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Figure 1: Illustration of tracking under different scenarios. (a) Sparse large objects in cloudy weather scenarios. (b) Sparse small objects in
cloudy weather scenarios. (c) Crowd small in sunny weather scenarios.

1 VISUALIZATION OF TRACKING RESULTS IN and predicting motion offsets. Conversely, Crowd small objects
VARIOUS SCENARIOS pose a greater tracking challenge due to the difficulty in extracting
appearance features and the insufficient discriminative power of

We present visualizations of tracking results in different scenarios as
P & motion offsets, making tracking more difficult. Therefore, these

shown in Fig. 1. In multi-object tracking tasks, Sparse large objects
are easier to track due to their ease of extracting appearance features
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Anon.

Table 1: Localization performances on DRONECROWD; average L-mAP, and L-AP at each threshold (L-AP;g, L-AP;5, and L-APy). MOT and DCT
stands for Multi Object Tracking and Drone-based Crowd Tracking, respectively. The best results are highlighted in bold.

Method MOT DCT L-mAP L-APqp L-APy5 L-APy
MCNN [13] O [ ] 9.05 9.81 11.81 12.83
CAN[7] ¢) ° 11.12 8.94 15.22 18.27
CSRNet [4] O ® 14.40 15.13 19.17 21.16
DM-Count [10] O [ ] 18.17 17.90 25.32 27.59
STNNet [12] [ ) [ ] 40.45 42.75 50.98 55.77
DenseTrack (Ours) [ ] [ ] 43.52 47.75 52.21 54.71
Table 2: Tracking performances on DRONECROWD; average T-mAP, . .
and T-AP at each threshold (T-APy 19, T-APy 15, and T-APy 5). The impact of weights on T_mAP
Reach a peak
39.4
Method T-mAP T-APg 10 T-APg 15 T-APg .29 393 T
StrongSORT [3] 8.98 10.63 8.96 7.34 392 -
BoT-SORT [1] 13.60 14.60 13.63 12.58 IS @
Deep-OC-SROT [8]  28.39 30.84 28.52 25.81 o 39.1 =
OC-SORT [2] 34.26 38.30 34.25 30.22 é 360 3
DenseTrack (Ours) 39.44 47.48 39.88 30.95 ,_' ' §
38.9
38.8
results indicate that our method demonstrates excellent tracking
performance in both easy-to-track and challenging scenarios. 38.7 The lowest —> "%
0.1 02 03 04 05 06 07 08 09

2 COMPARISON WITH THE STATE-OF-ARTS
IN CROWD LOCALIZATION PERFORMANCE

Tab. 1 provides a competitive analysis of the localization perfor-
mance of various methods on DRONECROWD. While the success
of our localization is influenced by [12] and is not the focus of
our research, localization remains a crucial task in object tracking,
determining the accuracy of tracking results. Therefore, we still
conducted relevant experiments to demonstrate the effectiveness of
using density maps for object detection.Following the paper that in-
troduced DRONECROWD, we evaluate the localization performance
of crowds using the L_AP score. L_mAP represents the average
of L_AP over different distance thresholds (1, 2, - - -, 25 pixels). A
smaller L_AP distance threshold implies a stricter requirement for
precision in localization, while a higher L_AP value indicates better
performance.

It is noteworthy that our method exhibits a more significant im-

provement in L_AP under stricter thresholds (compared to STNNet [12],

L_APp increases from 42.75% to 47.75%). This suggests that our
method is more precise in detecting objects, which is highly benefi-
cial for enhancing tracking performance. Furthermore, our method
demonstrates improvements in overall metrics as well.

3 COMPARISON WITH MORE MOT METHOD
IN TRACKING PERFORMANCE

Tab. 2 provides a comparative analysis of the tracking performance
of more multi-object tracking methods on DRONECROWD. Due to
the scarcity of methods explicitly tailored for tracking small objects
from the aerial perspective of drones, we replicated recent multi-
object methods on the DroneCrowd dataset. Moreover, to ensure
fairness,we uniformly input the results of object detection based on

Figure 2: Tracking performances under different weights on
DrONECROWD.

density map localization for these methods to avoid errors caused
by localization.

OC-SORT [2] proposes a method to recover the tracking of ob-
jects lost due to occlusion within a short time window by associ-
ating the last observed value of the object with new observations,
significantly enhancing its tracking performance. However, OC-
SORT solely relies on motion cues for tracking, which may result
in erroneous identifications of nearby individuals. Although Deep-
OC-SORT [8] represents an improvement over OC-SORT, it faces
performance degradation due to the challenge of implementing
appearance feature extraction on small objects. In contrast, Dense-
Track exhibits excellent tracking capabilities by combining robust
appearance feature extraction with motion cues for tracking.

4 COMPARISON OF MOTION WEIGHT
In the inter-frame association stage, the cost matrix AiCi " is ob-
tained by the weighted sum of the similarity matrix Af ;+1 and the

normalized distance matrix AP, as shown in Eq. (1).

1,i+1°
c D s
A1 = CD A+ (- D A 1)

Fig. 2 illustrates the impact of different values of A on tracking
performance. In DenseTrack, the choice of A does not significantly
affect tracking performance. For instance, regarding T_mAP, it
ranges from a maximum of 39.44% to a minimum of 38.68%, with a
difference of less than 1%.
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(c) RetinaNet

(@) YOLO (b) Faster R-CNN

Figure 3: Illustration of localization under different detector. (a) Use YOLOVS to detect objects. (b) Use Faster R-CNN to detect objects. (c) Use
RetinaNet to detect objects. (d) Use density map (FIDT) to detect objects.

Table 3: Localization performances of different detector on 5 COMPARSION WITH OTHER DETECTOR IN

DRONECROWD; average L-mAP, and L-AP at each threshold (L-AP;,
L-AP,:, and L-APy); CROWD LOCALIZATION PERFORMANCE

Tab. 3 displays the localization performance of different detectors on
DroNECROWD. Since DroneCrowd is captured from a high-altitude
overhead perspective by drones, the distinction between objects
YOLOVS [11] 6.62 1.37 7.16 14.26 and background is not very pronounced, which also affects the

Method L-mAP L-APlo T—AP15 T—APZO

Faster R-CNN 0] 22.39 2435 26.68 28.27 performance of commonly used detectors in terms of localization.
RetinaNet [6] 22.63 24.28 28.37 30.78 Inspired by the work [5], DenseTrack utilizes density maps orig-
FIDT (ours) 4355 4777 5224 5477

inally designed for crowd counting in the object localization stage.
The results indicate that this approach effectively enhances the
accuracy of object detection, facilitating subsequent tracking tasks.
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6 VISUALIZATION OF VARIOUS DETECTOR

While localization is not the primary focus of DenseTrack, the
accuracy of object localization directly impacts the quality of ap-
pearance feature extraction, thereby influencing tracking results.
Additionally, the tracking outcomes of the Detection-based tracking
paradigm heavily rely on the accuracy of object detection. There-
fore, crowd localization is a crucial step in tracking.

Fig. 3 further demonstrates the differences in localization per-
formance among YOLOVS [11], Faster R-CNN [9], RetinaNet [6],
and the FIDT [5] we employ. The visualization results indicate that
other detectors may experience missed detections when detecting
dense crowds, whereas using density maps for detection can reduce
the occurrence of such cases. Additionally, employing density maps
for detection can enhance localization accuracy, thereby facilitating
subsequent appearance extraction tasks.
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