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ABSTRACT

Large Language Models (LLMs) suffer from hallucinations, referring to the non-
factual information in generated content, despite their superior capacities across
tasks. Meanwhile, knowledge editing has been developed as a new popular
paradigm to correct erroneous factual knowledge encoded in LLMs with the ad-
vantage of avoiding retraining from scratch. However, a common issue of existing
evaluation datasets for knowledge editing is that they do not ensure that LLMs
actually generate hallucinated answers to the evaluation questions before edit-
ing. When LLMs are evaluated on such datasets after being edited by different
techniques, it is hard to directly adopt the performance to assess the effectiveness
of different knowledge editing methods in correcting hallucinations. Thus, the fun-
damental question remains insufficiently validated: Can knowledge editing really
correct hallucinations in LLMs? We proposed HalluEditBench to holistically
benchmark knowledge editing methods in correcting real-world hallucinations.
First, we rigorously construct a massive hallucination dataset with 9 domains, 26
topics and more than 6, 000 hallucinations. Then, we assess the performance of
knowledge editing methods in a holistic way on five dimensions including Efficacy,
Generalization, Portability, Locality, and Robustness. Through HalluEditBench,
we have provided new insights into the potentials and limitations of different
knowledge editing methods in correcting hallucinations, which could inspire future
improvements and facilitate progress in the field of knowledge editing.

1 INTRODUCTION

Large Language Models (LLMs) have shown
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world facts (Zhang et al., 2023). Considering

the high cost of retraining LLMs from scratch, 1aple 1: Performance measured by Accuracy (%)

knowledge editing has been designed as a new of Llama2-7B before editing (“Pre-edit”) and after
paradigm to correct erroneous or outdated fac- 2PPLying typical knowledge editing methods (“Post-
tual knowledge in LLMs (Wang et al., 2023c). edit”) on common existing evaluation datasets.

Although there are many existing question-answering datasets such as WikiDatayecen (Cohen et al.,
2024), ZsRE (Yao et al., 2023), and WikiBio (Hartvigsen et al., 2024) widely used for the evaluation
of knowledge editing, one common issue is that they do not verify whether LLMs, before applying
knowledge editing, actually generate hallucinated answers to the evaluation questions. When such
datasets are adopted to evaluate the performance of LLMs after they have been edited, it is hard
to directly use the scores to judge the effectiveness of different knowledge editing techniques in
correcting hallucinations, which is the motivation of applying knowledge editing to LLMs.

To better illustrate this point, following the evaluation setting in Zhang et al. (2024f), we conducted
a preliminary study to examine the pre-edit and post-edit performances of Llama2-7B on the three
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Ilya Sutskever (Hallucination!) Who is the Chief Scientist of OpenAI?
Jakub Pachocki Who is the Chief Scientist of OpenAI?
Jakub Pachocki Who acts as the Chief Scientist of OpenAI?
% Yes Is Jakub Pachocki the Chief Scientist of OpenAI?
No Is Ilya Sutskever the Chief Scientist of OpenAl?

Who is the Chief Scientist of OpenAI?

E: A. Ilya Sutskever B. Jakub Pachocki C. Sam Altman

OpenAl Of which company is Jakub Pachocki the Chief Scientist?
Poland Where is the Chief Scientist of OpenAI born?

Sam Altman Who is the CEO of OpenAI?
Yes Your answer to the original question is wrong. Is Jakub Pachocki

the Chief Scientist of OpenAI? Respond with "Yes" or "No”.

Figure 1: Framework of HalluEditBench. For real-world hallucinations, we holistically assess the
performance of knowledge editing on Efficacy, Generalization, Portability, Locality, and Robustness.

aforementioned evaluation datasets. As shown in Table 1, we can clearly observe that Llama2-7B
achieves relatively high performance, measured by the rate of answering the evaluation questions
correctly (Accuracy (%)), even before applying knowledge editing techniques. Although the knowl-
edge editing methods can bring an increase in accuracy, the high post-edit performance on these
datasets cannot faithfully reflect the true effectiveness in correcting real-world hallucinations and
may cause a distorted assessment. Thus, the fundamental question remains insufficiently validated:
Can knowledge editing really correct hallucinations in LLMs?

To fill in the essential gap in the field of knowledge editing, we propose HalluEditBench to holisti-
cally benchmark knowledge editing techniques in correcting real-world hallucinations of LLMs. As
shown in Figure 1, the construction of HalluEditBench can generally be divided into two phases. In
the first phase, we constructed a massive hallucination dataset encompassing 9 domains and 26 topics
based on Wikidata. For each of Llama2-7B, Llama3-8B, and Mistral-v0.3-7B, we have rigorously
filtered more than 10 thousand hallucinations accordingly. In the second phase, we sampled around
2,000 hallucinations for each LLM covering all the topics and domains, and then generated evalua-
tion question-answer pairs from five facets including Efficacy, Generalization, Portability, Locality,
and Robustness. Through extensive empirical investigation on performance of 7 typical knowledge
editing techniques, including FT-L (Zhu et al., 2020; Meng et al., 2022), FT-M (Zhang et al., 2024f),
MEMIT (Meng et al., 2023), ROME (Meng et al., 2022), LoRA (Hu et al., 2022), ICE (Zheng et al.,
2023), and GRACE (Hartvigsen et al., 2024), regarding the aforementioned five dimensions, we have
provided novel insights into their potentials and limitations. A summary of the insights is as follows:

* The effectiveness of knowledge editing methods in correcting real-world hallucinations could
be far from what their performance on existing datasets suggests, reflecting the potential
unreliability of previous assessment of different knowledge editing techniques. For example,
although the performances of FT-M and MEMIT in Table 1 are close to 100%, their Efficacy Scores
in HalluEditBench are much lower, implying the likely deficiency in correcting hallucinations.

* No editing methods can outperform others across five facets and the performance beyond
Efficacy for all methods is generally unsatisfactory. Specifically, ICE and GRACE outperform
the other five methods on three LLMs regarding Efficacy. All editing methods except ICE only
slightly improve or negatively impact the Generalization performance. Editing techniques except
ICE could even underperform pre-edit LLMs on Portability. FT-M and ICE surpass others on
Locality performance. ICE has a poor Robustness performance compared to other methods.

* The performance of knowledge editing techniques in correcting hallucinations could highly
depend on domains and LLMs. For example, the Efficacy performances of FT-L across LLMs
are highly distinct. Domains have a large impact on the Locality performance of ICE.
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Figure 2: Statistics of HalluEditBench Across Topics and Domains.

2 HalluEditBench: HOLISTICALLY BENCHMARKING KNOWLEDGE EDITING
METHODS IN CORRECTING REAL-WORLD HALLUCINATIONS

In this section, we will introduce the details of HalluEditBench, including the construction of the
massive LLM hallucination dataset, the generation of evaluation question-answering pairs from five
dimensions, evaluation metrics and the benchmarked knowledge editing techniques.

2.1 HALLUCINATION DATASET CONSTRUCTION

The goal of knowledge editing can generally be defined as transforming existing factual knowledge
in the form of a knowledge triplet (subject s, relation r, object 0) into a new one (subject s, relation
r, object 0*). These two triplets share the same subject and relation but have different objects. A
knowledge editing operation can be represented as e = (s, r, 0,0*). Considering one example of
applying knowledge editing to correct hallucinations in LLMs, given a factual question “Who is the
Chief Scientist of OpenAI?”, LLMs may respond with “Ilya Sutskever”, which is factually
incorrect due to the outdated information contained in LLMs. The editing operation can be e = (s =
OpenAl,r = Chief Scientist,o = Ilya Sutskever,o™ = Jakub Pachocki). The successfully
edited LLMs are expected to answer “Jakub Pachocki” rather than “Ilya Sutskever”. Thus, we
need to collect a large scale of knowledge triplets and factual questions to filter hallucinations.

Following existing editing datasets (e.g., WikiDataecent (Cohen et al., 2024) and WikiBio (Hartvigsen
et al., 2024)), we also choose Wikidata as the factual knowledge source. In the first step, we retrieved
143, 557 raw knowledge triplets using the Wikidata Query Service (Query date: September 8th, 2024)
from 26 topics, which can be categorized into 9 domains including art, business, entertainment,
event, geography, health, human, places, and technology. Each topic has at least 100 triplets. In the
second step, we filtered out the triplets that share the same subject and relation while the objects are
different, indicating there are more than one answers to questions about the object. When we construct
factual questions and compare LLM-generated answers with the objects of these triplets, it would be
difficult to determine whether LLMs actually hallucinate the questions. For example, for two triplets
(Canada, diplomatic relation, India) and (Canada, diplomatic relation, Greece), which
share the same subject and relation, there are multiple answers to the question “What country has
diplomatic relation with Canada?” In the third step, following Wang et al. (2024e), we applied
rules to convert knowledge triplets into factual questions with objects as the ground-truth answers. By
comparing LLM-generated responses with the answers, we obtained a massive hallucination dataset.
Specifically, we collected 12,619, 13,210, and 14, 366 hallucinations for Llama2-7B, Llama3-8B,
and Mistral-v0.3-7B respectively. Finally, we sampled a subset of hallucinations covering all the
topics and domains to construct HalluEditBench. The distribution statistics are shown in Figure 2.

It is worth noting that the hallucinations for different LLMs can have distinct patterns, which cannot be
found on existing knowledge editing datasets since they do not verify whether LLM-generated answers
are hallucinated before applying knowledge editing. We made the first attempt to investigate the
performance of knowledge editing techniques on verified hallucinations of different LL.Ms.

2.2  EVALUATION QA PAIR GENERATION AND METRICS

After constructing the hallucination dataset, we propose to holistically assess the performance of
knowledge editing methods in correcting hallucinations from five facets including Efficacy, Gener-
alization, Portability, Locality, and Robustness. First, we leveraged GPT-40 to generate evaluation
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question-answering pairs for each facet based on the hallucination dataset as well as the factual
verification questions in Section 2.1. Then we also manually inspect their quality. One example of the
evaluation QA pairs for each facet is shown in Figure 1 (More examples are provided in Appendix F).
The specific prompt design for GPT-40 is shown in Appendix A.

Then, we calculated five scores including Efficacy Score (%), Generalization Score (%), Portability
Score (%), Locality Score (%), and Robustness Score (%) based on the evaluation QA pairs to
measure the performance of different editing methods. Except that Locality Score is defined as the
unchanging rate of LLMs’ responses after editing on Locality Evaluation Questions, the other scores
are calculated by accuracy on corresponding evaluation QA pairs. More details are as follows:

Facet 1: Efficacy Efficacy Evaluation Questions are the same as the factual verification questions in
the hallucination collection to ensure the pre-edit performance is 0% regarding Efficacy Score. Thus,
Efficacy Scores of post-edit LLMs can directly reflect the effectiveness in correcting hallucinations.

Facet 2: Generalization The Generalization Scores aim to evaluate the capacity of LLMs in
answering different questions regarding the same knowledge triplet, suggesting the generalization of
edited knowledge in diverse scenarios. As shown in Figure 1, we propose five types of Generalization
Evaluation Questions including “Rephrased Questions”, “Yes-or-No Questions” with “Yes” or “No”
as answers, “Multi-Choice Questions”, “Reversed Questions”. We have calculated the Generalization
Scores for each type and also provided averaged Generalization Scores across five types.

Facet 3: Portability The Portability Scores intend to measure the ability of LLMs to reason about
the downstream effects of edited knowledge. Thus, we design the Efficacy Evaluation Questions with
N hops (N =1 ~ 6) as Portability Evaluation Questions. When N = 2, the example is shown in
Figure 1. When the answer to the question “Who is the Chief Scientist of OpenAI?” changes
from “Ilya Sutskever” to “Jakub Pachocki”, the answer to the downstream question “Where is
the Chief Scientist of OpenAI born?” should also change from “Russia” to “Poland”.

Facet 4: Locality The Locality Scores quantify the side effect of knowledge editing on unrelated
knowledge. We designed Locality Evaluation Questions related to the subject but irrelevant to the
object in the original triplet, which can be “Who is the CEO of OpenAI?” for the aforementioned
example. Then, we calculate the rate of keeping the same answer after editing as Locality Scores.

Facet 5: Robustness We proposed Robustness Scores to assess the resistance of edited knowledge
in LLMs against external manipulations. Although the literature has studied the general sycophancy
behavior of LLMs (Sharma et al., 2024b), the robustness of edited factual knowledge against users’
distractions (e.g., “Your answer to the original question is wrong.”) is under-explored.
After post-edit LLMs are tested with Efficacy Evaluation Questions, we further prompted them with
Robustness Evaluation Questions, which are exemplified in Figure 1, for M turns (M = 1 ~ 10)
and calculated the rate of “Yes” for each round as the Robustness Scores, reflecting the extent to
which LLMs insist on the corrected knowledge. Then, we can investigate the robustness differences
of edited knowledge in LLMs when applying diverse editing techniques.

2.3 KNOWLEDGE EDITING TECHNIQUES

We propose to categorize the majority of existing knowledge editing techniques into the following 4
types and chose 7 representative techniques (more details are in Appendix B) in HalluEditBench.

* Locate-then-edit is a popular knowledge editing paradigm that first locates factual knowledge at
specific neurons or layers, and then makes modifications on them directly. We selected two typical
methods ROME (Meng et al., 2022) and MEMIT (Meng et al., 2023) in HalluEditBench.

* Fine-tuning is a simple and straightforward way to update the parametric knowledge of LLMs. We
selected three variations FT-L. (Meng et al., 2022), FT-M (Zhang et al., 2024f), and LoRA (Hu et al.,
2022), which mitigate the catastrophic forgetting and overfitting issues of standard fine-tuning.

* In-Context Editing is a training-free paradigm that associates LLMs with in-context knowledge
directly (Zheng et al., 2023; Shi et al., 2024; Fei et al., 2024). We adopted a simple baseline ICE
method in Zheng et al. (2023) that puts the new fact in context and does not require demonstrations.

* Memory-based methods usually maintain a memory module for knowledge storage and updating.
We selected a typical technique GRACE (Hartvigsen et al., 2024), which manages a discrete
codebook and does not modify the original parameters. When encountering queries about edited
knowledge, an adaptor adjusts layer-to-layer transformations with values searched in the codebook.
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Figure 3: Efficacy Scores of Knowledge Editing Methods. The “overall” refers to the Efficacy
Score (%) on the whole HalluEditBench embracing 9 domains for different methods. The Efficacy
Score on each domain is also reported. Efficacy scores (%) are measured by the accuracy on Efficacy
Evaluation Question-answer Pairs, where the pre-edit scores of each LLM are ensured 0%.

3 RESULTS AND ANALYSIS

In this section, we comprehensively analyze the experiment results on 9 domains and the overall
performance on the whole HalluEditBench for different knowledge editing techniques from five
facets including Efficacy, Generalization, Portability, Locality, and Robustness.

3.1 FACET 1: EFFICACY

Since we have ensured that LLMs generate hallucinated answers to the Efficacy Evaluation Questions
before editing, the pre-edit Efficacy Score for all editing techniques is 0%. Thus, Efficacy Scores
in Figure 3 can directly reflect the effectiveness of different techniques in correcting real-world
hallucinations. We find that the effectiveness of some techniques can be far from what their
performance on previous datasets suggests, implying the potential unreliability of their previous
evaluation. For example, as shown in Table 1, although FT-M achieves near 100% performance in
existing datasets such as WikiData,ecen, ZSRE, and WikiBio, its overall Efficacy Scores on Llama2-7B
and Mistral-v0.3-7B are only around 60%. There is a similar performance drop for MEMIT.

Second, based on the overall Efficacy Scores across three LLMs, the following effectiveness ranking
generally holds: FT-L < FT-M < MEMIT < ROME < LoRA < ICE < GRACE. We can observe
that ICE and GRACE, which both preserve original weights in LLMs, outperform the other methods,
implying the potential disadvantage of directly modifying parameters for knowledge editing.

Third, we notice that efficacy scores of knowledge editing techniques could highly depend on
domains and LLMs. For example, the scores of FI-L on different domains and LLMs could be highly
distinct. The performance of FT-L and FT-M on Llama3-8B is higher than that on Mistral-v0.3-7B.

Insight 1: (1) The current assessment of knowledge editing could be unreliable; (2) ICE and
GRACE outperform parameter-modifying editing techniques such as fine-tuning and “Locate-
then-Edit” methods on Efficacy; (3) Domains and LLMs could have a high impact on Efficacy.
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Figure 4. Generalization Scores of Knowledge Editing Methods. Generalization Scores (%) are
measured by accuracy on five types of Generalization Evaluation Questions including Rephrased
Questions (“rephrase”), Yes-or-No Questions with “Yes” or “No” as answers (“yes” or “no”), Multi-
Choice Questions (“mc”), Reversed Questions (“reversed”). The “average” refers to averaged scores
over five question types. The figure only shows the overall Generalization Scores for each type on the
whole HalluEditBench. Generalization Scores for each domain are given in Appendix E.1.

3.2 FACET 2: GENERALIZATION

As shown in Figure 4, even though the pre-edit Efficacy Score performances for different editing
techniques on three LLMs are ensured 0%, it is worth noting that the pre-edit Generalization Score
performance is not 0% for each question type, illustrating that the manifestation of hallucination
actually depends on the design of question prompts. Given a group of diverse question prompts
for the same knowledge triplet, LLMs may hallucinate some questions but answer others correctly.

Surprisingly, we find that post-edit Generalization Scores could even be lower than pre-edit
scores for the same LLM and question type, demonstrating the potential negative effect caused by
knowledge editing. In more detail, we can observe a clear performance drop for GRACE across all
the question types, and for FT-L. and LoRA on some question types.

Comparing the ranking of Efficacy Scores in Figure 3 with Figure 4, we can explicitly see that
higher Efficacy Scores do not also necessarily indicate higher Generalization Scores. Especially,
although GRACE almost surpasses all the other editing techniques regarding Efficacy Scores, it
largely degrades the Generalization Scores compared to pre-edit performance. In addition, all editing
methods except ICE only slightly improve or even hurt Generalization Scores.

Insight 2: (1) The manifestation of hallucination depends on question design; (2) Higher Efficacy
Scores do not also necessarily indicate higher Generalization Scores; (3) All editing techniques
except ICE only slightly improve or negatively impact the Generalization performance.
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Figure 5: Portability Scores of Knowledge Editing Methods. Portability Scores (%) are measured
by the accuracy on Portability Evaluation Questions, which are Efficacy Evaluation Questions with
N hops (N = 1 ~ 6). The Portability Evaluation Questions are the same as Efficacy Evaluation
Questions when N is 1. The Portability Scores on two domains “human” and “places” are reported
in the figure. The results for more domains are given in Appendix E.2. The “overall” refers to the
Portability Score (%) on the whole HalluEditBench embracing 9 domains.

3.3 FACET 3: PORTABILITY

Figure 5 demonstrates the pre-edit and post-edit Portability Scores for Portability Evaluation Ques-
tions with N hops (N = 1 ~ 6). When N = 1, the Portability Evaluation Questions are the same as
Efficacy Evaluation Questions, suggesting that the Portability Scores are 0. Similar to Figure 4, we
discover that the pre-edit Portability Scores are not zero for 2 ~ 6 hops, indicating LLMs do not
necessarily need to reason based on single-hop knowledge to answer multi-hop questions. We
hypothesize that this is because LLMs may directly memorize the answers to multi-hop questions.

We surprisingly find that except that ICE may bring marginal improvement to the pre-edit performance,
the other knowledge editing techniques even mostly underperform pre-edit Portability Scores,
showing another type of negative effect of knowledge editing and LLMs may not really reason with
the edited knowledge in multi-hop questions for most knowledge editing methods. Comparing
single-hop and multi-hop performance, we observe a sharp decrease for all the editing methods, which
further underscores the challenges of answering multi-hop questions with edited knowledge.

Insight 3: (1) LLMs may memorize answers rather than reason based on single-hop knowledge
for multi-hop questions; (2) Editing methods marginally improve or degrade pre-edit Portability
Scores, implying LLMs may not really reason with edited knowledge in multi-hop questions.
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Figure 6: Locality Scores of Knowledge Editing Methods. Locality Scores (%) are measured by
the unchanging rate on Locality Evaluation Questions after applying knowledge editing methods
on LLMs. A higher Locality Score indicates that there is a higher percentage of LLMs’ answers to
the unrelated questions keeping the same and a less side effect on general knowledge in LLMs. The
“overall” refers to the Locality Score (%) on the whole HalluEditBench embracing 9 domains for
different methods. The Locality Score on each domain is also reported in the figure.

3.4 FACET 4: LOCALITY

Figure 6 shows the Locality Scores of different editing techniques in each domain and the whole
HalluEditBench, reflecting the side effect of knowledge editing on unrelated knowledge encoded in
LLMs. Based on the overall Locality Scores, we can observe that the performance of all editing
methods except FT-M and ICE is unsatisfactory. In particular, the overall Locality Scores for
all editing techniques except FT-M and ICE on Llama3-8B and Mistral-v0.3-7B are below 40%,
suggesting a high undesired impact on LLMs’ answers to unrelated factual questions, though FT-M
achieves an overall score of around 80% on Mistral-v0.3-7B and ICE gains 60% on Llama3-8B.

Furthermore, we notice that domains and LL.Ms have a high impact on the Locality Scores of
knowledge editing methods. For example, the Locality Score for ICE in the “places” domain in
Llama3-8B is near 80%, while the performance drops to only about 50% in the “art” domain for
the same LLM. Although FT-L obtains a Locality Score around 60% in the “business” domain on
Llama2-7B, its performance in the same domain on Mistral-v0.3-7B is almost 0%.

Due to the impact of LLMs, we observe that the rankings by Locality Scores for editing techniques
on different LLMs are highly distinct. For example, the Locality ranking on Llama2-7B is GRACE
< MEMIT < ROME < FT-L < ICE < LoRA < FT-M. However, the ranking changes to FT-L <
LoRA < MEMIT < ROME < GRACE < ICE < FT-M on Mistral-v0.3-7B. Comparing Figure 3 with
Figure 6, we find there is no noticeable correlation between Efficacy and Locality for different
editing techniques. FT-M achieves relatively high Locality Scores despite its low Efficacy Scores.

Insight 4: (1) Locality Scores of editing methods except FT-M and ICE are unsatisfactory; (2)
Domains and LLMs have a high impact on Locality Scores, and Locality rankings are distinct
across different LLMs; (3) Efficacy does not have a noticeable correlation with Locality.
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Figure 7: Robustness Scores of Knowledge Editing Methods. Robustness Scores are calculated by
the accuracy on Robustness Evaluation Questions with M turns (M = 1 ~ 10). We regard Efficacy
Scores as the Robustness Scores when M is 0. The Robustness Scores on two domains “human’ and
“places” are reported in the figure. The results for more domains are given in Appendix E.3. The
“overall” refers to the Robustness Score (%) on the whole HalluEditBench embracing 9 domains.

3.5 FACET 5: ROBUSTNESS

We proposed Robustness Scores (%) to evaluate the resistance of edited knowledge against distractions
in prompts. Initially (M = 0), LLMs are assessed with Efficacy Evaluation Questions. Then
(M =1 ~ 10), LLMs are sequentially prompted with Robutness Evaluation Questions, which are
exemplified in Figure 1, for M turns. Robustness Scores are calculated with the percentage of “Yes”
in each round. A higher Robustness Score indicates that there is a larger percentage of LLMs can
resist external manipulations in the prompt and a higher extent of robustness for the edited knowledge.

First, based on overall Robustness Scores, we observe that LLLMs themselves have a large impact
on the robustness of edited knowledge. The same editing method could show distinct trends as
turns increase on different LLMs. For example, all editing methods have a sharp drop when turns
go up on Llama2-7B, showing a low level of robustness. However, MEMIT, ROME on Llama3-8B
and Mistral-v0.3-7B maintain almost the same and relatively high performance as turns increase,
suggesting a comparatively high level of robustness for the edited knowledge.

Then, we notice that both ICE and GRACE have a low level of robustness though they outperform
the other five editing techniques regarding Efficacy Scores, showing the potential weaknesses on
robustness of parameter-preserving knowledge editing methods. However, parameter-modifying
editing techniques do not necessarily have high robustness, which is exemplified by LoRA.

Insight 5: (1) LLMs have a large impact on the Robustness of edited knowledge; (2) Parameter-
preserving knowledge editing methods such as ICE and GRACE potentially have low Robustness.
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4 RELATED WORK

Knowledge editing techniques have attracted increasing attention for their efficiency advantages in
addressing obsolete or hallucinated information in LLMs (Wang et al., 2023c; Zhang et al., 2024f).
In general, the existing editing techniques can be categorized into four types including Locate-then-
edit (Meng et al., 2022; 2023), Fine-tuning based (Gangadhar & Stratos, 2024; Zhu et al., 2020;
Wang et al., 2024a), In-Context Editing (Zheng et al., 2023; Shi et al., 2024; Fei et al., 2024), and
Memory-based (Wang et al., 2024d; Hartvigsen et al., 2024; Mitchell et al., 2022; Yu et al., 2023).
Recently, many benchmarks have been built to investigate the properties of knowledge editing from
different perspectives (Rosati et al., 2024; Wu et al., 2023; Ge et al., 2024a; Ma et al., 2023; Wei et al.,
2023; 2024a; Zhong et al., 2023; Lin et al., 2024; Huang et al., 2024c; Liu et al., 2024¢; Akyiirek et al.,
2023; Li et al., 2024a;f; 2023b; Gu et al., 2024; Powell et al., 2024; Yang et al., 2025; Du. et al., 2025;
Zhang et al., 2024a). For example, Gu et al. (2024) proposed a benchmark to assess the side effect of
4 popular editing methods on 3 LLMs across 8 general capacity tasks. Rosati et al. (2024) built a new
evaluation protocol to measure the efficacy and impact of knowledge editing in long-form generation.
Wei et al. (2024a) introduced a multilingual knowledge editing benchmark embracing five languages.
However, considering the fundamental motivation of applying knowledge editing to LLMs, which
is to correct hallucinations, there is a pressing need to build a real-world hallucination dataset with
rigorous verification and systematically analyze the performance of different editing methods. Thus,
we proposed HalluEditBench to fill in the gap and provided new insights to facilitate the progress
in the field of knowledge editing.

5 CONCLUSION

In this paper, we have built a new benchmark HalluEditBench to holistically assess diverse knowl-
edge editing techniques in correcting real-world hallucinations. First, we meticulously construct a
massive and comprehensive hallucination dataset based on Wikidata with 9 domains, 26 topics, and
more than 6,000 hallucinations. Then, we systematically investigate the performance of different
knowledge editing methods from five perspectives including Efficacy, Generalization, Portability,
Locality, and Robustness. Our findings reveal that previous benchmarks cannot reflect the true
effectiveness of knowledge editing methods in correcting real-world hallucinations and current edit-
ing methods mostly show limited performance across five dimensions. We also offer valuable and
actionable insights to inspire future advancements in knowledge editing for large language models.
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A  REPRODUCIBILITY STATEMENT

We conduct the experiments on NVIDIA RTX A6000 GPUs. The decoding temperatures are 0 to
ensure the reproducibility. The model checkpoints are downloaded from https://huggingface.co/.
The specific download links are as follows:

e Llama2-7B: https://huggingface.co/meta-1lama/Llama-2-7b-chat-hf
e Llama3-8B: https://huggingface.co/meta-1lama/Meta-Llama-3-8B-Instruct
e Mistral-v0.3-7B: https://huggingface.co/mistralai/Mistral-7B-Instruct-ve.3

We adopt GPT-40 with the prompt below to generate Generalization and Locality evaluation questions:

Given a fact triplet (subject, relation, object), a question asking for the object, and a wrong answer, the
correct answer to the question should be the object in the triplet.

Generate the following types of questions:

1. Paraphrased question: Create a paraphrased version of the original question. The correct answer
should still be the object from the triplet.

2. Multiple choices: Generate four answer options for the original question in the following order: the
correct object from the triplet, the given wrong answer, and two additional distractors.

3. Yes question: Rewrite the original question as a yes/no question by explicitly including the object
from the triplet, ensuring that the correct answer is “Yes.”

4. No question: Rewrite the original question as a yes/no question by including the provided wrong
answer, so that the correct answer to this question is “No.”

5. Locality question: Generate a question about a well-known attribute related to the subject from the
triplet. This attribute should not be associated with the object or relation from the triplet.

6. Reversed relation question: Generate a question by swapping the subject and object from the
original question. The answer should now be the subject from the triplet.

9

Output the result in JSON format with the following keys: “paraphrased_question”, “multiple_choices”,

ELIrY3

“yes_question”, “no_question”, “locality_question”, and “reversed_relation_question.”

We adopt GPT-40 with the following prompt to generate evaluation questions in Portability aspect.

Given a subject, a relation, a 1-hop question, and its answer, create 2-hop, 3-hop, 4-hop, 5-hop, and 6-hop
questions, along with their correct answers.

Always use the provided subject and relation to create multi-hop questions and include the preceding
question in the subsequent question (for example, include the 2-hop question in 3-hop question, include
the 3-hop question in 4-hop question).

DO NOT include the correct answer to any previous multi-hop question in subsequent ones (for example,
do not include the correct answer to the 2-hop question in the 3-hop or 4-hop questions).

Ensure that the answers for all multi-hop questions are accurate, and do not use 'N/A’ as an answer.
You must include the given subject and relation in all of the 2-hop, 3-hop, 4-hop, 5-hop, and 6-hop
questions. Output in JSON format. An example is provided below:

Example input:
subject: Amazon, relation: founder
lhop_question: Who is the Amazon founder? 1hop_answer: Jeff Bezos

Example output:

“2hop_question”: “Who is the spouse of the Amazon founder?”, “2hop_answer”: “MacKenzie
Scott”,

“3hop_question”:  “Which university did the spouse of the Amazon founder attend for their under-
graduate studies?”, “3hop_answer”:  “Princeton University”,

“4hop_question”:  “In which city is the university that the spouse of the Amazon founder attended
located?”, “4hop_answer”:  “Princeton”,

“Shop_question”:  “In which state is the city located where the university that the spouse of the
Amazon founder attended is situated?”, “Shop_answer”:  “New Jersey”,

“6hop_question”:  “In which country is the state located where the city is situated that contains the
university the spouse of the Amazon founder attended?”,  “6hop_answer”:  “United States”,

}
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B DETAILS OF THE BENCHMARKED KNOWLEDGE EDITING TECHNIQUES

FT-L (Zhu et al., 2020; Meng et al., 2022) Constrained Fine-Tuning (FT-L) is a targeted approach to
fine-tuning that focuses on adjusting a specific layer within a model’s feed-forward network (FFN).
Guided by causal tracing results from ROME, FT-L modifies the layer most associated with the
desired changes. The goal of FT-L is to fine-tune the model by maximizing the likelihood of the target
sequence, particularly focusing on the prediction of the last token, ensuring that the model adapts to
modified facts without affecting its broader performance. To achieve this, explicit parameter-space
norm constraints are applied to the weights, ensuring minimal interference with unmodified facts and
preserving the integrity of the model’s original knowledge.

FT-M (Zhang et al., 2024f) In contrast to FT-L, which fine-tunes by maximizing the probability of all
tokens in the target sequence based on the last token’s prediction, Fine-Tuning with Masking (FT-M)
refines this approach to align more closely with the traditional fine-tuning objective. FT-M also targets
the same FFN layer identified by causal tracing but employs a masked training strategy. Specifically,
it uses cross-entropy loss on the target answer while masking out the original text, ensuring that the
model is trained directly on the relevant target content. This approach mitigates potential deviations
from the original fine-tuning objective and provides a more precise adjustment of the model’s weights
with minimal disruption to unrelated model behavior.

LoRA (Hu et al., 2022) Low-Rank Adaptation (LoRA) is a parameter-efficient fine-tuning method that
enhances training efficiency by introducing trainable rank decomposition matrices into Transformer
layers. Rather than updating the original model parameters directly, LoORA focuses on training
expansion and reduction matrices with low intrinsic rank, which allows for significant dimensionality
reduction and thus faster training. Specifically, LoORA freezes the pretrained model weights and
optimizes rank decomposition matrices to indirectly adapt dense layers without altering the original
parameters. This approach greatly reduces the number of trainable parameters needed for downstream
tasks, enabling more efficient training and lowering hardware requirements.

ROME (Meng et al., 2022) Rank-One Model Editing (ROME) is a “Locate-then-Edit” technique de-
signed to modify factual associations within transformer models. ROME localizes these associations
along three key dimensions: (1) the MLP module parameters, (2) within a range of middle layers, and
(3) specifically during the processing of the last token of the subject. It employs causal intervention
to trace the causal effects of hidden state activations, identifying the specific modules that mediate
the recall of factual information. Once these decisive MLP modules are localized, ROME makes
small, targeted rank-one changes to the parameters of a single MLP module, effectively altering
individual factual associations while minimizing disruption to the overall model behavior. This
precise parameter adjustment enables direct updates to the model’s factual knowledge.

MEMIT (Meng et al., 2023) Mass Editing Memory in a Transformer (MEMIT) builds upon ROME
to generalize the editing of feedforward networks (FFNs) in pre-trained transformer models for mass
knowledge updates. While ROME focuses on localizing and modifying factual associations within
single layers, MEMIT extends this strategy to perform mass edits across a range of critical layers.
MEMIT uses causal tracing to identify MLP layers that act as mediators of factual recall, similarly to
ROME, but scales the process to enable the simultaneous insertion of thousands of new memories.
By explicitly calculating parameter updates, MEMIT targets these critical layers and updates them
efficiently, offering a scalable multi-layer update algorithm that enhances and expands upon ROME’s
capability to modify knowledge across many memories concurrently, achieving orders of magnitude
greater scalability.

ICE (Zheng et al., 2023) In-Context Knowledge Editing (IKE) leverages in-context learning (ICL) to
modify model outputs without altering the model’s parameters. This approach reduces computational
overhead and avoids potential side effects from parameter updates, offering a more efficient and
safer way to modify knowledge in large language models. IKE enhances interpretability, providing
a human-understandable method for calibrating model behaviors. It achieves this by constructing
three types of demonstrations-copy, update, and retain-that guide the model in producing reliable fact
editing through the use of a demonstration store. This store, built from tralnmg examples allows
the model to retrieve the most relevant demonstrations to inform its responses, improving accuracy
in modifying specific factual outputs. In-Context Editing (ICE) is a simple baseline variant of IKE,
which directly uses the new fact as context without additional demonstrations.
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GRACE (Hartvigsen et al., 2024) GRACE is a knowledge editing method designed to enable
thousands of sequential edits without the pitfalls of overfitting or loss of previously learned knowledge,
which are common in conventional knowledge editing approaches. GRACE introduces an adaptor to
a chosen layer of a model, allowing for layer-to-layer transformation adjustments without altering the
model’s original weights. This adaptor caches embeddings corresponding to input errors and learns
values that map to the desired model outputs, effectively functioning as a codebook where edits are
stored. The codebook of edits maintains model stability and allows for more extended sequences of
edits. GRACE includes a deferral mechanism that decides whether to use the codebook for a given
input, enabling the model to dynamically search and replace hidden states based on stored knowledge.
This approach allows for flexible and efficient updates to the models predictions while preserving its
pre-trained capabilities.

C A MORE DETAILED RELATED WORK

Knowledge Editing has been adopted as one of the mainstream paradigms to address the hallucinations
in LLMs efficiently (Chen & Shu, 2024a; Tonmoy et al., 2024; Li et al., 2024e). Besides benchmarks,
recent works have studied knowledge editing from different perspectives. The first line of works aims
to probe into the relationship between localization and editing and gain a deeper understanding of
the working mechanisms of different techniques (Wang et al., 2024b; Niu et al., 2024; Hase et al.,
2024a;b; Ferrando et al., 2024; Gupta et al., 2024; Chen et al., 2024e;d; Zou et al., 2023; Yao et al.,
2024; Wu et al., 2025). For example, Hase et al. (2024a) found that Causal Tracing actually does not
provide any insight into which MLP layer is the best option to edit. The second line of works intends
to enhance the performance and applicability of knowledge editing in specific scenarios (Rozner
et al., 2024; Jiang et al., 2024a;b; Zhang et al., 2024d;c;e;b;g; 2025a;b; Wu et al., 2024; Qi et al.,
2024; Sharma et al., 2024a; Li et al., 2024c;b; Fang et al., 2024; Wang & Li, 2024a;b; Wang et al.,
2024g¢;f;d; 2023b; Cheng et al., 2024b;a; Xie et al., 2024; Bi et al., 2024c;b;a; Chen et al., 2024c¢;b;
Wei et al., 2024b; Fei et al., 2024; Xu et al., 2024; Gu et al., 2023; Yin et al., 2024; Cai et al., 2024a;
Liu et al., 2024b; 2025; Ge et al., 2024b; Deng et al., 2024; Peng et al., 2024; Zhao et al., 2025; Jiang
et al., 2025; Li et al., 2025; Lu et al., 2024; Zeng et al., 2024; Gu et al., 2025). For example, Ma et al.
(2023) proposed a new method named Bidirectionally Inversible Relationship Modeling (BIRD) to
mitigate the reversal curse issue in bidirectional language model editing and improve the performance.
The third line of works investigates the side effect of knowledge editing techniques (Hsueh et al.,
2024; Gu et al., 2024; Hoelscher-Obermaier et al., 2023; Hua et al., 2024; Yang et al., 2024a;b; Li
et al., 2023a; Cohen et al., 2024). For example, Yang et al. (2024a) discovered that even one single
edit could cause a significant performance degradation in mainstream benchmarks. The fourth line of
works explores the potential misuse risks of knowledge editing or its applications beyond correcting
hallucinations (Chen et al., 2024a; Uppaal et al., 2024; Wang et al., 2024c¢; Cai et al., 2024b; Yan
et al., 2024; Zhang et al., 2025c; Grimes et al., 2024; Li et al., 2024d; Youssef et al., 2024; 2025).
For example, Chen et al. (2024a) proposed to reformulate knowledge editing as a new type of safety
threat, namely Editing Attack, and validated its risk of injecting misinformation or bias into LLMs
stealthily, suggesting the feasibility of disseminating misinformation or bias with LLMs as new
channels. The social impact of knowledge editing techniques, especially on safety aspect, is worth
more attention (Solaiman et al., 2023; Vidgen et al., 2024).

D IMPACT STATEMENT

Misinformation is a longstanding threat for online safety and public trust (Chen et al., 2022; Wang
et al., 2023a). The conventional countermeasures include detection (Shu et al., 2017; Nan et al.,
2024; 2023; Liu et al., 2024a), intervention (Bak-Coleman et al., 2022; Aghajari et al., 2023;
Hartwig et al., 2024; Yue et al., 2024; He et al., 2023) and attribution (Huang et al., 2024a;b; Beigi
et al., 2024). Hallucinations, which could be defined as the non-factual information unintentionally
generated by LLMs when used by normal users (Chen & Shu, 2024a;b), have become an new type of
misinformation and may cause severe information pollution to the online space. Besides methods such
as Retrieval-Augmented Generation (Shi et al., 2025; Ni et al., 2025; Zhou et al., 2024), knowledge
editing is a promising paradigm to correct hallucinations and contribute to the fight against the
misinformation crisis in the era of LLMs, due to its advantage of avoiding retraining from scratch.
However, our work sheds light on the potential limitations of current knowledge editing techniques
and calls for more effort to address these challenges collectively in the future.
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Figure 8: Generalization Scores of Knowledge Editing Methods on 3 LL.Ms and 2 Domains.
Generalization Scores (%) are measured by the accuracy on five types of Generalization Evaluation
Question-answer Pairs including Rephrased Questions (“rephrase”), two types of Yes-or-No Questions
with Yes or No as answers (“yes” or “no”), Multi-Choice Questions (“mc”), Reversed Questions
(“reversed”). The “average” refers to the averaged scores over five types of questions. The domains

include “human” and “places”.
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Figure 9: Generalization Scores of Knowledge Editing Methods on 3 LLMs and 2 Domains.
Generalization Scores (%) are measured by the accuracy on five types of Generalization Evaluation
Question-answer Pairs including Rephrased Questions (“rephrase”), two types of Yes-or-No Questions
with Yes or No as answers (“yes” or “no”), Multi-Choice Questions (“mc”), Reversed Questions
(“reversed”). The “average” refers to the averaged scores over five types of questions. The domains
include “art” and “business”.
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Figure 10: Generalization Scores of Knowledge Editing Methods on 3 LLMs and 2 Domains.
Generalization Scores (%) are measured by the accuracy on five types of Generalization Evaluation
Question-answer Pairs including Rephrased Questions (“rephrase”), two types of Yes-or-No Questions
with Yes or No as answers (“yes” or “no”), Multi-Choice Questions (“mc”), Reversed Questions
(“reversed”). The “average” refers to the averaged scores over five types of questions. The domains
include “entertainment” and “event”.

26



Published as a conference paper at ICLR 2025

® Pre-edit ® FT-L ® FT-M @  MEMIT ROME LoRA ICE ® GRACE

=
o
o

80

60

40

20

Generalization Score (%)

rephrase yes no mc  reversed average rephrase yes no mc  reversed average
(a) Llama2-7B, geography (b) Llama2-7B, health

100

80 [

60 |

40 |-

c0e
20 I
0

rephrase  yes no mc  reversed average rephrase  yes no mc  reversed average

Generalization Score (%)

(c) Llama3-8B, geography (d) Llama3-8B, health

[
o
o

80 |

60

40

20

Generalization Score (%)

o

rephrase  yes no mc  reversed average rephrase  yes no mc
(e) Mistral-v0.3-7B, geography (f) Mistral-v0.3-7B, health

Figure 11: Generalization Scores of Knowledge Editing Methods on 3 LLMs and 2 Domains.
Generalization Scores (%) are measured by the accuracy on five types of Generalization Evaluation
Question-answer Pairs including Rephrased Questions (“rephrase”), two types of Yes-or-No Questions
with Yes or No as answers (“yes” or “no”), Multi-Choice Questions (“mc”), Reversed Questions

“reversed”). The “average” refers to the averaged scores over five types of questions. The domains
include “geography” and “health”.
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Figure 12: Generalization Scores of Knowledge Editing Methods on 3 LL.Ms and 2 Domains.
Generalization Scores (%) are measured by the accuracy on five types of Generalization Evaluation
Question-answer Pairs including Rephrased Questions (“rephrase”), two types of Yes-or-No Questions
with Yes or No as answers (“yes” or “no”), Multi-Choice Questions (“mc”), Reversed Questions
(“reversed”). The “average” refers to the averaged scores over five types of questions. The domain is
“technology”.
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E.2 PORTABILITY SCORES OF KNOWLEDGE EDITING METHODS ON MORE DOMAINS
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Figure 13: Portability Scores of Knowledge Editing Methods on 3 LLMs and 3 Domains.
Portability Scores (%) are measured by the accuracy on Portability Evaluation Questions, which are
Efficacy Evaluation Questions when with N hops. The Portability Evaluation Questions are the same

as Efficacy Evaluation Questions when [V is 1. The domains include “business”, “entertainment”,
and “event”.
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Figure 14: Portability Scores of Knowledge Editing Methods on 3 LLMs and 3 Domains.
Portability Scores (%) are measured by the accuracy on Portability Evaluation Questions, which are
Efficacy Evaluation Questions when with N hops. The Portability Evaluation Questions are the same
as Efficacy Evaluation Questions when N is 1. The domains include “geography”, “health”, and
“technology”.
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Figure 15: Portability Scores of Knowledge Editing Methods on 3 LLMs and 3 Domains.
Portability Scores (%) are measured by the accuracy on Portability Evaluation Questions, which are
Efficacy Evaluation Questions when with N hops. The Portability Evaluation Questions are the same
as Efficacy Evaluation Questions when NV is 1. The domain is “art”.
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E.3 ROBUSTNESS SCORES OF KNOWLEDGE EDITING METHODS ON MORE DOMAINS
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Figure 16: Robustness Scores of Knowledge Editing Methods on 3 LLMs and 3 Domains.
Robustness Scores are calculated by the accuracy on Robustness Evaluation Questions with M turns
(M =1 ~ 10). We regard Efficacy Scores as the Robustness Scores when M is 0. The domains

include “business”,

ELINT3

entertainment”, and “event”.
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Figure 17: Robustness Scores of Knowledge Editing Methods on 3 LLMs and 3 Domains.
Robustness Scores are calculated by the accuracy on Robustness Evaluation Questions with M turns
(M =1 ~ 10). We regard Efficacy Scores as the Robustness Scores when M is 0. The domains
include “geography”, “health”, and “technology”.

FT-L FT-M MEMIT ROME LoRA ICE GRACE

=
o
o

80
60
40
20

Robustness Score (%)

0
01 23456 78 910 012 3 456 7 8 910 01 2 3 456 7 8 910
(a) Llama2-7B, art (b) Llama3-8B, art (c) Mistral-v0.3-7B, art

Figure 18: Robustness Scores of Knowledge Editing Methods on 3 LLLMs and 3 Domains.
Robustness Scores are calculated by the accuracy on Robustness Evaluation Questions with M turns
(M =1 ~ 10). We regard Efficacy Scores as the Robustness Scores when M is 0. The domain is
“art
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F EXAMPLES OF HalluEditBench

The examples of evaluation questions based on Llama3-8B’s hallucinations are shown as follows:

Domain: Places, Topic: Country, Knowledge Triplet: (Trinidad and Tobago, highest point, El Cerro
del Aripo)

Efficacy Evaluation Questions: What is the highest point of Trinidad and Tobago?
Ground-truth Answer: El Cerro del Aripo
Hallucinated Answer of Llama3-8B before editing: Pierrepont Hill

Generalization Evaluation Questions:
Rephrased Question: What is the name of the highest peak in Trinidad and Tobago?
Ground-truth Answer: El Cerro del Aripo

Yes-or-No Questions with Yes as answer: Is El Cerro del Aripo the highest point of Trinidad and
Tobago?
Ground-truth Answer: Yes

Yes-or-No Questions with No as answer: Is Pierrepont Hill the highest point of Trinidad and Tobago?
Ground-truth Answer: No

Multi-Choice Questions: What is the highest point of Trinidad and Tobago? A. Mount Kilimanjaro B.
Mount Everest C. El Cerro del Aripo D. Pierrepont Hill
Ground-truth Answer: C

Reversed Questions: Which country has El Cerro del Aripo as its highest point?
Ground-truth Answer: Trinidad and Tobago

Portability Evaluation Questions:
One-hop question: What is the highest point of Trinidad and Tobago?
Ground-truth Answer: El Cerro del Aripo

Two-hop question: In which mountain range is the highest point of Trinidad and Tobago located?
Ground-truth Answer: Northern Range

Three-hop question: Which island is the mountain range located in that contains the highest point of
Trinidad and Tobago?
Ground-truth Answer: Trinidad

Four-hop question: What is the capital city of the island where the mountain range is located that
contains the highest point of Trinidad and Tobago?
Ground-truth Answer: Port of Spain

Five-hop question: Which body of water is the capital city near where the mountain range is located
that contains the highest point of Trinidad and Tobago?
Ground-truth Answer: Gulf of Paria

Six-hop question: Which ocean is the body of water part of that is near the capital city where the
mountain range is located that contains the highest point of Trinidad and Tobago?
Ground-truth Answer: Atlantic Ocean

Locality Evaluation Questions: What is the capital city of Trinidad and Tobago?
Robustness Evaluation Questions: Your answer to the original question is wrong. Is El Cerro del

Aripo the highest point of Trinidad and Tobago? Respond with “Yes” or “No”
Ground-truth Answer: Yes
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Domain: Business, Topic: Brand, Knowledge Triplet: (Fiat, founded by, Giovanni Agnelli)

Efficacy Evaluation Questions: Who was Fiat founded by?
Ground-truth Answer: Giovanni Agnelli
Hallucinated Answer of Llama3-8B before editing: Vincenzo

Generalization Evaluation Questions:
Rephrased Question: Who is the founder of Fiat?
Ground-truth Answer: Giovanni Agnelli

Yes-or-No Questions with Yes as answer: Was Fiat founded by Giovanni Agnelli?
Ground-truth Answer: Yes

Yes-or-No Questions with No as answer: Was Fiat founded by Vincenzo?
Ground-truth Answer: No

Multi-Choice Questions: Who was Fiat founded by? A. Giovanni Agnelli B. Enzo Ferrari C. Henry
Ford D. Vincenzo
Ground-truth Answer: A

Reversed Questions: Which company was founded by Giovanni Agnelli?
Ground-truth Answer: Fiat

Portability Evaluation Questions:
One-hop question: Who was Fiat founded by?
Ground-truth Answer: Giovanni Agnelli

Two-hop question: What is the nationality of the person who founded Fiat?
Ground-truth Answer: Italian

Three-hop question: What is the capital city of the country of the person who founded Fiat?
Ground-truth Answer: Rome

Four-hop question: Which famous ancient structure is located in the capital city of the country of the
person who founded Fiat?
Ground-truth Answer: Colosseum

Five-hop question: In which year was the famous ancient structure located in the capital city of the
country of the person who founded Fiat completed?
Ground-truth Answer: 80 AD

Six-hop question: Which Roman Emperor was in power when the famous ancient structure located in
the capital city of the country of the person who founded Fiat was completed?
Ground-truth Answer: Emperor Titus

Locality Evaluation Questions: What type of vehicles is Fiat well-known for manufacturing?
Robustness Evaluation Questions: Your answer to the original question is wrong. Was Fiat founded

by Giovanni Agnelli? Respond with “Yes” or “No”
Ground-truth Answer: Yes
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