Under review as a conference paper at ICLR 2025

APPENDIX

A THEORETICAL DETAILS

The full statement of the following theorem considers an MBO algorithm with function clas F =
Fo, ® ... @]:CNcuque’ so that every of its element has form

F(x) = 30 fe,(xc,)-

As described in Section [3] Cliqueformer’s architecture forms such a function class on top of the
learned latent space. We define the statistical constant as

Cyat = \/ 725, whereo = max Corrxplfc,(xc,), fc,]
Ci#Cj.fc; fo;

and the function approximation complexity constant as

o
O — [N 0% log(|Fe, 1/9)
cpx — N)

where 9 is the PAC error probability (Shalev-Shwartz & Ben-David, [2014).

Theorem 1 (Grudzien et al.|(2024)). Let f(x) be a real-valued function, C be the set of maximal
cliques of its FGM, and 11 be a policy class. Let Cyq and Cepy be constants that depend on the
probability distribution of x and function approximator class’s complexity, respectively, defined in
Appendix[A| Then, the regret of MBO with the FGM information is given by,

(xc)
max)
rell,xeX,cec Po(xc

77(77—*) - n(ﬁFGM) é Cstatccpx

Theorem 2. Let d > 2 be an integer and x € R? be a random variable with positive density in R%.
There exists a function f(x) and two different reparameterizations, z = z(x) and v = v(x), of X,
that both follow a standard-normal distribution, but the FGM of f with respect to z is a complete
graph (has all possible edges), and with respect to v it is an empty graph (has no edges).

Proof. Since the density of x is positive and continuous, we can form a bijection that maps x to

another random variable z € R!, where [< d, that follows the standard-normal distribution (Dai &
Wipfl [2019, Appendix E). We denote this bijection as Z(x). Let us define

2 l
y=f(2) = exp (5 i, 7).
Then, the FGM of f* has an edge between every two variables since each variable’s partial derivative

of? 1 d
oL = e (43)

is also a function of all others (Grudzien et al., 2024, Lemma 1). Consider now a rotation p : z —
v = (v1,...,Vv;) such that v; = % 22:1 z;. Then, v ~ N(0;, I;), and y can be expressed in terms
of vasy = fY(v) = exp(vy). Then, the FGM of f* has no edges, since it depends on only one

variable, inducing no interactions between any two variables. Recall that x = Z -1 (z). Then, x be
represented by standard-normal z and v, obtainable by

z = Z(x) and v = p(z) = p(Z(x)).
Furthermore, we can define

flx) = f*(Z(x))

which is identically equal to f*(z) and f"(v), which have a complete and an empty FGM, respec-
tively, thus fulfilling the theorem’s claim. O

13

Under review as a conference paper at ICLR 2025

B EXPERIMENTAL DETAILS

Datasets. We use the implementation of |Grudzien et al.| (2024) to generate data with latent radial-
basis functions. Also, we initially wanted to use Design Bench (Trabucco et al.| 2022) for experi-
ments with practical tasks. However, at the time of this writing, the benchmark suite was suffering
a data loss and was not readily available. To overcome it, we manually found the data and im-
plemented dataset classes. TFBind-8 (Trabucco et al., [2022) could be fully downloaded since the
number of possible pairs (x,y) is quite small. Hence, a design can be evaluated by looking up its
score in the dataset. For Superconductor (Hamidieh, [2018)), we pre-trained an XGBoost oracle on
the full dataset, and trained our model and the baselines to predict the labels produced by the oracle.
The proposed designs of the tested models are evaluated by calling the oracle as well. We obtained
DNA Enhancers dataset from the code of |Uehara et al.| (2024)), available at

https://github.com/masa-ue/RLfinetuning Diffusion_Bioseqg/tree/master
Following the procedure in

https://github.com/masa-ue/RLfinetuning Diffusion_Bioseqg/blob/master/
tutorials/Human—-enhancer/l-Enhancer_data.ipynb.

we additionally filter the dataset to keep only sequences featured by chromosomes from 1 to 4. We
use their pre-trained oracle for generating labels and evaluation of proposed designs. Following
Fannjiang & Listgarten| (2020) and [Trabucco et al. (2022), we train our models on the portions of
the datasets with values below their corresponding 80%". Upon evaluation, we obtain the ground-
truth/oracle value of the proposed design y, and normalize it as
g Y Ymin
Ymax ~ Ymin

and report y. y,;, and y_ . are the minimum and the maximum of the training data. This normal-
ization scheme is different than, for example, the one in the work by [Trabucco et al.| (2022). We
choose this scheme due to its easy interpretability—a score of y > 1 implies improvement over
the given dataset, which is the ultimate objective of MBO methods. However, we note that a score
of less than 1 does not imply failute of the algorithm, since we initialize our designs at a random
sample from the dataset, which can be arbitrarily low-value or far from the optimum. For some
functions, like in latent RBFs, the optima are very narrow spikes in a very high-dimensional space,
being nearly impossible to find (see Figure [Ta). We choose such an evaluation scheme due to its
robustness that allows us to see how good ut improving any design our algorithms are overall.

Hyper-parameters. For baselines, we use hyper-parameters suggested by [Trabucco et al.| (2021).
We decreased the hidden layer sizes (at no harm to performance) for LRBF 31 and DNA Enhancers
tasks where the performance was unstable with larger sizes. Also, we haven’t tuned most of the Clig-
ueformer’s hyper-parameters per-task. We found, however, as set of hyper-parameters that works
reasonably well on all tasks.

On all tasks, we use 2 transformer blocks in both the encoder and the decoder, with transformer
dimension of 64, and 2-head attention. The predictive model fy(z) is a multi-layer perceptron
with 2 hidden layers of dimension 256. We change it to 512 only for DNA Enhancers. The best
activation function we tested was GELU (Hendrycks & Gimpel, 2016)), and LeakyReL.U(0.3) gives
similar results. We use dropout of rate 0.5 (Srivastava et al.,2014). In all tasks, weight of the MSE
term to 7 =10 (recall Equation (5))). Additionally, we warm up our VIB term linearly for 1000 steps
(with maximal coefficient of 1). We train the model with AdamW (Loshchilov et al.,2017) with the
default weight decay of Pytorch (Paszke et al.,|2019). We set the model learning rate to 1le-4 and
the design learning rate to 3e-4 in all tasks. We train the design with AdamW with high rates of
weight decay (ranging from 0.1 to 0.5).

In all tasks, we wanted to keep the dimension of the latent variable z more-less similar to the di-
mension of the input variable x, and would decrease it, if possible without harming performance,
to limit the computational cost of the experiments. The dimension of z can be calculated from the
clique and knot sizes as

dzm(z) = dynor + Nclique : (dclique - dknot)-

14

https://github.com/masa-ue/RLfinetuning_Diffusion_Bioseq/tree/master
https://github.com/masa-ue/RLfinetuning_Diffusion_Bioseq/blob/master/tutorials/Human-enhancer/1-Enhancer_data.ipynb
https://github.com/masa-ue/RLfinetuning_Diffusion_Bioseq/blob/master/tutorials/Human-enhancer/1-Enhancer_data.ipynb

Under review as a conference paper at ICLR 2025

In most tasks, we used the clique dimension dcjiqee = 3 with knot size of dinoy = 1. We made
an exception for Superconductor, where we found a great improvement by setting djique = 21 and
Nelique = 4 (setting dcjique = 3 and Njique = 40 gives score of 0.99); and DNA Enhancers, where we
doubled the clique size (to 6) and halved the number of cliques to (40), to lower the computational
cost of attention. In DNA Enhancers tasks, we additionally increased the MLP hidden dimension to
512 due to greater difficulty of modeling high-dimensional tasks. We summarize the task-specific
hyper-parameters in Table 2]

We want to note that these hyper-parameters are not optimal per-task. Rather, we chose schemes
that work uniformly well enough on all tasks. However, each task can benefit from further alteration
of hyper-parameters. For example, we observed that LRBF tasks benefit from different numbers of
design steps; for LRBF 41, we found the optimal number to be 400; for Superconductor, it seems
to be 200. Due to time constraints, we have not exploited scalability of Cliqueformer in DNA
Enhancers tasks, but observed pre-training losses to decrease more with increased parameter count
and training duration.

Task N_clique | d_clique | MLP dim | designsteps | Weight decay
LRBF 11 10 3 256 50 0.5
LRBF 31 18 3 256 50 0.5
LRBF 41 20 3 256 50 0.5
LRBF 61 28 3 256 50 0.5
TFBind-8 4 3 256 1000 0.5
Superconductor 4 21 256 1000 0.5
Dna Enhancers 40 6 512 1000 0.1

Table 2: Hyper-parameter configuration for different benchmark tasks.

15

