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A ADDITIONAL PROOFS

Proof of Lemma 8. We denote h(*) := hyw w - For every j we have:
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And from the updates of gradient-descent we have:
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Now, we have that:

0

L) = I Zu“’” S WO 4+ ) (O, £(6))

And so:
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Again, by the updates of gradient-descent:
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Proof of Lemma 9.
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Proof. (second part of Theorem 12)

For some 7, observe that:
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Let S be a maximal set of permutations such that for every m # w2 € S we have m1 (1) # w2 (1),
and note that S| = (7). Let g;(x) = o ((w?,x) + b;) and note that ||g;||3, < 2. Therefore:
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