
Under review as a conference paper at ICLR 2024

A DERIVATIONS AND PROOFS

A.1 FORWARD POSTERIOR

First, we rewrite the marginal distribution (7) in terms of standard normally distributed εt, εs for s
and t, where s < t:

zt = αtFφ(x, t) + σtεt, (14)
zs = αsFφ(x, s) + σsεs. (15)

Next, we constructively introduce the posterior distribution qφ(zs|zt,x). To sample zs given zt and
x while preserving the correct marginal distribution qφ(zs|x), we can combine the noise εt with
additional noise ε̃s|t as follows:

zs = αsFφ(x, s) +
√

σ2
s − σ̃2

s|tεt + σ̃s|tε̃s|t. (16)

The samples zs follow a (conditional) normal distribution. By marginalizing εt and ε̃s|t, we obtain
a normal distribution with mean αsFφ(x, s) and variance σ2

s − σ̃2
s|t + σ̃2

s|t = σ2
s . Therefore, this

sampling procedure satisfies qφ(zs|x) =
∫
qφ(zt|x)qφ(zs|zt,x)dzt.

The equation (16) relies on εt, which we do not have explicit access to. However, once we know zt
and x, we can calculate it from (14) as εt =

zt−αtFφ(x,t)
σt

and substitute it in (16):

zs = αsFφ(x, s) +

√
σ2
s − σ̃2

s|t

σt

(
zt − αtFφ(x, t)

)
+ σ̃s|tε̃s|t. (17)

Using this constructive definition, we obtain the posterior distribution (8).

A.2 OBJECTIVE

To calculate the diffusion term Ldiff (10) of the objective, we need to compute the KL divergence
between the forward posterior distribution qφ(zs|zt,x) and the reverse distribution pθ(zs|zt). Since
we use parameterization pθ(zs|zt) = qφ(zs|zt, x̂θ(zt, t)), both of these distributions are normal
distributions with the same variance, so we can evaluate the KL divergence between them analytically
as follows:

DKL

(
qφ(zs|zt,x)||pθ(zs|zt)

)
=

=
1

2σ̃2
s|t

∥∥∥∥∥αsFφ(x, s) +

√
σ2
s − σ̃2

s|t

σt

(
��zt − αtFφ(x, t)

)
−

αsFφ(x̂θ(zt, t), s)−

√
σ2
s − σ̃2

s|t

σt

(
��zt − αtFφ(x̂θ(zt, t), t)

)∥∥∥∥∥
2

2

(18)

=
1

2σ̃2
s|t

∥∥∥∥∥αs

(
Fφ(x, s)− Fφ(x̂θ(zt, t), s)

)
+√

σ2
s − σ̃2

s|t

σt
αt

(
Fφ(x̂θ(zt, t), t)− Fφ(x, t)

)∥∥∥∥∥
2

2

. (19)

13

Under review as a conference paper at ICLR 2024

With a learnable transformation Fφ, the term Lprior becomes dependent on the parameters φ, necessi-
tating its optimization during training. We can compute the prior term as follows:

DKL

(
qφ(zT |x)||p(zT)

)
=

1

2

[
log

|I|
|σ2

T I|
− d+ Tr{I−1σ2

t I}+
∥∥∥0− αTFφ(x, T)

∥∥∥2
2

]
(20)

=
1

2

[
−d log σ2

T − d+ dσ2
T +

∥∥∥αTFφ(x, T)
∥∥∥2
2

]
(21)

=
1

2

[
d
(
σ2
T − log σ2

T − 1
)
+ α2

T

∥∥∥Fφ(x, T)
∥∥∥2
2

]
. (22)

Here, d represents the dimensionality of the data space.

A.3 REVERSE SDE AND ODE

As discussed in Section 3.2, when the number of steps, denoted as T , tends to infinity for NDM, we
can switch to continuous time.

In the discrete time setting, we define the time step as t ∈ [0, 1, . . . , T]. In the continuous time
setting, we utilize the unit interval, denoting time as t ∈ [0, 1]. Nevertheless, for the sake of notational
simplicity in this and subsequent sections, we will consider the discrete time to also lie within the
unit interval, with t ∈ [0T ,

1
T , . . . ,

T
T].

To derive the stochastic differential equation (SDE) for the reverse process pθ(zs|zt) in NDM, we
first obtain an SDE that depends on the data point x and whose solution corresponds to the posterior
distribution qφ(zt−∆t|zt,x). By defining pθ(zs|zt) through qφ(zs|zt,x) with the prediction x̂θ(zt, t)
instead of x, we can subsequently replace the prediction x̂θ(zt, t) and derive the SDE for the reverse
process.

We constructively derive the SDE for the posteriors qφ(zs|zt,x). First, let us consider the following
auxiliary SDE with backward time flow:

dεt =
ν̇t
2
εtdt+

√
ν̇tdw. (23)

It is straightforward to show that the solution to this SDE corresponds to the following distribution:

q(εs|εt) = N (εs;
√

1− σ̄2
s|tεt; σ̄

2
s|tI), where σ̄2

s|t = 1− eνs−νt . (24)

To derive the SDE for the posteriors qφ(zs|zt,x), we can apply the following function to both the
SDE (23) and the distribution (24):

G(x, εt, t) = αtFφ(x, t) + σtεt (25)
Note that after applying the function G, the distribution (24) matches the posterior distribution
qφ(zs|zt,x). Therefore, the desired SDE for qφ(zs|zt,x) is obtained by transforming the SDE (23)
using Ito’s formula (Øksendal & Øksendal, 2003):

dzt =

[
∂G(x, ε, t)

∂t

∣∣∣
ε=εt

+
ν̇t
2

∂G(x, εt, t)

∂εt
εt −

ν̇t
2

∂2G(x, εt, t)

∂ε2t

]
dt+

√
ν̇t
∂G(x, εt, t)

∂εt
dw (26)

=

[
α̇tFφ(x, t) + αtḞφ(x, t) + σ̇tεt +

ν̇t
2
σtεt

]
dt+

√
ν̇tσtdw (27)

=

[
α̇t

αt
(zt − σtεt) + αtḞφ(x, t) + σ̇tεt +

ν̇t
2
σtεt

]
dt+

√
ν̇tσtdw (28)

=

[
αtḞφ(x, t) +

∂ logαt

∂t
zt −

1

2

(
∂σ2

t

∂t
− 2

∂ logαt

∂t
σ2
t + ν̇tσ

2
t

)(
− εt
σt

)]
dt+

√
ν̇tσtdw

(29)

=

[
αtḞφ(x, t) + r(t)zt −

1

2

(
∂σ2

t

∂t
− 2r(t)σ2

t + ν̇tσ
2
t

)
s(x, zt, t)

]
dt+

√
ν̇tσtdw, (30)

where r(t) =
∂ logαt

∂t
and s(x, zt, t) =

αtFφ(x, t)− zt
σ2
t

(31)

14

Under review as a conference paper at ICLR 2024

To obtain the SDE for the reverse process, we can substitute the prediction x̂θ(zt, t) instead of x.
This substitution yields the SDE (13):

dzt =

[
αtḞφ(x̂θ(zt, t), t) + r(t)zt −

1

2

(
∂σ2

t

∂t
− 2r(t)σ2

t + ν̇tσ
2
t

)
sθ(zt, t)

]
dt+

√
ν̇tσtdw,

(32)

where sθ(zt, t) =
αtFφ(x̂θ(zt, t), t)− zt

σ2
t

(33)

As discussed earlier, we can leverage the Jacobian-Vector Product trick (Hirsch et al., 2012) to
calculate Ḟφ.

In the case where νt is a constant, the dynamics become deterministic and can be described by
ordinary differential equations (ODEs). In our experiments, we utilize these ODEs to model the
generative process as a continuous normalizing flow (Chen et al., 2018; Grathwohl et al., 2018) and
estimate densities.

A.4 CONTINUOUS TIME OBJECTIVE

When we switch to continuous time, the discrete objective (10) transforms from finite sum of KL
divergances into integral, which we can easily derive as soon as we have access to both stochastic
differential equations associated with the forward process (30) and with the rewerse process (32). In
continuous time the diffusion term Ldiff (11) is equal to:

Ldiff =

∫ 1

0

1

g2(t)

∥∥∥∥∥αt

(
Ḟφ(x, t)− Ḟφ(x̂θ(zt, t), t)

)
+

1

2

(
∂σ2

t

∂t
− 2r(t)σ2

t + g2(t)

)(
s(x, zt, t)− s(x̂θ(zt, t), zt, t)

)∥∥∥∥∥
2

2

dt,

where r(t) =
∂ logαt

∂t
, g2(t) = ν̇tσ

2
t and s(x, zt, t) =

αtFφ(x, t)− zt
σ2
t

. (34)

As we can see, these equation contains Ḟφ as a component. In general, we do not have explicit access
to the time derivative of the forward transformation Fφ. However, we will focus on cases where
the forward transformation is differentiable. By utilizing automatic differentiation tools, we can
calculate the time derivatives of Fφ. Nevertheless, when x is fixed, the function Fφ(x, ·) becomes a
scalar-to-vector function. To compute its time derivative using simple backpropagation, we would
need to execute it for all outputs of Fφ, resulting in quadratic computational complexity. Fortunately,
there exists a more efficient method to obtain the time derivative, the Jacobian-Vector Product trick
(Hirsch et al., 2012). The Jacobian of the transformation function with x fixed is represented as a
column matrix. Therefore, by computing the product of the Jacobian with a one-dimensional vector,
we can obtain a vector of time derivatives.

B CONNECTIONS WITH OTHER WORKS

We introduce NDMs as a comprehensive framework that generalises various existing approaches.
Here we provide Table 5 which is an extended version of Table 1, that demonstrates how existing
approaches appear as a spatial cases of NDMs.

Here we provide an extended discussion on the connection between NDM and other related works.

B.1 DIFFUSION IN LATENT SPACE

The concept of a learnable forward process is not entirely new. In some sense models that run
a diffusion process in the latent space of a VAE (Vahdat et al., 2021; Rombach et al., 2022), a
hierarchical VAE (Gu et al., 2022), or a Flow model (Kim et al., 2022) can be viewed as diffusion

15

Under review as a conference paper at ICLR 2024

Table 5: Summary of existing diffusion models as instances of Neural Diffusion Models (NDM).

Model Distribution q(zt|x) NDM’s F (x, t) Comment

DDPM (Ho et al., 2020) /
DDIM (Song et al., 2020a) N

(
zt;αtx, σ

2
t I

)
x

Flow Matching OT
(Lipman et al., 2022) N

(
zt;αtx, σ

2
t I

)
x

αt = t,
σt = 1 − (1 − σmin)t

VDM (Kingma et al., 2021) N
(
zt;αtx, σ

2
t I

)
x

α2
t = sigmoid(−γη(t)),

σ2
t = sigmoid(γη(t))

IHDM (Rissanen et al., 2022) N
(
zt;V e−ΛtV T x, σ2I

)
V e−ΛtV T x

αt = 1, σt = σ,
σ is fixed

Blurring Diffusion
(Hoogeboom & Salimans, 2022) N

(
zt;αte

−ΛtV T x, σ2
t I

)
e−ΛtV T x p(x|z0) = N

(
x; aV z0, σ

)
Soft Diffusion
(Daras et al., 2022) N

(
zt;Ctx, s

2
t I

)
Ctx αt = 1, σ2

t = s2t

LSGM (Vahdat et al., 2021) N
(
zt;αtE(x), σ2

t I
)

E(x) p(x|z0) = N
(
x; aD(z0), σ

2
)

f-DM (Gu et al., 2022) N
(
zt;αtxt, σ

2
t I

)
xt =

(t−τk)x̂k+(τk+1−t)xk

τk+1−τk
,

where τk ≤ t < τk+1

x
k

= f0:k(x)

x̂
k

=

{
gk(fk+1(x

k)), if k < K,

xk, if k = K.

models with a learnable forward process. These models optimize the mapping to the latent space.
Consequently, projecting the diffusion generative dynamic from the latent to the data space introduces
a novel, nonlinear, and learnable generative dynamic. However, these models still rely on conventional
diffusion in the latent space.

Additionally, these models can be viewed as spatial cases of NDM with a specific choice of the
transformation Fφ(x, t). For example, Fφ might be selected as the VAE’s time independent encoder
in the case of (Vahdat et al., 2021) or the time independent Flow model in the case of (Kim et al.,
2022).

B.2 STOCHASTIC INTERPOLANTS

Albergo & Vanden-Eijnden (2022) proposed a Stochastic Interpolant approach, which provide more
flexibility then conventional diffusion models in defining and even learning of the forward process.
While we find stochastic interpolants intriguing and promising, as well as related to our work, these
methods differ significantly.

Firstly, stochastic interpolants represent an approach to learning continuous-time deterministic
generative dynamics, whereas NDM learns stochastic dynamics in either discrete or continuous time,
which can subsequently may be transformed into a deterministic process.

Secondly, in NDM, the model is trained by optimizing the variational bound on the likelihood, while
Stochastic Interpolants are trained by optimizing the generalization of the Flow Matching objective
(Lipman et al., 2022).

Lastly, NDM joint learns both the forward and reverse processes by optimizing the likelihood,
whereas stochastic interpolants learn the generative process with a fixed forward process. Albergo &
Vanden-Eijnden (2022) demonstrate the possibility of constructing an optimization procedure for the
forward process through a max-min game to solve a dynamic optimal transport problem. However,
the purpose of this optimization differs from that of NDM.

Moreover, max-min optimization, as employed in Stochastic Interpolants, is notably less stable
compared to min-min optimization in NDM. Additionally, Stochastic Interpolants do not present
experimental results for the optimization of the forward process.

B.3 SCHRÖDINGER BRIDGES

Another line of works (De Bortoli et al., 2021; Wang et al., 2021; Peluchetti; Chen et al., 2021) are
approaches based on Schrödinger Bridge theory. While such approaches allow learning forward
transformations, in contrast to NDM, these approaches are not simulation-free. In Schrödinger Bridge

16

Under review as a conference paper at ICLR 2024

models, we typically lack direct access to the distribution q(zt|x). Consequently, to sample the
latent variable zt in training time, we must simulate the full stochastic process, such as the stochastic
differential equations. This characteristic makes Schrödinger Bridge models expensive in training
and not simulation-free.

In contrast, NDM framework, by design, has access to q(zt|x). Thus, with NDM, when training a
model with T time steps, there is no need to propagate Fφ for T times at each step of the training
procedure. Instead, the NDM framework enables sampling of the intermediate latent variables zt
directly from the distribution q(zt|x). Therefore, we can maintain the training paradigm outlined
in Section 2. Instead of computing all T KL divergences for each time step, we can approximate
the objective using the Monte Carlo method by calculating just one KL divergence for a uniformly
sampled time step t ∈ [1;T], as described in Algorithm 1.

This approach allows us to train the model with batches of shape [batch size, d] rather than
[batch size, T, d]. Consequently, NDM can leverage larger batch sizes and use just one call of
Fφ for inferring latent variables zt.

B.4 DIFFENC

In concurrent work, published to arXiv after the submission deadline, Nielsen et al. (2023) introduced
DiffEnc. DiffEnc also proposes to add a time-dependent transformation to the data in the diffusion
model. However, there are some distinctions between these two methods. Firstly, in NDM, we
parameterize the reverse process by predicting the data point x, while in DiffEnc, they predict the
transformed data point Fφ(x, t).

Secondly, in NDM, we employ a Signal-to-Noise Ratio (SNR) schedule for noise injection from
DDPM (Ho et al., 2020) and a straightforward parameterization of the model x̂θ(zt, t) through
predicting the injected epsilon, as detailed in Appendix C.2. Simultaneously, in DiffEnc, the authors
use a learnable SNR schedule (Kingma et al., 2021) and a v-parameterization (Salimans & Ho, 2022)
of x̂θ(zt, t).

Finally, DiffEnc utilizes approximations of the time derivatives of data transformations Fφ, while in
the NDM framework, we propose calculating exact time derivatives using Jacobian-Vector Products.

B.5 DISCUSSION

In theory, we can view the diffusion model as a hierarchical VAE. From this perspective, the conven-
tional diffusion model can be seen as a VAE with a fixed variational distribution. In contrast NDMs
with learnable transformations have the capability to make this distribution learnable. Consequently,
it effectively reduces the gap between the log likelihood and the variational bound.

In practical terms, when dealing with reverse processes parameterised by neural networks, which
inherently possess their own biases, the learnable Fφ function tends to acquire a transformation that
facilitates the fitting of the reverse process to the forward process. Therefore, as soon as there are
infinitely many pairs of forward and reverse processes with same joint distributions of latent variables,
it’s hard to say what Fφ should be in general case. It may learn anything that fits to the reverse
process. However, besides better likelihood estimation, NDMs with learnable transformations gives
us additional flexibility in how we can define the reverse process.

In Appendix E we provide a proof of concept experiment, which demonstrates that we can learn
simpler generative dynamics compared to conventional diffusion models. In this experiment we
restrict the reverse process to learn dynamic optimal transport trajectories only, and learn forward and
reverse processes end-to-end. It is not possible to match such a reverse process with a predefined
forward process, but NDMs allows to capture the data distribution with the simpler generative
dynamics.

C IMPLEMENTATION DETAILS

All our experiments were conducted using synthetic 2D datasets and image datasets: MNIST (Deng,
2012), CIFAR-10 (Krizhevsky et al., 2009), downsampled ImageNet (Deng et al., 2009; Chrabaszcz
et al., 2017) and CelebA-HQ-256 (Karras et al., 2017). For CIFAR-10 and ImageNet datasets we

17

Under review as a conference paper at ICLR 2024

Table 6: Training hyper-parameters.

CIFAR-10 ImageNet 32 ImageNet 64
Channels 256 256 192
Depth 2 3 3
Channels multipliers 1,2,2,2 1,2,2,2 1,2,3,4
Heads 4 4 4
Heads Channels 64 64 64
Attention resolution 16 16,8 32,16,8
Dropout 0.0 0.0 0.0
Effective Batch size 256 1024 2048
GPUs 2 4 16
Epochs 1000 200 250
Iterations 391k 250k 157k
Learning Rate 4e-4 1e-4 1e-4
Learning Rate Scheduler Polynomial Polynomial Constant
Warmup Steps 45k 20k -

applied center cropping and resizing, following the same pre-processing steps as Chrabaszcz et al.
(2017). For synthetic data, we employed a 5-layer MLP with 512 neurons in each layer, while for
the images, we utilized the U-Net architecture from Dhariwal & Nichol (2021). In our experiments
both the DDPM and NDM approaches were trained on identical architectures, with the same hyper-
parameters and for the same number of epochs. The hyper-parameters are presented in Table 6. In
experiment where we report results for the continuous time models we use importance sampling of
time (Song et al., 2021) instead of uniform sampling.

We trained models using the Adam optimizer, setting the following parameters: β1 = 0.9, β2 = 0.999,
weight decay of 0.0, and ε = 10−8. To facilitate the training process, we employed a polynomial
decay learning rate schedule, which includes a warm-up phase for a specified number of training steps.
During the warm-up phase, the learning rate is linearly increased from 10−8 to the peak learning rate.
Once the peak learning rate is reached, the learning rate is linearly decayed to 10−8 until the final
training step. The training was performed using Tesla V100 GPUs.

C.1 DEQUANTIZATION

When reporting negative log-likelihood, we dequantize using the standard uniform dequantization.
We report an importance-weighted estimate using

log
1

K

K∑
k=1

pθ(x+ uk), where uk ∼ U(0, 1), (35)

with x ∈ [0, . . . , 255].

C.2 PARAMETERIZATION

In order to simplify the derivations above, we have utilized the notation x̂θ(zt, t) to represent the
prediction of the reverse process. However, prior research has shown that predicting the injected
noise εt can lead to improved results (Ho et al., 2020; Nichol & Dhariwal, 2021; Dhariwal & Nichol,
2021). Therefore, in all the experiments, we opt for the following parameterization:

x̂θ(zt, t) =
zt − σtε̂θ(zt, t)

αt
. (36)

It is worth noting that with this parameterization, ε̂θ(zt, t) does not necessarily approximate the
true injected noise εt, since this reparameterization does not account for the transformation Fφ. We
believe that better parameterizations may exist for NDM, but we leave this for future research.

Furthermore, we restrict the transformation Fφ to an identity transformation for t = 0 through the
following construction:

Fφ(x, t) = (1− t)x+ tF̄φ(x, t). (37)

18

Under review as a conference paper at ICLR 2024

Table 7: Performance comparison the DDPM and NDM on CIFAR-10 and ImageNet 32 datasets
with different numbers of steps. We report the performance with same hyperparameters and neural
networks on both models to quantify the effect of learnable transformation in fair setting. We provide
likelihood (bits/dim) and negative ELBO. Additionally for CIFAR-10 and ImageNet 32 we provide
FID score. Boldface numbers represent the best performance. NDM consistently outperforms in
terms of NLL and NELBO with comparable sample quality to DDPM on all datasets.

CIFAR-10 ImageNet 32
Steps Model NLL ↓ NELBO ↓ FID ↓ NLL ↓ NELBO ↓ FID ↓

DDPM 3.11 3.18 11.44 3.89 3.95 16.181000 NDM 3.02 3.03 11.82 3.79 3.82 17.02

DDPM 3.31 3.38 11.78 4.14 4.23 16.66100 NDM 3.05 3.12 11.98 3.83 3.92 17.74

DDPM 3.49 3.57 13.22 4.37 4.47 18.7050 NDM 3.22 3.30 13.15 4.05 4.14 18.93

DDPM 5.02 5.13 37.83 6.28 6.42 53.5110 NDM 4.63 4.74 31.56 5.81 5.94 45.38
DDPM 3.38 3.45 12.29 4.23 4.32 17.491000 → 100 NDM 3.30 3.37 12.70 4.15 4.23 18.48

DDPM 4.08 4.17 15.24 5.10 5.21 20.091000 → 50 NDM 3.98 4.07 16.83 5.00 5.10 21.11

DDPM 8.78 8.98 43.85 10.99 11.23 58.351000 → 10 NDM 8.58 8.81 48.41 10.78 11.06 62.12

This ensures that q(z0|x) ≈ δ(z0 −x), and thus also removes the need to optimize the reconstruction
term Lrec.

Finally, to ensure consistency with Ho et al. (2020) we use σ̃2
s|t =

(
σ2
t −

α2
t

α2
s
σ2
s

)
σ2
s

σ2
t

for the forward

process (8). This choice of σ̃2
s|t guaranties consistency between the NDM and DDPM forward

processes. For αt and σ2
t we use the DDPM schedule of noise injection.

C.3 DIFFUSION IN LATENT SPACE

For experiment with diffusion in the latent space of VAE on CelebA-HQ-256, we followed LSGM
(Vahdat et al., 2021) experiment setup. The only difference between LSGM baseline and our model
is that we utilize learnable transformations Fφ according to NDMs framework. We apply the same
hyperparameters, as LSGM.

D ADDITIONAL RESULTS

D.1 ADDITIONAL EVALUATION

Here we provide Table 7 which contains additional resalts to Table 4. This table compare DDPM and
NDMs with learnable transformations on CIFAR-10 and ImageNet 32× 32 datasets with different
numbers of steps.

D.2 ADDITIONAL SAMPLES

In this section, we present additional illustrations showcasing the properties of NDMs.

Figure 4 provides a comparison between DDPM and NDM on a synthetic 2D data distribution. For
this experiment, both models utilize T = 10 discrete time steps. From Figure 4c, it is evident that
NDM learns to transform the data distribution. Additionally, after injecting noise (Figures 4a and 4d),

19

Under review as a conference paper at ICLR 2024

Table 8: Comparison of NDM and DDPM with doubled number of parameters on CIFAR-10 for 10
and 1000 steps. The performance of DDPM stays the same while doubling the number of parameters,
and NDM still achieves the best NLL and NELBO despite comparable number of parameters.

10 steps 1000 steps
Model NLL ↓ NELBO ↓ FID ↓ NLL ↓ NELBO ↓ FID ↓
DDPM 5.02 5.13 37.83 3.11 3.18 11.44
DDPM (stack) 5.02 5.13 38.05 3.10 3.18 11.42
DDPM (wide) 5.01 5.11 37.88 3.11 3.17 11.39
NDM 4.63 4.74 31.56 3.02 3.03 11.82

the distributions of samples zt show minimal differences between DDPM and NDM. However, when
examining the predictions of data points x̂θ(zt, t) (Figures 4b and 4e), NDM produces predictions
that more closely resemble the true data distribution compared to DDPM.

A similar pattern emerges when applying these models to the MNIST dataset, as depicted in Figure
5. For this experiment we also use T = 10 discrete time steps. DDPM generates blurry predictions
x̂θ(zt, t) for t close to T , which bear little resemblance to real MNIST samples. Conversely, NDM
produces predictions that are more similar to the true MNIST distribution, despite both models
generating similar-looking noisy samples.

Finally, we include samples from both DDPM and NDM models with T = 1000 steps on the
CIFAR-10 dataset in Figure 6. As outlined in Table 1, NDM exhibits lower sample quality based on
FID measurements; however, visually there is no drop in quality.

D.3 ABLATION STUDIES

Finally, we address the question of whether the improved performance of NDM is due to the proposed
method or merely the result of increasing the number of model parameters. To investigate this issue,
we provide additional experiments where we double the number of DDPM parameters in two ways.
The first way is to simply stack two U-Net architectures, which is the closest form to NDM. The
second way is to increase the width of the U-Net architecture. Specifically, for the second way we
use 384 channels instead of 256. Importantly, we left all other hyper-parameters (see Table 6), such
as the learning rate and number of iterations, unchanged. As shown in Table 8, neither of these
approaches yields the same results as NDM with learnable transformations. This means that the
improved performance is not simply a result of the increased number of parameters.

E DYNAMIC OPTIMAL TRANSPORT

In this section, we present a proof-of-concept experiment demonstrating that the NDMs framework
enables the learning of simpler generative trajectories. Specifically, we conduct experiments involving
a 1D mixture of Gaussian distribution and dynamic optimal transport (OT).

While NDMs don’t inherently have a direct connection with OT, we can establish a connection given
the presence of infinitely many pairs of matched forward and reverse processes. This connection
is facilitated by the NDMs’ ability to learn the forward process. Therefore, we can consider the
following setup.

We consider NDMs with a learnable function Fφ. Then, we constrain the reverse process to exclusively
learn dynamic OT mappings. Finally, we train both the forward and reverse processes jointly,
following the NDMs framework. In such a setup we can expect the forward process to learn such a
transition from data distribution to Gaussian distribution, that aligns with the limitations imposed on
the reverse process.

20

Under review as a conference paper at ICLR 2024

(a) DDPM with regular reverse process. (b) NDM with restricted (OT) reverse process.

Figure 3: Comparison of DDPM and NDM with restricted reverse process to be optimal transport,
1D distribution.

E.1 RESTRICTED REVERSE PROCESS

To restrict the reverse process we parameterise the reverse deterministic process to have linear
trajectories:

zt = hθ(t, ε) = (1− t)x̂θ(ε) + tε, (38)

where ε is a sample drawn from a unit Gaussian distribution. Since we are working with smooth 1D
distributions, it is enough for x̂θ to be monotonically increasing, so the trajectories zt correspond
to dynamic OT. Which means that for any parameters θ the reverse process describes dynamic OT
between the standard Gaussian distribution and another distribution (not necessarily exactly the target
data distribution). In practice, we parameterize x̂θ using the neural network proposed by Kingma
et al. (2021) for the parameterization of the Signal-to-Noise Ratio (SNR) function.

Then, we can derive an ordinary differential equation (ODE) for the reverse process:

dzt = ε− x̂θ(ε)
∣∣∣
ε=h−1

θ (t,zt)︸ ︷︷ ︸
fθ(t,zt)

dt. (39)

Next, we may switch to a stochastic differential equation (SDE) according to Song et al. (2020b):

dzt =

[
fθ(t, zt)−

g2(t)

2
∇zt

log pθ(zt)

]
︸ ︷︷ ︸

fr
θ (t,zt)

dt+ g(t)dw̄. (40)

As soon as we have access to h−1
θ , we may find:

∇zt log pθ(zt) = ∇zt

[
log p(ε)− log

∣∣∣∣∂zt∂ε

∣∣∣∣] ∣∣∣
ε=h−1

θ (t,zt)
(41)

= ∇zt

[
log p(ε)− log

∣∣∣∣(1− t)
∂xt

∂ε
+ t

∣∣∣∣] ∣∣∣
ε=h−1

θ (t,zt)
. (42)

E.2 OBJECTIVE FUNCTION

To train a model with such a specific reverse process, we can utilize a slightly modified NDMs
framework. The only component of the NDMs’ objective that is unclear is the diffusion term Ldiff .
NDMs provide a conditional reverse SDE associated with the forward process (30) in the following
form:

dzt = ff
φ(x, t, zt)dt+ g(t)dw̄. (43)

21

Under review as a conference paper at ICLR 2024

Also, here we have the reverse SDE (40). Therefore, we may find diffusion term Ldiff of objective as
follows:

Ldiff = Eq(x)Eu(t)Eq(zt|x)
1

g2(t)

∥∥∥∥∥ff
φ(x, t, zt)− fr

θ (t, zt)

∥∥∥∥∥
2

2

. (44)

E.3 RESULTS AND DISCUSSION

Figures 3a and 3b illustrate trajectories learned by DDPM and NDM with learnable Fφ and restricted
reverse process. As expected, DDPM learns curved trajectories predetermined by fixed forward
process. At the same time NDM effectively learns dynamic OT. It worths noting that DDPM with the
restricted reverse process is by design not able to learn the data distribution, since it’s impossible
to match the fixed forward process (with curved trajectories) with the reverse process (with straight
trajectories).

The proposed approach is limited to 1D data, monotonically increasing x̂θ, and a nontrivial h−1
θ

function, which we resolve using 5 iterations of Newton’s method. Nevertheless, this experiment
clearly demonstrates that NDMs may be utilised for learning OT as well as other (e.g. computation-
ally efficient ones) dynamics by restricting the reverse process. Establishing rigorous theoretical
connections with OT, developing specific techniques for efficient parameterisation of the reverse
process and generalising to higher dimensions are interesting avenue for future work.

22

Under review as a conference paper at ICLR 2024

(a) DDPM, samples zt from forward process.

(b) DDPM, predictions x̂θ(zt, t) for different time steps.

(c) NDM, forward transformations Fφ(x, t).

(d) NDM, samples zt from forward process.

(e) NDM, predictions x̂θ(zt, t) for different time steps.

Figure 4: Comparison of DDPM and NDM on 2D distribution.

23

Under review as a conference paper at ICLR 2024

(a) DDPM (b) NDM

Figure 5: Samples zt from forward process and predicted data points x̂θ(zt, t) on MNIST. (a) Samples
from DDPM. (b) Samples from NDM. In each group, Left: data sample, Top: noised samples zt,
Bottom: predicted data points x̂θ(zt, t).

24

Under review as a conference paper at ICLR 2024

(a) DDPM, FID = 11.44

(b) NDM, FID = 11.82

Figure 6: Samples on CIFAR-10. (a) Samples from DDPM. (b) Samples from NDM. Samples of
both models are generated with the same random seed.

25

	Derivations and proofs
	Forward posterior
	Objective
	Reverse SDE and ODE
	Continuous time objective

	Connections with other works
	Diffusion in latent space
	Stochastic Interpolants
	Schrödinger Bridges
	DiffEnc
	Discussion

	Implementation details
	Dequantization
	Parameterization
	Diffusion in latent space

	Additional results
	Additional evaluation
	Additional samples
	Ablation studies

	Dynamic optimal transport
	Restricted reverse process
	Objective function
	Results and discussion

