
A Pseudocode of Algorithm 2

Algorithm 2: Meta-Expert Learning Algorithm
Input: Time horizon T ; support size K; accuracy of error information (σ1, · · · , σT); norm
parameter q ∈ [1,∞].

Output: A bidding policy π.
Initialization: Construct TK base experts {fi} (i = 1, 2, · · · , TK) that cover the oracle with

cumulative reward difference at most O(1) (as in the proof of Theorem 5);
for i = 1, 2, · · ·TK do

Initialize R0,fi ← 0;
end
Initialize R0,h ← 0, R0,g ← 0, R0,f ← 0;
Initialize L0 ← 0 ;
for t ∈ {1, 2, · · · , T} do

The bidder receives private value vt ∈ [0, 1];

Set learning rate ηt,1 ← min
{

1
4 ,
√

K log T
Lt

}
;

The bidder observes hint ht ∈ [0, 1], along with its accuracy σt;

Lt ← Lt−1 + σ
q

q+1

t ;

Set bt,h ← ht + σ
q

q+1

t ;
Sample bt,g according to ChEW policy;
for i = 1, 2, · · · , TK do

Let bt,f ← fi(vt) with probability

pt,i :=
exp (ηt,1Rt−1,fi)

exp (ηt,1Rt−1,h) +
∑TK

i′=1 exp
(
ηt,1Rt−1,fi′

) .
end
Let bt,f ← bt,h with probability pt,TK+1 :=

exp(ηt,1Rt−1,h)

exp(ηt,1Rt−1,h)+
∑TK

i′=1
exp(ηt,1Rt−1,f

i′)
;

Sample bt,f ∼ pt ;

Set learning rate ηt,2 ← min
{

1
4 ,
√

log 3
Lt

}
;

for i ∈ {f, g, h} do

Pt,i =
exp (ηt,2Rt−1,i)∑

i′∈{f,g,h} exp (ηt,2Rt−1,i′)
;

end
The bidder samples policy i ∼ Pt and bids bt,i;
The bidder receives others’ highest bid mt;
for i = 1, 2, · · · , TK do

Rt,fi ← Rt−1,fi + r(fi(vt); vt,mt).

end
for i ∈ {f, g, h} do

Update Rt,i ← Rt−1,i + r(bt,i; vt,mt);
end

end

The algorithm has a tree structure with the nodes in the upper layer representing algorithms instead
of specific oracles. In Algorithm 2, the upper nodes are respectively: the algorithm that achieves the
regret upper bound in Theorem 5 described in Appendix C.1, “ChEW” algorithm to achieve Õ(

√
T)

regret bound proposed in [HZF+20], and a single expert which bids ht + σ
q/(q+1)
t each time. The

probability distribution Pt,i runs the multiplicative weights update on the above strategies (see details
in Appendix C.2).

14

B Proof of Main Result in Section 3

B.1 Proof of Regret Upper Bounds in Theorem 1 and Theorem 2

B.1.1 Proof of Upper Bound in Theorem 1.

We prove a slightly stronger result than Theorem 1:
Lemma 1. If vt ≡ 1 and the bidder observes σt at each time t, then the following regret upper bound
holds for Algorithm 1:

sup
{mt,ht,σt}

Reg(π1) = O

log T +

√√√√log T ·
T∑

t=1

σ
q

q+1

t

 ,

with Reg(π) defined in (2), and the supremum is taken over all mt sequences and hints that satisfy (3),
and the infimum is taken over all possible policies π.

Proof. The following is similar to proof of Theorem 3 in [HZF+20]. As in the standard analysis of
multiplicative weights [CBL06], define:

ϕt =
1

K

K∑
a=1

exp

(
ηt ·
∑
s<t

rs,a

)
, t = 1, . . . , T + 1.

Recall that K = T + 1 and a∗ is the extra expert. We translate every rt,a by −rt,a∗ to ensure that
rt,a ∈ [−1, 1] and rt,a∗ = 0. Then for t ∈ [T], Jensen’s inequality with ηt/ηt+1 ≥ 1 gives

(ϕt+1)
ηt

ηt+1 =

[
1

K

K∑
a=1

exp

(
ηt+1 ·

∑
s<t+1

rs,a

)] ηt
ηt+1

≤ 1

K

K∑
a=1

exp

(
ηt+1 ·

∑
s<t+1

rs,a

) ηt
ηt+1


= ϕt

K∑
a=1

pt,a · exp (ηt · rt,a) =: ϕtE[exp (ηtXt)].

Here Xt is a random variable that takes value rt,a with probability pt,a. Now using Bernstein’s
inequality

E[exp(λX)] ≤ exp
(
λE[X] + (eλ − λ− 1)Var(X)

)
,

with |X − E[X]| ≤ 1 almost surely, we have

log ϕt+1

ηt+1
− log ϕt

ηt
≤ E[Xt] +

eηt − ηt − 1

ηt
Var(Xt) ≤ E[Xt] + ηtVar(Xt),

where the last inequality is due to ex − x− 1 ≤ x2 for x ∈ [0, 1]. Define r∗t := max
a∈[K]

rt,a, we have

Var(Xt) ≤ E[(r∗t −Xt)
2] ≤ 1 · E[r∗t −Xt] = r∗t − E[Xt].

By telescoping and defining ηT+1 := ηT ,

log ϕT+1

ηT
=

T∑
t=1

[
log ϕt+1

ηt+1
− log ϕt

ηt

]
≤

T∑
t=1

E[Xt] +

T∑
t=1

ηt (r
∗
t − E[Xt]) . (5)

For the left-hand side of (5), we also have

log ϕT+1 ≥ ηT · max
a∈[K]

T∑
s=1

rt,a − logK. (6)

15

Combining (5) and (6),

max
a∈[K]

T∑
t=1

rt,a ≤
logK

ηT
+

T∑
t=1

(1− ηt) · E[Xt] +

T∑
t=1

ηt · r∗t . (7)

Rearranging (7) leads to the following upper bound on the cumulative regret:

max
a∈[K]

T∑
t=1

rt,a −
T∑

t=1

E[Xt] ≤
logK

ηT
+

T∑
t=1

ηtr
∗
t −

T∑
t=1

ηt · E[Xt]. (8)

Let VT := (logK)/ηT +
∑T

t=1 ηtr
∗
t , it remains to upper bound the last term of (8). To do so, note that

(7) holds for any intermediate value of t ∈ [T] as well. Since maxa∈[K]

∑T
t=1 rt,a ≥

∑T
t=1 rt,a∗ = 0,

for every t ∈ [T] we have

St :=

t∑
s=1

(1− ηs) · E[Xs] ≥ −
logK

ηt+1
−

t∑
s=1

ηs · r∗s = −Vt ≥ −VT ,

where the last inequality is due to ηt+1 ≥ ηT and r∗t ≥ rt,a∗ = 0 for every t ∈ [T]. Consequently,

−
T∑

t=1

ηt · E[Xt] = −
T∑

t=1

(St − St−1) ·
ηt

1− ηt

= −
T−1∑
t=1

St ·
(

ηt
1− ηt

− ηt+1

1− ηt+1

)
− ST ·

ηT
1− ηT

≤ VT

T−1∑
t=1

(
ηt

1− ηt
− ηt+1

1− ηt+1

)
+ VT ·

ηT
1− ηT

=
VT η1
1− η1

≤ VT ,

where we have used that 1/4 ≥ η1 ≥ η2 ≥ . . . ≥ ηT > 0. Plugging this inequality back into (7)
gives

max
a∈[K]

T∑
t=1

rt,a −
T∑

t=1

E[Xt] ≤ 2VT . (9)

Finally it remains to upper bound E[VT], where the expectation is taken with respect to the randomness
in the hint sequence {ht}Tt=1. Since the definition of the expert a∗ gives that

r∗t ≤ (1−mt)− (1− ht − σ
q/(q+1)
t)1(ht + σ

q/(q+1)
t ≥ mt)

≤

{
ht + σ

q/(q+1)
t −mt if ht + σ

q/(q+1)
t ≥ mt

1 if ht + σ
q/(q+1)
t < mt

,

we conclude that
E[r∗t] ≤ P(ht + σ

q/(q+1)
t < mt) + E[|ht + σ

q/(q+1)
t −mt|]

≤ E[|ht −mt|q]
(σ

q/(q+1)
t)q

+ (E[|ht −mt|q])1/q + σ
q/(q+1)
t

≤ 2σ
q/(q+1)
t + σt ≤ 3σ

q/(q+1)
t .

Therefore,

E[VT] ≤
logK

ηT
+

T∑
t=1

ηtE[r∗t]

≤ 4 logK +

√√√√ T∑
t=1

σ
q/(q+1)
t logK + 3

T∑
t=1

√
logK∑

s≤t σ
q/(q+1)
s

· σq/(q+1)
t

≤ 4 logK + 7

√√√√ T∑
t=1

σ
q/(q+1)
t logK,

16

where the last inequality follows from

n∑
i=1

ai√∑
j≤i aj

≤
n∑

i=1

∫ ∑
j≤i aj

∑
j≤i−1 aj

dx√
x
=

∫ ∑n
i=1

0

dx√
x
= 2

√√√√ n∑
i=1

ai

for any non-negative reals a1, · · · , an. Plugging the above upper bound of E[VT] into (9) completes
the proof of the lemma.

Theorem 1 follows from Lemma 1 and the following Jensen’s inequality:√√√√log T ·
T∑

t=1

σ
q

q+1

t ≤

√√√√log T · T ·

(∑T
t=1 σt

T

) q
q+1

≤
√
log T · Lq/(q+1) · T 1/(q+1).

B.1.2 Proof of Upper Bound in Theorem 2.

To achieve the upper bound of Theorem 2, we construct the same T base experts as Algorithm 1, as
well as T additional experts who bid ht + i/T, i ∈ [T] at each time t. Then at an additional O(1)

cost in the final regret, the additional experts include an expert who bids ht +
√
L/T at each time t.

Using the same analysis in the proof of Lemma 1, this algorithm achieves a regret upper bound

Reg(π2) ≤ 2

(
log(2T)

η
+ η ·

T∑
t=1

E[r∗t]

)
,

where η > 0 is a fixed learning rate, and

r∗t ≤

{
ht +

√
L/T −mt if ht +

√
L/T ≥ mt

1 if ht +
√

L/T < mt

.

Consequently,

T∑
t=1

E[r∗t] ≤
T∑

t=1

E[|ht +
√
L/T −mt|] +

T∑
t=1

P(ht +
√
L/T < mt)

≤
√
LT + E

[
T∑

t=1

|ht −mt|

]
+

1√
L/T

E

[
T∑

t=1

|ht −mt|

]
≤ 2
√
LT + L ≤ 3

√
LT ,

as 1 ≤ L ≤ T . Now choosing η = min{1/4,
√
(log T)/

√
LT} leads to the regret upper bound

O
(
(log T)

1
2 (T · L)

1
4

)
.

B.2 Proof of Regret Lower Bounds in Theorem 1 and Theorem 2

B.2.1 Proof of Lower Bound in Theorem 1.

Proof. We use Le Cam’s Two-Point method. Construct hint and minimum bid to win as follows: Let
ht =

1
2 , t = 1, . . . , T and σt be the same for all t such that σ

q
q+1 ≤ 1

4 . Consider the following two
CDFs for mt ∈ [0, 1]:

G1(x) =


0, if 0 < x <

1

2

2 · (1− x̄+ δ), if
1

2
< x < x̄

1, if x̄ < x < 1

, G2(x) =


0, if 0 < x <

1

2

2 · (1− x̄− δ), if
1

2
< x < x

1, if x < x < 1

,

17

where x̄ := 1
2 + 1

2 · σ
q

q+1 and let δ < 1
2 · σ

q
q+1 . Easy to observe the above construction satisfies:

E[|mt − ht|q] ≤ 2 · (1
2
· σ

q
q+1 + δ) ·

(
1

2
· σ

q
q+1

)q

≤ σ
q

q+1 ·
(
σ

q
q+1

)q
= σq.

Let r1(vt, bt) and r2(vt, bt) be the expected instantaneous reward under CDFs G1 and G2. Then
under the above construction:

max
b∈[0,1]

r1(1, b) = r1(1,
1

2
) =

1

2
· 1− x̄+ δ

1− 1
2

= 1− x̄+ δ,

max
b∈[0,1]

r2(1, b) = r2(1, x̄) = 1− x̄,

max
b∈[0,1]

(r1(1, b) + r2(1, b)) = r1(1, x̄) + r2(1, x̄) = 2 · (1− x̄).

Therefore, for any bt ∈ [0, 1],(
max
b∈[0,1]

r1(1, b)− r1(1, bt)

)
+

(
max
b∈[0,1]

r2(1, b)− r2(1, bt)

)
≥
(
max
b∈[0,1]

r1(1, b)

)
+

(
max
b∈[0,1]

r2(1, b)

)
− max

b∈[0,1]
(r1(1, b) + r2(1, b))

= (1− x̄+ δ) + (1− x̄)− 2 · (1− x̄) = δ.

Thus we have for any policy π,

sup
G

Reg(π) ≥ 1

2
EG1 [Reg(π)] +

1

2
EG2 [Reg(π)]

=
1

2

T∑
t=1

(
EP t

1

[
max
b∈[0,1]

r1(1, b)− r1(1, bt)

]
+ EP t

2

[
max
b∈[0,1]

r2(1, b)− r2(1, bt)

])
(10)

≥ 1

2

T∑
t=1

δ ·
∫

min{dP t
1 , dP

t
2}

≥ 1

2

T∑
t=1

δ ·
(
1− ∥P t

1 − P t
2∥TV

)
≥ 1

2
Tδ ·

(
1− ∥PT

1 − PT
2 ∥TV

)
,

where bt in (10) denotes the bid of the oracle chosen by policy π at time t and P t
i (i ∈ {1, 2}) denotes

the distribution of all observables (m1, . . . ,mt−1) at the beginning of time t. The KL divergence:

DKL(P
T
1 ∥PT

2) = (T − 1) ·DKL(G1∥G2)

= (T − 1) ·
(
2 · (1− x̄+ δ) · log 1− x̄+ δ

1− x̄− δ
+ 2 ·

(
x̄− 1

2
− δ

)
· log

x̄− 1
2 − δ

x̄− 1
2 + δ

)
≤ (T − 1) ·

(
2 · (1− x̄+ δ) ·

(
1− x̄+ δ

1− x̄− δ
− 1

)
+ 2 ·

(
x̄− 1

2
− δ

)
·
(
x̄− 1

2 − δ

x̄− 1
2 + δ

− 1

))
= 4 · δ · (T − 1) ·

(
1− x̄+ δ

1− x̄− δ
−

x̄− 1
2 − δ

x̄− 1
2 + δ

)
≤ 4T · δ2

(x̄− 1
2 + δ)(1− x̄− δ)

≤ 16T · δ2
1
2 · σ

q
q+1 + δ

.

≤ 32T · δ2

σ
q

q+1

.

18

Taking the separation parameter δ = min
{

1
2 · σ

q
q+1 , 1

8 · σ
q

2(q+1) · T− 1
2

}
and substituting into (6)

leads to the regret lower bound in Theorem 1:

Ω
(√

Tσ
q

q+1

)
= Ω

(√
L

q
q+1 · T

1
q+1

)
.

B.2.2 Proof of Lower Bound in Theorem 2.

Proof. At each time t, let vt = 1 and point estimation equals to 1
2 . Define ε ∈ [0, 1

8] to be some
parameter relevant to L. Consider the following two scenarios: (each with probability 1

2)

• σt equals to 0 with probability p1 := 1− 2(ε− δ), and equals to ε with probability 1− p1,
in which case mt always takes value ht + ε.

• σt equals to 0 with probability p2 := 1− 2(ε+ δ), and equals to ε with probability 1− p2,
in which case mt always takes value ht + ε.

Easy to observe under this construction the expected value of L:

L̄ =

T∑
t=1

ε

2
· (2(ε+ δ) + 2(ε− δ)) = 2ε2 · T.

The above construction also satisfies:

max
b∈[0,1]

R1(1, b) = R1

(
1,

1

2

)
=

1

2
− ε+ δ,

max
b∈[0,1]

R2(1, b) = R2

(
1,

1

2
+ ε

)
=

1

2
− ε,

max
b∈[0,1]

(R1(1, b) +R2(1, b)) = R1

(
1,

1

2
+ ε

)
+R2

(
1,

1

2
+ ε

)
= 2 ·

(
1

2
− ε

)
,

where R1 and R2 are expected rewards under the two scenarios. The following steps are similar to
previous subsection, for any policy π,

sup
{mt,ht,σt}

Reg(π) ≥ 1

2
E1[Reg(π)] +

1

2
E2[Reg(π)]

=
1

2

T∑
t=1

(
EP t

1

[
max
b∈[0,1]

R1(1, b)−R1(1, bt)

]
+

1

2
EP t

2

[
max
b∈[0,1]

R2(1, b)−R2(1, bt)

])

≥ 1

2

T∑
t=1

δ ·
∫

min{dP t
1 , dP

t
2}

≥ 1

2

T∑
t=1

δ ·
(
1− ∥P t

1 − P t
2∥TV

)
≥ 1

2
Tδ ·

(
1− ∥PT

1 − PT
2 ∥TV

)
, (11)

19

with P t
1 and P t

2 defined the same as (10). And the KL divergence

DKL(P
T
1 ∥PT

2) =

T∑
t=1

(
2(ε− δ) · log ε− δ

ε+ δ
+ (1− 2(ε− δ)) · log 1− 2(ε− δ)

1− 2(ε+ δ)

)

≤
T∑

t=1

(
2(ε− δ) · −2δ

ε+ δ
+ (1− 2(ε− δ)) · 4δ

1− 2(ε+ δ)

)
≤ 4δT ·

(
−ε− δ

ε+ δ
+

1− 2ε+ 2δ

1− 2ε− 2δ

)
= 8δ2T · 1

(ε+ δ)(1− 2ε− 2δ)

≤ 16T · δ2

ε
.

Taking δ = min
{
ε, 1

4

√
ε
2T

}
and substitute in (11), we have:

sup
{mt,ht,σt}

Reg(π) ≥ 1

4
min

{
εT,

1

4
√
2

√
T · ε

}
,

which leads to a lower bound of Ω((T · L) 1
4). Note that the construction above requires σt to be

unknown, otherwise one can achieve 0 regret by bidding hint for σt = 0 and bidding hint + ε for
σ = ε, which is a technical explanation for the separation in Section 3.

B.3 Proof of Theorem 3.

Proof. If L >
(√

T
) q−1

q

, then T
1

q+1L
q

q+1 >
√
T and the regret can be lower bounded by Ω

(√
T
)

.

So in the following construction, we assume L ≤
(√

T
) q−1

q

. First we divide time horizon to⌊
T

1
q+1L

q
q+1

⌋
equal parts and let σt be the same for all t. Construct private values and hints as

follows: For t = i ·
⌊(

T
L

) q
q+1

⌋
+ 1, i ·

⌊(
T
L

) q
q+1

⌋
+ 2, . . . , (i+ 1) ·

⌊(
T
L

) q
q+1

⌋
,

vt =
1

2
+

1

2
· i

T
1

q+1L
q

q+1

,

ht =
1

4
+

i

4
· σ

q
q+1 ,

mt =


1

4
+

i

4
· σ

q
q+1 , w.p. 1− 1

4
·
(
σ

q
q+1 ± δ

)
1

4
+

i+ 1

4
· σ

q
q+1 , w.p.

1

4
·
(
σ

q
q+1 ± δ

)
where i = 0, 1, 2, . . . ,

⌊
T

1
q+1L

q
q+1

⌋
− 1 and δ is the separation parameter similarly defined in the

proof of Theorem 1. Since L ≤
(√

T
) q−1

q

, we have

1

T
1

q+1L
q

q+1

≥
(
L

T

) q
q+1

= σ
q

q+1 ,

which ensures any strategy π that bids in
[
1
4 + i

4 · σ
q

q+1 , 1
4 + i+1

4 · σ
q

q+1

]
for the i-th part belongs

to 1-Lipschitz and monotone oracle. Therefore, we can now consider the whole time horizon as⌊
T

1
q+1L

q
q+1

⌋
independent problems, each of which consists of

⌊(
T
L

) q
q+1

⌋
time steps and has fixed vt.

Substituting Li :=
⌊(

T
L

) q
q+1

⌋
· σ, which is L for the i-th subproblem, and applying similar method

20

to the proof of Theorem 1, we can get:

sup
G

Regi(π) = Ω


√√√√√√
 T⌊

T
1

q+1L
q

q+1

⌋
 1

q+1

·

 L⌊
T

1
q+1L

q
q+1

⌋


q
q+1


= Ω

 T
1

q+1L
q

q+1⌊
T

1
q+1L

q
q+1

⌋
 = Ω(1),

for each independent problem. Summing over all subproblems leads to the lower bound
Ω
(
T

1
q+1L

q
q+1

)
.

B.4 Proof of Theorem 4

Proof. We prove that even when L takes expected value Θ(1), the minimax regret is still lower
bounded by Ω(

√
T). The proof is similar to that of Theorem 3, but by dividing time horizon into

√
T

subproblems. At each time t inside the i-th subproblem, the bidder observes ht =
1
4 + i·ε

4 (where
ε = 1√

T
). In the construction of the lower bound in Theorem 2, σt equals to 0 with probability

1−Θ(ε) and equals to ε with probability Θ(ε). Thus,

L̄ = E

[
T∑

t=1

σt

]
= T · ε2 = Θ(1).

Meanwhile, applying similar method to the proof of Theorem 2, we can get a lower bound of
Ω
(√√

T · 1√
T

)
= Ω(1) for each independent problem, leading to the final lower bound Ω

(√
T
)

.

C Proof of Main Result in Section 4

C.1 Proof of Theorem 5

C.1.1 Proof of Upper Bounds in Theorem 5

Proof. In the following subsection, we provide a way to achieve O

(√
log T · T

1
q+1 · L

q
q+1 ·K

)
regret upper bound. *

Figure 3 shows any function in oracle can be mapped to a piecewise constant function whose value
only takes those in the support set, define this mapped function set to be A. We prove in the appendix
that the number of functions in the converted set A is smaller than TK , then applying the algorithm
in Theorem 1’s proof directly leads to an upper bound of *

O

(√
log (|expert set|) · T

1
q+1 · L

q
q+1

)
= O

(√
log T · T

1
q+1 · L

q
q+1 ·K

)
.

To show set A is small enough, let’s first imagine walking from (1, 0) to (T,K) with each step either
to the positive direction of x-axis or y-axis exactly by 1. There are T +K − 1 steps in total and
one may choose K of them to go up. Now given any function in A, suppose at x = 1 the value
equals to the i-th support and at x = T the value equals to the j-th support, which can be considered
as points (1, i) and (T, j), i, j ∈ Z, 0 ≤ i ≤ j ≤ K. Without loss of monotonicity, we add points
(0, 0) and (T + 1,K) to the interval-support pairs of this function, i.e. the function takes value of the

*The other two are described in Appendix A.
*Although in the proof of Theorem 1 we show an upper bound of O

(√
log T · T

1
q+1 · L

q
q+1

)
, the proof

schetch can indeed be applied to any finite set of experts.

21

private valueprivate value

bi
dd

in
g

pr
ic

e
bi

dd
in

g
pr

ic
e

OracleOracle

Mapping IMapping I

(a) Discretize by x axis

private valueprivate value

bi
dd

in
g

pr
ic

e
bi

dd
in

g
pr

ic
e

Mapping IIMapping II

Mapping IMapping I

(b) Discretize by support location

Figure 3: Given any 1-Lipschitz and monotone oracle, we first discretize the x-axis into T small
intervals, changing the oracle to a piecewise constant function that bids the maximum point for each
interval in the oracle; Secondly, we map this piecewise constant function to a piecewise function that
only takes support value as bidding price. Easy to verify step 1 leads to T ·O(1

T) = O(1) loss, while
step 2 leads to a non-negative change to the cumulative reward.

i-th support for the t-th interval, i ∈ [K], t ∈ [T], iff we pass point (t, i) in the route from (0, 0) to
(T + 1,K). The set of routes and set A forms a bijection, both have cardinality:(

T +K − 1

K

)
=

T +K − 1

K
· T +K − 2

K − 1
. . .

T

1
≤ TK .

C.1.2 Proof of Lower Bounds in Theorem 5

Proof. Consider the three cases separately:

• If L < K
q+1
q

T
1
q

, then as in the proof of Theorem 3 we can construct N =
⌊
T

1
q+1L

q
q+1

⌋
independent problems since N < K in this case. For each independent problem the lower
bound is Ω (1), leading to a total lower bound of Ω

(
T

1
q+1 · L

q
q+1

)
.

• If K
q+1
q

T
1
q
≤ L ≤ T

K
q+1
q

, we cannot divide into
⌊
T

1
q+1L

q
q+1

⌋
subproblems since there are

only K values mt can take. So instead, we divide time horizon into K subproblems:

For t = i ·
⌊
T
K

⌋
+ 1, i ·

⌊
T
K

⌋
+ 2, . . . , (i+ 1) ·

⌊
T
K

⌋
,

vt =
1

2
+

1

2
· i

K
,

ht =
1

4
+

i

4
· σ

q
q+1 ,

mt =


1

4
+

i

4
· σ

q
q+1 , w.p. 1− 1

4
·
(
σ

q
q+1 ± δ

)
1

4
+

i+ 1

4
· σ

q
q+1 , w.p.

1

4
·
(
σ

q
q+1 ± δ

)
where i = 0, 1, 2, . . . ,K−1. Observe that the difference between vt for adjacent subproblem
is 1

2 ·
1
K and the difference between bid value for adjacent subproblem is at most

2 · σ
q

q+1

4
=

σ
q

q+1

2
=

L
q

q+1

2 · T
q

q+1

≤ 1

2
· 1
K

,

22

ensuring the N = K subproblems are indeed independent from each other. Additionally,

the separation parameter δ for each subproblem equals to

√
σ

q
q+1

T
K

=

√
K·L

q
q+1

T
1

q+1
, which is

smaller than the separation of mt: σ
q

q+1 =
(
L
T

) q
q+1 . Thus substituting Theorem 1, finally

the lower bound is,

K · Ω

((
T

K

) 1
q+1

·
(
L

K

) q
q+1

)
= Ω

(√
K · T

1
q+1 · L

q
q+1

)
.

• If L > T

K
q+1
q

, a traditional lower bound gives Ω
(√

T
)

.

C.2 Proof of Theorem 6

Proof. Let the learning rate for the upper level ηt,2 = min

 1
4 ,
√

log 3⌊∑t−1
s=1 σ

q
q+1
s

⌋
+1

 and apply

similar analysis as in Appendix B.1.1:

T∑
t=1

E[Xt] ≥ max
i∈{f,g,h}

T∑
t=1

rt,i − 2 ·

(
log 3

ηT,2
+ 2

T∑
t=1

ηt,2 · 2 · σ
q

q+1

t

)

= max
i∈{f,g,h}

T∑
t=1

rt,i − 2 ·


√√√√log 3 ·

T∑
t=1

σ
q

q+1

t + 4
√

log 3 ·
T∑

t=1

σ
q

q+1

t√⌊∑t
s=1 σ

q
q+1
s

⌋
+ 1


(a)
≥ max

i∈{f,g,h}

T∑
t=1

rt,i − 2 ·


√√√√log 3 ·

T∑
t=1

σ
q

q+1

t + 8

√√√√log 3 ·
T∑

t=1

σ
q

q+1

t


= max

i∈{f,g,h}

T∑
t=1

rt,i − 18 ·

√√√√log 3 ·
T∑

t=1

σ
q

q+1

t , (12)

where
∑T

t=1 E[Xt] is the expected total reward by running Algorithm 1, with expectation taken
over both policy randomness and possible mt sequences. (a) can be considered as taking integral
of function f(x) = 1√

x
, but with another piecewise function smaller than it instead. And applying

similar method to the lower level of the first node we have:

T∑
t=1

rt,f ≥ max
a∈[TK]

T∑
t=1

rt,a − 18 ·

√√√√K log T ·
T∑

t=1

σ
q

q+1

t . (13)

Combining (12) and (13) and the regret upper bound of ChEW algorithm and choosing hint expert:

T∑
t=1

E[Xt] ≥ max
i∈{f,g,h}

(
max

a∈[TK]

T∑
t=1

rt,a − Reg(i)

)
− 18 ·

√√√√log 3 ·
T∑

t=1

σ
q

q+1

t

= max
a∈[TK]

T∑
t=1

rt,a −min

18 ·

√√√√K log T ·
T∑

t=1

σ
q

q+1

t , 2 ·
T∑

t=1

σ
q

q+1

t , C ·
√
T

− 18 ·

√√√√log 3 ·
T∑

t=1

σ
q

q+1

t ,

23

where C is a constant number. Therefore, we have:

Reg(π) = O

min


√√√√log T ·

T∑
t=1

σ
q

q+1

t ·K,

T∑
t=1

σ
q

q+1

t ,
√
T


+O


√√√√log 3 ·

T∑
t=1

σ
q

q+1

t


(b)
= O

min


√√√√log T ·

T∑
t=1

σ
q

q+1

t ·K,

T∑
t=1

σ
q

q+1

t ,
√
T


 ,

while (b) holds since
∑T

t=1 σ
q

q+1

t > L > 1.

C.3 Proof of Theorem 7

C.3.1 Proof of Upper Bound in Theorem 7

Proof. Instead of one single hint expert in Algorithm 2, construct T hint experts, with each one
bidding a constant gap over ht, i.e. with the first hint expert bidding ht +

1
T for t = 1, . . . , T ; the

second hint expert bidding ht +
2
T for t = 1, . . . , T ; etc. The upper layer then consists of T hint

experts and two super nodes, representing ChEW algorithm (g) and modified Algorithm 1 (f). The
lower layer of f consists of TK base experts (constructed as in Appendix C.1) and T hint experts.

Let the learning rate for the upper level η2 = min
{

1
4 ,
√

log(T+2)√
TL

}
,

T∑
t=1

E[Xt] ≥ max
i∈{f,g,h}

T∑
t=1

rt,i − 2 ·
(
log(T + 2)

η2
+ 4η2

√
LT

)

= max
i∈{f,g,h}

T∑
t=1

rt,i − 10 ·
√
log(T + 2) ·

√
LT , (14)

And applying similar method to super node f :
T∑

t=1

rt,f ≥ max
a∈[TK]

T∑
t=1

rt,a − 10 ·
√
K log T ·

√
TL. (15)

Combining (14) and (15),
T∑

t=1

E[Xt] ≥ max
i∈{f,g,h}

(
max

a∈[TK]

T∑
t=1

rt,a − Reg(i)

)
− 20 ·

√
log T ·

√
TL

= max
a∈[TK]

T∑
t=1

rt,a −min

{
10 ·

√
K log T ·

√
TL, 2 ·

√
TL,C ·

√
T

}
− 20 ·

√
log T ·

√
TL,

where C is a constant number. Therefore, we have:

Reg(π) = O

(
min

{√
K log T ·

√
TL,
√
T

})
+O

(√
log T ·

√
TL

)
= O

(
min

{√
K log T ·

√
TL,

√
T log T

})
.

C.3.2 Proof of Lower Bound in Theorem 7

The following is similar to proof of lower bound in Theorem 5.

Proof. • If L > T
K2 , as in the proof of Theorem 4 construct N0 =

⌊√
T
L

⌋
< K independent

sub-problems, while for each sub-problem

L′ =
L√
T/L

=

√
L3

T
, T ′ =

T√
T/L

=
√
TL,

24

and for each sub-problem regret is lower bounded by Ω

((√
LT ·

√
L3

T

)1/4
)

, leading to

a total lower bound of Ω

((√
LT ·

√
L3

T

)1/4

·
√

T
L

)
= Ω(

√
T).

• If L ≤ T
K2 , it is not feasible to construct N0 independent sub-problems as the optimal

bidding value can not take N0 > K values. Instead construct K independent problems,

with the separation parameter (see Appendix B.2.2): δ =
√

L
T ·

K
T < 1

T , leading to a total

regret lower bound of Ω

(√√
T
K ·

L
K ·K = Ω

(√
K ·
√
TL
))

.

D Experimental Details

D.1 Description of Experiment 1 in Section 5

Divide the whole range of private value to D bins, each of which contains vt’s that are close to each
other. As long as the bidder observes vt at time t, we reduce the problem to the bin focusing on
the data points with private values close to vt. Then each bin itself forms a sub-problem described
in Section 3. Experiment 1 only serves as an illustration of the effect by hints. The role of hints is
threefolds:

• We use hint to help allocating data to different bins. Instead of binning only by private
values, we use hint as a side information and conduct binning also based on it. The total
number of bins is M1 ·M2, while M1 is the number of discretization for vt and M2 is the
number of discretization for hints. As for the result on empirical data, we observe M2 = 4
already leads to rather good performance.

• We use hint to calculate the estimation of instantaneous reward for any given bid b′t under
the assumption that mt = bt: r′t,a := r(bt;ht, vt), where bt is the bid at time t according to
oracle a. Then we add this estimated reward to each experts’ reward history while sampling
among these experts:

pt,a =
exp

(
ηt ·
(∑t−1

s=1 rs,a + r′t,a

))
∑

a′∈F exp
(
ηt ·
(∑t−1

s=1 rs,a′ + r′t,a′

)) , t = 2, 3, · · · , T.

And if σt is also observed, we define r′t,a := r(bt;ht + c1 · σt, vt) instead, where c1 is a
hyper-parameter to be tuned.

• We include a set of hint experts

bt(ai) := ht + σ∆i
t , i = 1, 2, · · · , k,

which is close to a combination of algorithms for whether knowing the error, since for real
datasets q is often not observed.

The results in Figure 4 shows the improvement by incorporating hint on other two datasets. The
results implies that on datasets whose hint has rather small error, e.g. on dataset 1 bidding hint itself
already beats simple online learning algorithm, the improvement by hint is more significant. Namely,
4.38% on dataset 1 with more accurate hint and 3.54% on dataset 2 whose hint is not so good.

D.2 Polynomial Algorithm in Section 5

Consider any 1-Lipschitz & monotone oracle f , since support size is finite, f can be mapped to a
discontinuous function f ′ with O(1) loss, which can be further represented by a series of interval-
support pair: (

0,
1

D

]
↔ si1 ,

(
1

D
,
2

D

]
↔ si2 , . . . ,

(
D − 1

D
, 1

]
↔ siD ,

25

0 5 10 15

Time Horizon #10 5

0

2

4

6

8

10

12

14

16

C
um

ul
at

iv
e

R
ew

ar
d

#10 5

Baseline
Binned EW
Learning with Hint
Bidding Hint

(a) Results on Dataset 1

0 2 4 6 8

Time Horizon #10 5

0

1

2

3

4

5

6

C
um

ul
at

iv
e

R
ew

ar
d

#10 5

Baseline
Binned EW
Learning with Hint
Bidding Hint

(b) Results on Dataset 2

Figure 4: Cumulative rewards as a function of time. The dashdot lines stands for incorporating hint
into exponential weighting, and the purple solid lines are directly bidding hint. The dotted lines
represent binned exponential algorithm.

26

Algorithm 3: DP algorithm without knowing support locations
Inputs: Time horizon T ; support size K;
Initialization: RewardT,K,T ← 0; P← 0;
for t = 1, 2, . . . , T do

% Calculate Sum_Forward&Sum_Backward Matrix
Sum_ForwardT,K,T ← 1; Sum_BackwardT,K,T ← 1;
for i = 1, 2, . . . T do

for j = 1, 2, . . . , T do
Sum_Forwardi,1,j ← Sum_Forwardi−1,1,j · exp(ηt · Rewardi,1,j);
Sum_Backwardi,K,j ← Sum_Backwardi+1,K,j · exp(ηt · Rewardi,K,j);
for k = 2, 3, . . .K − 1 do

Sum_Forwardi,k,j ←
j−1∑
v=1

(
Sum_Forwardi−1,k−1,v · exp(ηt · Rewardi,k,j)

)
+ Sum_Forwardi−1,k,j · exp(ηt · Rewardi,k,j);

Sum_Backwardi,k,j ←
T∑

v=j+1

(
Sum_Backwardi+1,k+1,v · exp(ηt · Rewardi,k,j)

)
+ Sum_Backwardi+1,k,j · exp(ηt · Rewardi,k,j);

end
end

end
% Calculate Probability
i← ⌊vt · T ⌋;
for j = 1, 2, . . . T do

Pj ←
∑

k=1,2,...K

((
Sum_Forwardi−1,k,j +

j−1∑
v=1

Sum_Forwardi−1,k−1,v

)
· exp(ηt · Rewardi,k,j)

·
(

Sum_Backwardi+1,k,j +

T∑
v=j+1

Sum_Backwardi+1,k+1,v

))
;

end
for k = 1, 2, . . .K do

P⌊ht·T⌋ ← P⌊ht·T⌋ + exp(ηt · RH);
end
Sample bt ∼ (P/

∑
(P));

% Update Reward Matrix
for k = 1, 2, . . . ,K do

for j = 1, 2, . . . T do
if mt ≤ j/T then

Rewardi,k,j ← Rewardi,k,j + (vt − j/T);
end

end
RH← RH + r(ht; vt,mt);

end

27

where 0 ≤ s1 ≤ s2 ≤ s3 ≤ · · · ≤ sK ≤ 1 are the locations of supports in increasing order and
0 ≤ i1 ≤ i2 ≤ · · · ≤ iD ≤ K, i1, i2, · · · , iD ∈ Z. The main idea is to record the cumulative reward
for all possible interval-support tuples and use dynamic programming to calculate total reward for
some expert sets instead of keeping track of all TK experts.

Reward[D][K][D]: The first two dimensions represent interval: [d][k] : (d/D, (d+1)/D]↔ sk. The
third dimension represent the bidding, with steply update

Rewardi,k,j ← Rewardi,k,j + (vt − j/D)

Then we use dynamic programming to calculate the sum of the rewards for several continuous
intervals, instead of keeping track of all TK experts.

Sum_Forward[D][K][D]: Forward DP recording array, representing combined intervals: [d][K] :
(0, d/D]↔ {1, . . . , sk} and the third dimension represents bidding for the last interval: (d/D, (d+
1)/D]. The update calculation is carried out per step before choosing an action.

Sum_Backward[D][K][D]: Backward DP recording array, representing combined intervals: [d][K] :
((d+ 1)/D, 1]↔ {sk + 1, . . . ,K} and the third dimension represents bidding for the first interval:
((d+ 1)/D, (d+ 2)/D]. The update calculation is carried out per step before choosing an action.

Combining the results of Sum_Forward and Sum_Backward, we can calculate reward history for a
subset of the TK experts, which is the only needed quantity for calculating probability in exponential
weighting instead of keeping record with an exponential size.

28

	A Pseudocode of Algorithm 2
	B Proof of Main Result in Section 3
	B.1 Proof of Regret Upper Bounds in Theorem 1 and Theorem 2
	B.1.1 Proof of Upper Bound in Theorem 1.
	B.1.2 Proof of Upper Bound in Theorem 2.

	B.2 Proof of Regret Lower Bounds in Theorem 1 and Theorem 2
	B.2.1 Proof of Lower Bound in Theorem 1.
	B.2.2 Proof of Lower Bound in Theorem 2.

	B.3 Proof of Theorem 3.
	B.4 Proof of Theorem 4

	C Proof of Main Result in Section 4
	C.1 Proof of Theorem 5
	C.1.1 Proof of Upper Bounds in Theorem 5
	C.1.2 Proof of Lower Bounds in Theorem 5

	C.2 Proof of Theorem 6
	C.3 Proof of Theorem 7
	C.3.1 Proof of Upper Bound in Theorem 7
	C.3.2 Proof of Lower Bound in Theorem 7

	D Experimental Details
	D.1 Description of Experiment 1 in Section 5
	D.2 Polynomial Algorithm in Section 5

