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Figure 1: Illustration of tracking under different scenarios. (a) Sparse large objects in cloudy weather scenarios. (b) Sparse small objects in

cloudy weather scenarios. (c) Crowd small in sunny weather scenarios.

1 VISUALIZATION OF TRACKING RESULTS IN

VARIOUS SCENARIOS

Wepresent visualizations of tracking results in different scenarios as

shown in Fig. 1. In multi-object tracking tasks, Sparse large objects

are easier to track due to their ease of extracting appearance features

and predicting motion offsets. Conversely, Crowd small objects

pose a greater tracking challenge due to the difficulty in extracting

appearance features and the insufficient discriminative power of

motion offsets, making tracking more difficult. Therefore, these
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Table 1: Localization performances on DroneCrowd; average L-mAP, and L-AP at each threshold (L-AP10, L-AP15, and L-AP20). MOT and DCT

stands for Multi Object Tracking and Drone-based Crowd Tracking, respectively. The best results are highlighted in bold.

Method MOT DCT L-mAP L-AP10 L-AP15 L-AP20

MCNN [13] #  9.05 9.81 11.81 12.83

CAN [7] #  11.12 8.94 15.22 18.27

CSRNet [4] #  14.40 15.13 19.17 21.16

DM-Count [10] #  18.17 17.90 25.32 27.59

STNNet [12]   40.45 42.75 50.98 55.77

DenseTrack (Ours)   43.52 47.75 52.21 54.71

Table 2: Tracking performances on DroneCrowd; average T-mAP,

and T-AP at each threshold (T-AP0.10, T-AP0.15, and T-AP0.20).

Method T-mAP T-AP0.10 T-AP0.15 T-AP0.20

StrongSORT [3] 8.98 10.63 8.96 7.34

BoT-SORT [1] 13.60 14.60 13.63 12.58

Deep-OC-SROT [8] 28.39 30.84 28.52 25.81

OC-SORT [2] 34.26 38.30 34.25 30.22

DenseTrack (Ours) 39.44 47.48 39.88 30.95

results indicate that our method demonstrates excellent tracking

performance in both easy-to-track and challenging scenarios.

2 COMPARISONWITH THE STATE-OF-ARTS

IN CROWD LOCALIZATION PERFORMANCE

Tab. 1 provides a competitive analysis of the localization perfor-

mance of various methods on DroneCrowd. While the success

of our localization is influenced by [12] and is not the focus of

our research, localization remains a crucial task in object tracking,

determining the accuracy of tracking results. Therefore, we still

conducted relevant experiments to demonstrate the effectiveness of

using density maps for object detection.Following the paper that in-

troduced DroneCrowd, we evaluate the localization performance

of crowds using the L_AP score. L_mAP represents the average

of L_AP over different distance thresholds (1, 2, · · · , 25 pixels). A
smaller L_AP distance threshold implies a stricter requirement for

precision in localization, while a higher L_AP value indicates better

performance.

It is noteworthy that our method exhibits a more significant im-

provement in𝐿_𝐴𝑃 under stricter thresholds (compared to STNNet [12],

𝐿_𝐴𝑃10 increases from 42.75% to 47.75%). This suggests that our

method is more precise in detecting objects, which is highly benefi-

cial for enhancing tracking performance. Furthermore, our method

demonstrates improvements in overall metrics as well.

3 COMPARISONWITH MORE MOT METHOD

IN TRACKING PERFORMANCE

Tab. 2 provides a comparative analysis of the tracking performance

of more multi-object tracking methods on DroneCrowd. Due to

the scarcity of methods explicitly tailored for tracking small objects

from the aerial perspective of drones, we replicated recent multi-

object methods on the DroneCrowd dataset. Moreover, to ensure

fairness,we uniformly input the results of object detection based on

The impact of weights on T_mAP
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Figure 2: Tracking performances under different weights on

DroneCrowd.

density map localization for these methods to avoid errors caused

by localization.

OC-SORT [2] proposes a method to recover the tracking of ob-

jects lost due to occlusion within a short time window by associ-

ating the last observed value of the object with new observations,

significantly enhancing its tracking performance. However, OC-

SORT solely relies on motion cues for tracking, which may result

in erroneous identifications of nearby individuals. Although Deep-

OC-SORT [8] represents an improvement over OC-SORT, it faces

performance degradation due to the challenge of implementing

appearance feature extraction on small objects. In contrast, Dense-

Track exhibits excellent tracking capabilities by combining robust

appearance feature extraction with motion cues for tracking.

4 COMPARISON OF MOTIONWEIGHT

In the inter-frame association stage, the cost matrix 𝐴𝐶
𝑖,𝑖+1 is ob-

tained by the weighted sum of the similarity matrix 𝐴𝑆
𝑖,𝑖+1 and the

normalized distance matrix 𝐴𝐷
𝑖,𝑖+1, as shown in Eq. (1).

𝐴𝐶
𝑖,𝑖+1 = (−𝜆)𝐴𝐷

𝑖,𝑖+1 + (1 − 𝜆)𝐴𝑆
𝑖,𝑖+1 . (1)

Fig. 2 illustrates the impact of different values of 𝜆 on tracking

performance. In DenseTrack, the choice of 𝜆 does not significantly

affect tracking performance. For instance, regarding T_mAP, it

ranges from a maximum of 39.44% to a minimum of 38.68%, with a

difference of less than 1%.
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(a) YOLO (b) Faster R-CNN (c) RetinaNet (d) FIDT (ours)

:Estimated Localization :Ground-truth Localization

Figure 3: Illustration of localization under different detector. (a) Use YOLOv8 to detect objects. (b) Use Faster R-CNN to detect objects. (c) Use

RetinaNet to detect objects. (d) Use density map (FIDT) to detect objects.

Table 3: Localization performances of different detector on

DroneCrowd; average L-mAP, and L-AP at each threshold (L-AP10,

L-AP15, and L-AP20);

Method L-mAP L-AP10 T-AP15 T-AP20

YOLOv8 [11] 6.62 1.37 7.16 14.26

Faster R-CNN [9] 22.39 24.35 26.68 28.27

RetinaNet [6] 22.63 24.28 28.37 30.78

FIDT (ours) 43.55 47.77 52.24 54.77

5 COMPARSION WITH OTHER DETECTOR IN

CROWD LOCALIZATION PERFORMANCE

Tab. 3 displays the localization performance of different detectors on

DroneCrowd. Since DroneCrowd is captured from a high-altitude

overhead perspective by drones, the distinction between objects

and background is not very pronounced, which also affects the

performance of commonly used detectors in terms of localization.

Inspired by the work [5], DenseTrack utilizes density maps orig-

inally designed for crowd counting in the object localization stage.

The results indicate that this approach effectively enhances the

accuracy of object detection, facilitating subsequent tracking tasks.
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6 VISUALIZATION OF VARIOUS DETECTOR

While localization is not the primary focus of DenseTrack, the

accuracy of object localization directly impacts the quality of ap-

pearance feature extraction, thereby influencing tracking results.

Additionally, the tracking outcomes of the Detection-based tracking

paradigm heavily rely on the accuracy of object detection. There-

fore, crowd localization is a crucial step in tracking.

Fig. 3 further demonstrates the differences in localization per-

formance among YOLOv8 [11], Faster R-CNN [9], RetinaNet [6],

and the FIDT [5] we employ. The visualization results indicate that

other detectors may experience missed detections when detecting

dense crowds, whereas using density maps for detection can reduce

the occurrence of such cases. Additionally, employing density maps

for detection can enhance localization accuracy, thereby facilitating

subsequent appearance extraction tasks.

REFERENCES

[1] Nir Aharon, Roy Orfaig, and Ben-Zion Bobrovsky. 2022. BoT-SORT: Robust

Associations Multi-Pedestrian Tracking. arXiv:2206.14651 (2022).
[2] Jinkun Cao, Jiangmiao Pang, Xinshuo Weng, Rawal Khirodkar, and Kris Kitani.

2023. Observation-Centric SORT: Rethinking SORT for Robust Multi-Object

Tracking. In Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. 9686–9696.
[3] Yunhao Du, Zhicheng Zhao, Yang Song, Yanyun Zhao, Fei Su, Tao Gong, and

Hongying Meng. 2023. StrongSORT: Make DeepSORT Great Again. IEEE Trans.

Multimedia 25 (2023), 8725–8737.
[4] Yuhong Li, Xiaofan Zhang, and Deming Chen. 2018. CSRNet: Dilated Convolu-

tional Neural Networks for Understanding the Highly Congested Scenes. In Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. 1091–1100.

[5] Dingkang Liang, Wei Xu, Yingying Zhu, and Yu Zhou. 2023. Focal Inverse

Distance Transform Maps for Crowd Localization. IEEE Trans. Multimedia 25

(2023), 6040–6052.

[6] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. 2020.

Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 42,
2 (2020), 318–327. https://doi.org/10.1109/TPAMI.2018.2858826

[7] Weizhe Liu, Mathieu Salzmann, and Pascal Fua. 2019. Context-Aware Crowd

Counting. In Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. 5099–5108.
[8] Gerard Maggiolino, Adnan Ahmad, Jinkun Cao, and Kris Kitani. 2023. Deep

OC-Sort: Multi-Pedestrian Tracking by Adaptive Re-identification. In Proc. IEEE
Int. Conf. Image Process. 3025–3029.

[9] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. 2015. Faster R-

CNN: Towards Real-Time Object Detection with Region Proposal Networks.

In Advances in Neural Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec,
Canada, Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama,

and Roman Garnett (Eds.). 91–99.

[10] Boyu Wang, Huidong Liu, Dimitris Samaras, and Minh Hoai Nguyen. 2020. Dis-

tribution Matching for Crowd Counting. In Adv. Neural Inf. Process. Syst.
[11] Jiayuan Wang, Q. M. Jonathan Wu, and Ning Zhang. 2023. You Only Look at

Once for Real-time and Generic Multi-Task. CoRR abs/2310.01641 (2023).

[12] Longyin Wen, Dawei Du, Pengfei Zhu, Qinghua Hu, Qilong Wang, Liefeng Bo,

and Siwei Lyu. 2021. Detection, Tracking, and Counting Meets Drones in Crowds:

A Benchmark. In Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. 7812–7821.
[13] Yingying Zhang, Desen Zhou, Siqin Chen, Shenghua Gao, and Yi Ma. 2016. Single-

Image Crowd Counting via Multi-Column Convolutional Neural Network. In

Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. 589–597.

https://doi.org/10.1109/TPAMI.2018.2858826

	1 Visualization of Tracking Results in Various Scenarios
	2 Comparison with the State-of-arts in Crowd Localization Performance
	3 Comparison with More MOT Method in Tracking Performance
	4 Comparison of Motion Weight
	5 Comparsion with Other Detector in Crowd Localization Performance
	6 Visualization of Various Detector
	References

