.5364 19.03 77.90
64 17.6 52.86 0.5357 19.10 77.80
128 17.7 53.30 0.5235 19.07 77.90
256 17.7 52.20 0.5285 19.06 77.80

Table 3: Ablations for task prompt length on NYUD-v2.

Ratiop Param# | Semseg Depth Normal Edge
M mloUT RMSE| mErr] odsF

2 33.8 53.35 0.5197 18.66 78.10

4 23.9 54.02 05352 1874  77.90

8 19.6 52.98 0.5265 18.95 77.70

16 17.6 5330 05235  19.07  77.90
32 16.7 53.83 05241 1937  77.90

Table 4: Ablations for down-projection ratio on NYUD-v2.

Param+ FLOPs Time Memory

Manner Backbone M Gl bl GiB |
InvPT [46] ViT-L 423 669 24.19 7.08
Taskprompter [47] ViT-L 401 497 36.34 9.26
ASTMT [30] CNN 365 501 - -
Sequential Swin-L 38.7 336 10.89 6.35
Parallel Swin-L 38.7 336 9.74 4.17

Table 5: Parameters, time, and memory.

being minimally affected by an increase in the number of tasks,
achieving remarkable success in saving network parameters.

4.3 Comparison With State-of-the-Art

In this section, we will compare the proposed method with state-of-
the-art task-conditional methods, which share the same multi-task
learning paradigm as our method. As a reference, we will also
compare recent traditional MTDP approaches. The experimental
results on NYUD-v2 and PASCAL-Context are reported in Table 1(a)
and Table 1(b), respectively. Our model not only outperforms the
current best task-conditional method, PGT [29], by a substantial 5%
margin but also achieves it with only half the number of training
parameters. Similarly, compared to the best traditional multi-task
methods, our approach manages to match or even exceed their
performance levels with a training parameter count that is only less
than 10% of what those methods require. This strongly demonstrates
the adaptability of our method to different dense prediction tasks
and the outstanding effectiveness of our method in saving the
number of parameters.

4.4 Ablation Studies

Proposed modules. We verify the effectiveness of our proposed
modules on the NYUD-v2 dataset and report the results in Ta-
ble 2. Based on Swin Transformer, we have built a strong base-
line whose performance is comparable to existing MTDP models.
Among them, “STL Baseline” is used to train a set of separate single-
task models, and each model is only trained for one task. “MTL
Baseline” shares encoder and decoder among tasks, and only uses
task-specific prediction heads to deal with different tasks. Both of
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these two baseline models fine-tune all of their parameters. Insert-
ing the task-conditional module into the adapters endows the entire
module with the ability to adapt to different tasks, allowing the
module to switch when processing different tasks. The introduction
of channel and spatial attention further enhances the adapter’s
perception of these two dimensions of information, thereby fur-
ther improving performance. The performance gap between adding
adapters only to the decoder and adding them to both the encoder
and decoder also validates our previous viewpoint that both the
encoder and decoder need to be modulated for different tasks. For a
clearer demonstration, Figure 4 shows how the proposed modules
in the adapter enhance the feature maps. These experimental re-
sults strongly demonstrate the effectiveness of the various modules
proposed.

Task prompts. The learnable task-specific prompts model the
information of various tasks and are utilized to represent the cor-
responding tasks within each adapter. They play a vital role in
guiding the modulation of the entire network. The length of the
task prompts is directly related to the amount of information they
can capture, necessitating a thorough analysis of their optimal
length. Experimental results on the NYUD-v2 dataset, as presented
in Table 3, indicate that the model’s performance gradually im-
proves with the increase in the length of the task prompts. This
improvement reaches a peak when the length is set to 128, and
beyond this point, further extending the length does not yield sig-
nificant enhancements in model performance. An excessively large
dimension may cause the task prompts to start modeling similar or
repeated information within the tasks, leading to the problem of
information redundancy. Increasing the length of the task prompts
will also further increase the overall number of parameters in the
network. Therefore, we set the task prompt length to 128. In ad-
dition, Figure 5 visualizes the cosine similarity of different task
prompts, which provides concrete insights into task relationships
and demonstrates that our learnable task prompts can effectively
model different tasks.

Down-projection ratio. For adapters, the ratio of input dims to
middle dims (the down-projection ratio p) is an important metric
for balancing the number of parameters and model performance.
The larger this ratio, the higher the parameter efficiency of the
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adapter, but generally, the worse the model performance. Therefore,
choosing the right value for this ratio is a question that is well worth
researching. The results of our ablation study on p are shown in
Table 4. We can observe that the correlation between our model’s
parameter count and performance with respect to this ratio essen-
tially aligns with the trend we just discussed. After consideration
and trade-offs, we set the ratio to 16.

Training time and memory consumption. As mentioned above,
the parallel connection manner of adapters helps to reduce training
time and memory consumption. Therefore, we conduct ablation
experiments on these two methods. Using the Swin-L setting and
setting the batch size to 2, we train the network for 40,000 steps
and record its time and memory consumption. The experimental
results are shown in Table 5, and as a reference, we also conduct ex-
periments on existing methods. Our proposed method outperforms
other methods in terms of parameter count, memory footprint, and
training time by a large margin. The parallel attachment of adapters
to the encoder results in a 34% reduction in memory consumption
and an 11% reduction in training time, compared to the sequential
manner.

4.5 Qualitative Results

For an intuitive comparison, we present an analysis of our proposed
method’s performance by conducting a visual comparison on the
PASCAL-Context dataset. We benchmark our approach against
two categories of existing methods: traditional MTDP methods,
represented by Taskprompter [47], and task-conditional methods,
exemplified by TSNs [35]. As shown in Figure 6, it is clear that our
proposed method presents more reasonable and accurate results in
semantic segmentation and human parts segmentation tasks com-
pared to the existing methods, and it also shows good performance
in other tasks.

5 CONCLUSION

In this paper, we introduce a task-conditional adapter designed to
extract features from a frozen backbone network and condition the
entire network based on a trainable task prompt. These adapters
are connected in parallel to the encoder, which not only saves on
training parameters but also reduces training time and memory
footprint. For the decoder, adapters are inserted sequentially to
perform more direct modulation. Our experiments demonstrate the
effectiveness of the individual components we propose and show-
case the parameter, time, and memory efficiency of our approach.
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