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A Appendix

A.1 Model Overview with Pseudo Codes

In this subsection, we provide a high-level summary of our framework for better understanding. We
present the summary in the form of pseudo codes, shown in Algorithm 1.

Algorithm 1 The Overview of the Proposed Framework.

Input: Training dataset {z;, y,;} ;.
Step 1: Design LOCAL. LOCAL has repeated blocks of symbolic activation, multiplication, and
summation layers. For example, Fig. 1 presents a LOCAL with 2 blocks.
Step 2: Denote LOCAL Function. LOCAL represents the map f(z; {Z; }1 ', (Wi}
from « to y. With global optimal solutions of Z;, and W, f(x) can be simplified to the true
equation g(x).
while LOCAL does not have the optimal performance do

Step 3: Search LOCAL Structure.

Step 3.1: Model the Search Process. Build the CMP and the reward function R(-) based on
states and actions defined over LOCAL. Formulate a sequential optimization.

Step 3.2: Solve the Optimization. Utilize the proposed double convex Q-learning to find
optimal actions. Generate a search result of {Z k}kK:_Ol.

Step 4: Estimate LOCAL Parameters. Train the searched LOCAL by minimizing the MSE
via Adam. Estimate values in {W }5"".

Step 5: Evaluate the Search and Estimation Results. The results can formulate f;(x) for
the t*" episode. Calculate the end-of-trajectory reward R; to evaluate f;(x).

Output: LOCAL with the best performance and the corresponding equations.

A.2 Training Algorithm for CONSOLE.

The training algorithm can be seen in Algorithm 2.

A.3 Proofs of Theorem 1

Theorem. V0 < k < K — 1, the negative optimal Q-function —Q*(sy, ay,) in the proposed
CONSOLE framework exists and is convex in sy, and ay, where sy, is the discrete state and ay; is the
continuous action at the k" stage.

Proof. First, we show our state transition satisfies the Markov property. Specifically, Equation (1)
in our paper shows that the next state s;; equals the matrix multiplication between the current
state s and the matrix Z that is a matricization of the current action aj, where k is the index of
the state. Therefore, the state transition satisfies Markov property with the transition probability
P(8k+1|8k, ak) =1.

Due to the Markov property of the state transition, we define our search process as Controlled Markov
Process (CMP) [31, 30]. By the CMP definition [30], our CMP is composed of our state, action, state
transition probability, a discounter factor 7, and a start state (i.e., sg in Equation (1)). In general,
CMP is a Markov Decision Process (MDP) without a reward function [31].

For one CMP, Trajectory Ordering (TO) ranks trajectories of state action pairs [31]. In our paper,
we define the trajectory from (sg, ag) to (Sx—1,ax—1) for K-layer LOCAL. Then, our reward
function R(-) realizes a TO for our defined trajectories [31] since the ordering of trajectories can be
determined by R(-). More specifically, R(-) is trained with the end-of-trajectory reward R; for the
t*" trajectory in our paper and can rank trajectories. A reward bundle is an automation-like structure
to produce rewards for a CMP [30]. By Corollary 2 of [30], there exists a reward bundle for our
defined CMP and TO realized by R(-).

We pair our CMP with the reward bundle to form a Split Partially Observable MDP (Split-POMDP)
[30]. Then, by Proposition 1 and Corollary 1 in [30], our Split-POMDP will always have an optimal
deterministic policy that only depends on states in our CMP. By the proof of Proposition 1 in [30],

13



Algorithm 2 CONSOLE: Convex Neural Symbolic Learning

Input: Training dataset {z;, y,;} Y ;.
Initialize: LOCAL layer number K, initial state 59 = [1,0]7, discount factor y € (0,1), € for
e-greedy strategy, \ as a threshold to stop searching, ICNN for reward function —R(s, a), ICNN
for Q-function —Q(s, @), replay buffer B = (), maximum episode 7', target network Q' (-) = Q(-),
and target network update interval Tj.
while t < T do
while £ < K do
Solve Optimization in Equation (3) with —Q(s}, a) to obtain aj.
Use e-greedy to select ELZ from a;, and a random action. > e-greedy strategy.
Discretize @}, to obtain af,.
Execute a}, and use Equation (1) to obtain s’,j i1
Check if af, and s}, satisfy certain constraints. Otherwise, delete this state transition and
restart the iteration from s,. > Constraint checking.
Formulate LOCAL, train LOCAL with {z;,y,} Y, and calculate R;.
Train the reward function —R(-) using training data {{s%, a} }; ', — R:}.
V0 < k < K, insert (s}, al, s}, R;) and (s}, ay, s}, 1, R(s,a})) to Bo.
Sample a random minibatch By C B
for (s,, @, Sit1, Rim) € B do > Experience replay.
Solve Optimization in Equation (3) with —Q' (841, @) to obtain @, 1.
Ym = Ry, + ’YQ/ (Sma am)'
Train Q(+) using training data {S;,4+1, Qm+1, Ym fm, Where {Sm1, @m41 }m are the input and
{Ym }m are the output.
if t mod Ty = 0 then
Q) =0Q() > Update target Q-network.
if |[R, — 1| < A then
End the search process.
Output: LOCAL with the best performance and the corresponding equations.

the optimal policy optimizes the value function over states in CMP. Further, the value function is
an evaluation of trajectories for our TO by the proof in Corollary 2 in [30]. Additionally, our TO is
realized by our proposed reward function R(-). Therefore, the optimal Q-function exists for our CMP
and our proposed R(-).

Then, we consider the Bellman Equation of Q*(-):
—Q"(sk, ax) = —E[R(sy, ax) +ymax Q" (sy+1,a)] = —R(s, ar) — ymax Q" (sp+1, @), (4)

where the second equality holds since our state transitions are deterministic by Equation (1). We
prove the convexity from the induction method. When k = K — 1, the (k + 1)*" state is the terminal
state without action selections. Thus, we have

_Q*(SKfla afol) - —R(SKfl, C~LK71).

Since —R(-) is an ICNN and is convex in input, —Q*(Sx—_1,a@x—1) is convex in Sx_1 and G _1.

When 0 < k& < K — 1 and assume —Q*(Sg41,@k+1) is convex in sxy1 and @j41, we have
—maxg Q*(Sk+1,a) = ming —Q*(Sk+1, @) is convex in siy1 given the fixed optimal action. Let
H denote the Hessian matrix of ming —Q*(sx+1,a) with respect to s;11. Due to the convexity,
H is positive semi-definite. Thus, by Equation (1) and the chain rule, the Hessian matrix of
ming —Q*(sk+1, @) with respect to sy, can be written as:

H =(z,)"HZ,.

’
H is also positive semi-definite. Therefore, ming —Q* (Sk+1, @) is convex in s. Since —R(s, ax)
is convex in sy, —Q*(sk, @i ) is convex in k.
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Similarly, vectorizing the state transition equation can give:
T ’
Sk+1 = (8 ®Ins)ak’

where I,,, is the ns X ng identity matrix and ) is the Kronecker product. a;C = [(ar)T,0]7 is the
concatenation of the discrete action ay and a zero vector to maintain the fixed dimensionality of
action vectors. With similar proofs based on the Hessian matrix and the fact that —Q*(sk41, @) is
convex in Sy 1, we have ming —Q*(sx1, @) is convex in a}c and also aj. Subsequently, arbitrary
ay € conv({0,1}"*) can be written as a convex combination of the discrete actions aj. Thus,
ming —Q*(Sk+1, @) is convex in ag. Since —R(sy, @) is convex in ax, —Q* (8, Gx) is convex in
ay. Eventually, —Q* (s, @) is convex in s and @y, which concludes the proof.

A.4 Proofs of Theorem 2

Theorem. Let f*(-; W) denote the LOCAL constructed by the optimal sequences of states
(so0, 8%, -+, 8%) and actions (a§,ai, -, a5 _,) from —Q*(-), where W is the set of weights
of f*(sW). If f*(-; W) can be trained with noiseless datasets and the training can achieve the
global optimal weights W*, f*(-; W*) can be simplified to the true equation g(-).

Proof. If f*(-; W) can’t represent the exact equations, there are two cases: (1) the structure of
f*(-; W) is correct to represent the equations, but the learned weights W* don’t represent the
symbol coefficients, and (2) the structure of f*(-; W) can’t represent the equations. Case (1) doesn’t
hold since we assume W* is the global optimal weights for noiseless data. If case (2) holds,
W< <K -1, b; = ming, —Q*(s;,a;) and b; doesn’t represent the symbol connections in the
underlying equations. Further, we assume V0 < ¢ < j, af = ming, —Q(s;, @;) and a represents
the true connections.

If j = K — 1, Equation (4) implies that a; = ming, —Q*(s;, a;) = argming —R(s;,a). Since
fR(sj, a) is convex in a, we know the discrete version of EL’;, namely a;, represents the true
connection of the last layer for the underlying equations. Otherwise, the reward is not maximized.
However, by definition of b;-, b; #aj.

If j < K — 1, Equation (4) implies:

min —Q*(s;, @;) = min —R(s;,a;) + yminmin —R(s;41(a;), @;j11)

a, a, a; ajy )

+- A min - min —R(sx_1(@j, - ,@r—2),ar_1)
a; aK—_1

By definition of b;, bj is not the solution of Equation (5). This is because b;f can’t achieve the
minimum value for each summation term on the right hand side of Equation (5), according to the
convexity of the reward function. In general, b;f # ming; —Q*(s;, a;), which contradicts the
definition of b}. Thus, b; doesn’t exist. Therefore, case (2) doesn’t hold and f*(-; W) represents

the exact equations.

A.5 Proofs of Theorem 3

Theorem. Assume the following conditions hold: (1) the equation g(x) is C* smooth and has
bounded second derivatives with respect to weights, (2) Jx € X, g(x) has non-zero gradients with
respect to weights, (3) the structure of LOCAL is correctly searched to exactly represent symbols
and symbol connections in g(x), and (4) the training dataset of LOCAL is noiseless. Then, for the
MSE loss surface of LOCAL, each global optimal point has a strictly convex local region.

Proof. To simplify the proof, we consider scalar output of the LOCAL, i.e., one equation, and the
proof can be easily extended to the multi-output case. We follow the idea of [29] to study the second
derivative of LOCAL with perturbations. Let §(x, W) denote the LOCAL with input to be = and the
weight set to be W. Let X be a perturbation direction of W and ¢ be a small step size. For the i*"
noiseless instance (x;, y;), we denote e(x;, W + tX) = §(x;, W + tX) — y;. Obviously, the loss
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function can be written as L(W + tX) = 7 Zfil (e(x;, W +tX))2. Then, we can calculate the
second-order derivative based on the chain rule:

N
‘t:o Ze(:ci,W +tX)

i=1

| =

L(W +tX)

g(mww +tX)a

2| =
SR

d2
di2 |t:0

IS

t

d2

d " 2
(%‘t:oy(mi; W + tX)) + ez, W)ﬁ

|
=
M-

|, o0, W+t X).
(6)

Next, we denote the global optimal solution to be W*. Based on the Assumptions (3)
and (4), Vi, 9(x;,W*) = g(xz;) = vy;. Therefore, we have %h:oL(W* + tX) =
LN (4 b, W*))2 > 0, where the inequality strictly holds. This is because by As-
sumptions (3), §(x, W*) can be mathematically simplified to obtain (). Then, by Assumption (2),
Ly (&, 0=, W*))2 > 0. Finally, by Assumption (1) and (3), %hzoy(wi, W +tX) is
bounded and there is a local region around W* such that % ‘ o L(W +tX) > 0, which concludes
the proof. |

i=1

A.6 Proofs of Theorem 4

Theorem. Suppose Assumptions 1-4 in Theorem 3 hold. For a LOCAL with one symbolic activation,
multiplication, and summation layer, the set of local convex regions with global optima is U =

(w 2] a@wx)|”
n| & !tzoz)(wj WAX)]

> |§(xk, W) — yi|}, where notations are defined in the proof.

Proof. For the target LOCAL, we similarly consider the scalar output and write the function analyti-
cally:

§(z, W) =W (d(W(x)), ©)

where W € R"0*™ js the weight matrix for activation, ® : R”* — R™ represents the activation
with symbol functions like 22, cos(z), and log(x), etc. ¥ : R™ — R"2 is the function to select
some activated neurons for multiplications, and W; € R"2*"3 (ng = 1) represents the weight for
summation. We rewrite Equation (7) with the help of exponential and logarithm mappings.

i@, W) = W exp (ST 1og(<1>(W0Tas))), ®)

where S € R™ *"2 represents a selection matrix such that S[i, j] = 1 if and only if the i** neuron
is selected as the multiplicative factor for the j** neuron in the multiplication layer. Given the
fixed structure of §(-) from the deep Q-learning, S is a known matrix. log(-) and exp(-) represent
the element-wise logarithm and exponential functions. Notably, the corresponding element in
@(Wga:) should be positive in Equation (8). If there are negative entries, one can utilize WlTs o

exp <ST log (|<I>(W?;a:) )> to take place of the right hand side term in Equation (8), where s[i] =
(—1)”1 and 0 < n? <ny represents the number of negative entries selected for the it neuron of

the multiplication layer. o represents the Hadamard product. However, both expressions have the
same values and gradients. Thus, we utilize Equation (8) in later derivations.

Then, let X be a perturbation direction such that X = { X, X1 }. Thus, for a small step ¢, we have:

G, W +tX) = (W, +tX 1)  exp (sT log (®((Wo + tXO)T:c))>. )
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Based on Equation (9), we can compute:

d
ay(a:h W+tX) = XTexp (sT log (®((Wo + tXO)T:ci))>

+ (W +tX,)T [exp (ST log(®((Wo + th)Ta:Z-))) (10)

1
@((WQ + tX())TCL'Z‘)

oS8T 0® ((Wo+tXo) x;) 0 Xga:i] ,
where W € R™ is the element-wise division and @ is the element-wise first derivative

of ® . Without special notifications, we assume all the division for vectors is element-wise in the
following derivations. Then, we denote

u(x;, W +tX) = exp (ST log (®((Wo + tX())Tar;i)))7

1
(I)((Wo + th)TiL'i)
1
((W() + tXO)T:IiZ‘)

v(z;, W+1tX)=8T 0® (Wo+tXo) @) o X1 ;, (11)

e} CI)N((WQ + tXQ)TJLL) e} ngz

w(x;, W+1tX) = ST(I),

With above definitions, we can calculate:

d
o7 |t:Ogj(wi, W+tX) = XTu(x;, W)+ WT [u(x;, W) o v(z;, W)]. (12)

Further, we calculate the second derivative based on Equation (10) and the fact that element-wise
operations for vectors are commutative:

d%lQﬁ(CBi,W—i—tX) = X1 [u(z;, W +tX) ov(z;, W + tX)]
+X1T[u(:ci,W+tX) ov(x;, W+ tX)]

+ (W +tX )T [u(as, W+ tX) o v(a;, W + tX) o v(a;, W + tX)] 13)
— (W1 +tX ) [u(z;, W+ tX) ov(z;, W + tX) ov(z;, W + tX)]

+ (W, +tX1)T[u(a:i,W+tX) ov(w;, W +tX) ow(w;, W + tX)],

When ¢t — 0, we have:

d

23l W+ X) = 2XT [u(i, W) 0 v(w:, W)] + W [u(as, W) o v(wi, W) o w(xi, W)

(14)

The above equation can reflect the relationship between the second and the first derivative. However,
we first identify the inequality between these two derivatives to enable a strictly convex region.

Let @ = [%‘t:(]g(wlaw + tX)7 o a%’tzog(wl\ﬁw + tX)]T’ @ = [,{%‘tzog(wlaw +
tX), - g |, 0(@N, W+ tX)|T, and e = [e(x1, W), - ,e(zn, W)]”. Equation (6) implies
that:

d? 1, . "

—|,_ L tX)=—(|y 113 +e"1

iz limoLOV + 1) = (5 |3+ €T ) s
1

> (g 113~ llell2ll7 ||2)

=

To find a region to restrict the convexity, we restrict the lower bound of the second derivative to be
positive and compute:

9
9 113
19 1]

llelf2 < (16)
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The right hand side of Equation (16) can be easily bounded by:

’ ’ R 2
1513 VNmin(lg)* _ V|G, _of(@s W+ 1) an
15712~ max(g") |G |d(@s W LX)

where |-| for a vector is to calculate the absolute value for each element of the vector, i = arg min(|@, )
and j = argmax(|y |). Namely, we consider a sufficient condition for convexity.
. 2
VNG, (@i W+ 1)
|t 1o (s, W + X))

> [le]l2 (18)

Next, Equation (14) indicates that:

d R
|@|t:0y(wj,W+tX)‘ = ‘XlT[u(ocj,W) o 2v(xw;, W)] +W1T[u(acj,W) ov(xj, W)ow(x;, W)]

< n(’XlTu(mj, W)+ W1 [u(z;, W) ov(z;, W)]|)

d N
= n!%’tzoy(w]7w+tX)‘a

(19)
where 7 is a positive constant. Note that 7 < oo by Assumptions (1) and (2) in Theorem 3. Therefore,

we have the following sufficient condition to make % |t:0 L(W +tX) > 0 always hold.
7 2
VN[ G|, 9@, W +1X)|
Nl &, _i(@s, W+ X)]

> VN[g(@, W) = ye| > [lell2, (20)
where k = argmax(|e|). The above equation leads to a set U of local regions that have strong

convexity. Namely,

[l s W+ )]
1|l o9 W+ X))

U={w > [G(xk, W) — yil} 2D

Clearly, the global optimal solution W* € U since g(xy, W*) — y;, = 0. Note that there may be
multiple global optimal solutions of the loss minimization in LOCAL. Thus, U is the set of local
convex regions that contain global optima. This implies that for each W* € U, we can find a locally
and strictly convex region U* = U N B(r), where B(r) = ||{w — w*||2 < r is a norm ball and we
vectorize W and W* to obtain w and w*, respectively. Subsequently, range r can be set relatively
large such that U* C B(r) and U** N B(r) = 0, where U** is the local region for another global
optimal point W** if it exists. Then, the range for U™ still depends on the inequality in Equation
(21).

A.7 Implementing details of CONSOLE

Hyper-parameters of CONSOLE exist for both the double convex deep Q-learning and the LOCAL.
In the deep Q-learning, we set v = 0.2, ¢ = 0.4, T = 600, A = 1072, T, = 10 for Algorithm 2.
Furthermore, to train the negative Q-function and the reward function, we set the learning rate to be
5 x 1072 and the number of epochs for training to be 50. Then, we set the batch size for the negative
Q-function to be 100. If the number of data in the replay buffer is less than 100, no training happens
for the negative Q-function. Additionally, all the data gathered in one episode are used to train the
negative reward function. As for the LOCAL, we set K = 3, the learning rate to be 1 x 10~2 and
the number of training epochs to be 8. We make these training epochs to be small since training the
LOCAL is the most time-consuming part of CONSOLE. Furthermore, if the structure of LOCAL is
correctly searched, a small number of iterations can help LOCAL to gain the global optimal weights.
Finally, we initialize all trainable weights in LOCAL to be 1. The following results show that a
relatively large area is suitable for an initial guess of LOCAL.
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