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ABSTRACT

Inverse Reinforcement Learning (IRL) aims to recover the latent reward func-
tion and corresponding optimal policy from observed demonstrations. Existing
IRL research predominantly focuses on a centralized learning approach, not suit-
able for real-world problems with distributed data and privacy restrictions. To
this end, this paper proposes a novel algorithm for federated maximum-likelihood
IRL (F-ML-IRL) and provides a rigorous analysis of its convergence and time-
complexity. The proposed F-ML-IRL leverages a dual-aggregation to update the
shared global model and performs bi-level local updates — an upper-level learning
task to optimize the parameterized reward function by maximizing the discounted
likelihood of observing expert trajectories under the current policy and a low-
level learning task to find the optimal policy concerning the entropy-regularized
discounted cumulative reward under the current reward function. We analyze the
convergence and time-complexity of the proposed F-ML-IRL algorithm and show
that the global model in F-ML-IRL converges to a stationary point for both the
reward and policy parameters within finite time, i.e., the log-distance between
the recovered policy and the optimal policy, as well as the gradient of the likeli-
hood objective, converge to zero. Finally, evaluating our F-ML-IRL algorithm on
high-dimensional robotic control tasks in MuJoCo, we show that it ensures con-
vergences of the recovered reward in decentralized learning and even outperforms
centralized baselines due to its ability to utilize distributed data.

1 INTRODUCTION

Inverse learning is the problem of modeling the preferences and goals of an agent using its observed
behavior (Arora & Doshi,2020). When the behavior of a human expert is observed through demon-
stration trajectories containing state and action data, Inverse Reinforcement Learning (IRL) models
the policy through a Markov Decision Process (MDP) to recover the latent reward function and po-
tentially replicate the human expert’s optimal policy (Russell, [1998). The learned reward function
can support various downstream tasks such as agent modeling and transfer learning (Sutton & Barto,
2018 |Arora & Doshil [2020). Recent work has developed provably-efficient IRL algorithms, such
as Generative Adversarial Inverse Learning (GAIL) (Ho & Ermon| |[2016) and Maximum-likelihood
IRL (ML-IRL)(Ratia et al.,[2012; [Zeng et al., 2022), all using a centralized learning approach. How-
ever, demonstration data in practice are often distributed across decentralized clients, e.g., devices,
cars, and households. It is not realistic to assume that such sensitive data can always be shared or
collected for centralized inverse learning, due to privacy restrictions.

To enable collaborative training of machine learning models among decentralized clients under the
privacy restrictions, Federated Learning (FL) provides a promising solution by maintaining training
data on local devices and aggregating local updates to build a global model. However, most existing
work on FL consider only the forward learning problem, e.g., loss minimization (L1 et al., |2019),
policy improvement (Jin et al., 2022)), learning with heterogeneous models (Zhou et al., [2024), and
efficient optimization methods (Li et al., 20205202 1bja;|Wang et al.}2020)), and not the IRL problem.
We note that IRL using decentralized clients and distributed data is an open problem. It often has
a bi-level structure of maximizing the probability of observing expert trajectories under the current
policy and optimizing discounted cumulative reward for the target reward function, which must be
solved jointly during IRL. A naive integration of FL and IRL may not achieve convergence. A
decentralized learning framework for IRL with theoretical analysis of the convergence and the time-
complexity remains a significant challenge.
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The goal of this paper is to develop a novel framework for federated maximum-likelihood IRL (F-
ML-IRL) and provide a rigorous convergence/time-complexity analysis of the proposed algorithms.
We adopt the Maximum Likelihood IRL (ML-IRL) approach in (Zeng et al., [2022) and consider
the problem of decentralized IRL of a shared latent reward function, from distributed data and us-
ing decentralized client devices. Our solution attains the privacy-preserving benefits of FL in IRL.
To address the bi-level nature of IRL, our proposed algorithm’s local training round (McMahan
et al., 2017) encompasses an upper-level learning task (on each client with local dataset) to opti-
mize the parameterized reward function to maximize the discounted likelihood of observing expert
trajectories under the current policy, as well as a low-level learning task to find the optimal policy
concerning the entropy-regularized discounted cumulative reward for the current reward function.
Then, we design a dual-aggregation method for aggregating both the action-value networks and re-
ward function models every 7" local rounds, rather than just one set of model parameters in standard
FL. Further, we leverage Soft Q-learning (Haarnoja et al.| 2017)) as the base RL algorithm. Instead
of fully solving the forward RL problem before updating the reward parameter, we perform one-step
updates for both the recovered policy and reward parameter alternately to improve the efficiency. To
the best of our knowledge, this is the first proposal to formulate and solve this F-ML-IRL problem.

We conduct a rigorous convergence/time-complexity analysis of the proposed F-ML-IRL algorithm.
Due to the tight coupling between the reward parameters and the recovered policy in IRL’s bi-level
optimization, the dual-aggregation method in our F-ML-IRL must be analyzed to understand its im-
pact on convergence. By bounding the logarithmic distance between the estimated policy and the
optimal policy by the distance between their corresponding Q-values, we control the variance intro-
duced by local training by considering the time immediately after each global aggregation. Utilizing
the ~y-contraction property of soft Q-values, we establish the contraction property of the targeted
distance, which allows us to provide a convergence proof for the policy estimate. Moreover, we
leverage the Lipschitz continuity of the reward parameter and the convergence of the policy estimate
to show that the gradient of the global reward parameter converges to zero as the number of com-
munications increases. These techniques enable us to show that F-ML-IRL’s policy estimation and
reward optimization both converge in finite time. The change in convergence speed due to the use
of only decentralized clients and distributed data (rather than centralized learning) is characterized.

Our F-ML-IRL is implemented and evaluated on high-dimensional robotic control tasks in MuJoCo
(Todorov et al., |2012). We compared its performance with several centralized learning baseline
including Behavior Cloning (BC) (Pomerleaul |1988), Generative Adversarial Imitation Learning
(GAIL) (Ho & Ermonl 2016), and IRL methods like f-IRL (Ni et al., [2021) and ML-IRL (Zeng
et al.| 2022). We consider non-iid data distribution, where clients have different local demonstration
data with varying performance levels. The baselines are evaluated using centralized data with two
setups (i) a single client with medium-level demonstrations and (ii) a single client with a mixture of
demonstrations of different levels. The results show that our F-ML-IRL could effectively leverage
distributed data and client devices in learning, to achieve similar or better recovered reward than
the baselines, while meeting decentralization and data privacy restrictions. Our evaluation code is
available athttps://anonymous.4open.science/r/F-ML-IRL/| The key contributions
of this paper are summarized as follows:

* We propose a novel framework for federated maximum-likelihood IRL (F-ML-IRL). It
enables decentralized IRL of a shared latent reward function, from distributed data and
using decentralized client devices, under data privacy restrictions.

* To support the bi-level optimization structure in IRL — for jointly updating the optimal
policy and the reward function estimate, the proposed F-ML-IRL algorithm leverages a
dual-aggregation of the model parameters, which ensures convergence to optimal results.

* The convergence and time-complexity of the proposed F-ML-IRL algorithm is quantified,
with respect to local rounds 7" and aggregation steps M. We show that F-ML-IRL achieves
convergence in finite time and will have faster convergence with a smaller local rounds 7.

* Qur solution is evaluated on high-dimensional robotic control tasks in MuJoCo and is
shown to achieve similar or higher recovered reward than a number of Imitation Learn-
ing and IRL baselines that employ centralized learning.

2 RELATED WORK AND BACKGROUND

IRL aims to learn the reward function using expert demonstration data, which frees the forward RL
problem from the requirement of specifying the reward function beforehand (Ng et al., 2000) and
also facilitates imitation learning by using the recovered reward function to derive an effective policy
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(Abbeel & Ng||[2004). Various formulations and solutions for the IRL problem have been explored.
The Maximum Margin Planning algorithm frames the problem within a quadratic programming con-
text Ratliff et al.| (2006). Bayesian IRL models infer the posterior distribution of the reward function
given a prior (Ramachandran & Amir, [2007)). Probabilistic maximum entropy IRL methods favor
stochastic policies using entropy regularization. In recent years, Generative Adversarial Imitation
Learning (GAIL) (Ho & Ermon, 2016) has adopted a Generative Adversarial Networks (GANs)
(Goodfellow et al., [2020) framework to recover the expert’s policy. In this framework, a generator
proposes new policies to confuse the discriminator, while the discriminator determines whether the
state-action pair from the generator’s policy originates from the expert. However, existing work has
not considered the IRL problem with distributed data and decentralized clients, under data privacy.

ML-IRL models the policy through an MDP and recover the latent reward function based on max-
imum likelihood principle. The convergence of centralized ML-IRL with a single client has been
analyzed (Ratia et al.l 2012} Zeng et al.l 2022) and is shown to outperform other IRL methods.
ML-IRL considers a MDP defined by the tuple (S,.A, P, n,r,7), where S and A represent the state
space and action space, respectively. P(s’|s,a) denotes the state transition probability, 7(-) is the
initial state distribution, 7 (s, a) is the reward function, and -y is the discount factor. Let 6 denote
the parameter vector for the reward function, making the reward function (s, a; 6). The IRL prob-
lem states that the expert’s behavior is characterized by a stochastic policy 7, (:|s). The dataset

D := {7, }E_, contains trajectories 7,, = {(s¢,a;)}?°, from the expert policy ., (+|s).

The discounted log-likelihood of observing all sample trajectories D from the expert is given by:

E-,—ND Z’)/t (logme (at\st) + lOgP(8t+1 | st,at)) . (1)
t>0

Assume the state transition probabilities P(s;41/S¢, a;) are known. Then, maximizing the dis-
counted log-likelihood is equivalent to maximizing equation 2]

1(0) =Ernp | > 4" logmr, (arls) | - )
t>0

ML-IRL aims to maximizing {(f) under the constraint that m,, is the optimal policy target-
ing the discounted cumulative reward regularized by the entropy of the policy, ie. m, :=
argmax, Ex [ ;0 v (r(se, ai;0) + H(m(- | s¢))], where the entropy of the policy is defined as
H(7(+|s)) := =D 4ca 7(als)logm(als). Incorporating the policy entropy term as a regularization
makes the IRL problem well-defined. This adjustment encourages the agent to explore all possi-
ble trajectories in the environment, leading to a more stochastic policy with better generalization
capabilities.

For decentralized learning, FL focuses on scenarios where multiple clients work together to train a
model using distributed data. FL considers the objective of the form:

) 1 n
min f(w) where f(w) = - ; fi(w) 3)
We assume there are n clients over which the local data D is stored. Prior to federated averaging
(FedAvg), most works in FL based on Stochastic Gradient Descent (FedSGD) (Shokri & Shmatikov
2015) ignored the impact of data heterogeneity and imbalance. FedAvg derives from FedSGD but
allows multiple rounds of local update w® <+ w® — aV f;(w?) by gradient descent before aggregat-
ing the model parameters at the central server, reducing the frequency and cost of communications.
The convergence of FedAvg on non-i.i.d. data has been proved (Li et al., 2019). Since Fed-Avg
was proposed as the vanilla FL algorithm, efficient federated optimization methods like FedProx (Li
et al.| [2020) FedBN (Li et al., [2021b)), MOON (Li et al.,|2021a), and FedNova (Wang et al., [2020)
have been developed to address non-i.i.d. data and accelerate the model training process (Konecny
et al.,2016). Additionally, the convergence of model-heterogeneous FL, where reduced-size models
are extracted from the global model and applied to low-end clients, was provided in (Zhou et al.,
2024). However, existing FL. methods could not be directly applied to the ML-IRL problem with
decentralized clients, since ML-IRL requires a bi-level optimization involving both policy improve-
ment and reward estimate using maximum likelihood. New algorithms needs to be developed for
decentralized ML-IRL with rigorous convergence/time-complexity analysis.
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3 FEDERATED MAXIMUM-LIKELIHOOD IRL
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Figure 1: Our F-ML-IRL problem. It aims to recover reward function ry from sensitive
data/demonstrations Dy, .. ., D,, that are distributed over n clients. This requires a novel decentral-
ized algorithm to solve a bi-level optimization — optimizing the parameterized reward function with
maximum likelihood and optimizing the corresponding policy concerning the entropy-regularized
discounted cumulative reward. We prove the convergence and the time-complexity of F-ML-IRL.

We consider a decentralized inverse learning problem to recover a common reward function ry from
distributed datasets spread across n clients. Due to privacy requirements, the clients cannot directly
share their data for learning. Specifically, we consider n clients, each with a dataset D; := {77 }X_|
containing trajectories 7., = {(s¢,a¢)}§2, from the i-th expert policy 7/ (-|s). Different from
centralized learning, the clients each have their local model trained on local data. By modeling
the distributed expert trajectories as an MDP (S, A, P, n,~), our goal is to learn a common reward
function ry — parameterized by 6 — from distributed data and to recover the corresponding optimal
policy m,,. The F-ML-IRL in this paper is formulated as follows:

max L(#) = 1 Zli(H)

OeRd

3

st T, = argm;ix]E,T lz v (ro(se, ar) + H(m(- | St)))] S
t=0
where 1;(0) = Ernp, {Z v log mr, (as |5t)}
t>0

where [;(0) is the local likelihood calculated using client ¢’s local data D; and target policy 7,,
which further depends on the current reward function 7y that is shared by all clients, making it a
difficult bi-level optimization. We cannot directly apply FL to this problem, because the maximum
likelihood problem on L(6) depends on the recovered policy 7,,, while the policy search for an
optimal 7., futher relies on the estimation of the reward function parameter 6. Thus, the two-level
optimization are entangled with each other and requires a new aggregation strategy in F-ML-IRL.

3.2 OUR PROPOSED F-ML-IRL ALGORITHM

We present F-ML-IRL algorithm to solve the decentralized inverse learning problem. Our proposed
solution includes three modules - local policy improvement, local reward optimization, and global
bi-level aggregation. Each round of F-ML-IRL algorithm consists of 7" local client steps running in
parallel and a global server aggregation of selected model parameters at the end of each round. At
each local step, each client ¢ first executes (in parallel) a policy update (on local data D;) through
policy evaluation and improvement steps based on soft-Q learning to address the lower-level prob-
lem. Second, each client carries out a reward optimization, where the reward parameter gradient
update is derived by contrasting sampled trajectories from both the expert policy and the current
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policy estimate. Next, after every T local steps and at the end of round m, we perform a dual
aggregation of both the action-value function and the reward parameters, i.e., to synchronize the
local bi-level optimization of both policy and reward on decentralized clients.. While our solution
is inspired by FL, F-ML-IRL performs a dual aggregation with respect to the bi-level optimization
in ML-IRL. The algorithm details are presented below. Its convergence and time-complexity are
rigorously analyzed in this paper.

Our F-ML-IRL is illustrated in Fig.[1| Different expert demonstration data D; are stored at different
client devices. We perform local training for policy evaluation and improvement based on soft Q-
learning to improve the local policy ﬂzm’ %) under current reward parameter QEW k)" We then sample
trajectories from the current local policy and the expert demonstration data D;, to provide an update

for the reward parameter 9z k) At local step k of round m, we use QSOﬁ o (s, a) to denote
(m k)7 (m,k)

the action-value function (1 e., Q-value) for action @ and state s, with respect to the current policy
estimation 7r( ) under current reward parameter estimation 91m > On each client ¢. After every

T steps of local training, we perform dual aggregation of the Q-values Q(m,Tfl) and the reward
parameter T, 7y. To the best of our knowledge, this is the first paper considering an ML-IRL
problem in this FL context.

Local training for policy improvement. Iterations of local training on each local client start with
a shared model with parameters 0)( |s) and 0 )- During each local training round, we first
evaluate the local policy me k)( -|s) by computlng the Q values Q(m k)( ,+) under the fixed reward

parameter 0 for the i-th local client using the definitions of the soft value and soft Q functions in
equation 5}

Vgott o (s)=E T 9250 = SZ’Y ( Sty At (mk))+H(7Tez - (|5t)))

(m k)7 (m,k)

qutt o (S a) = r(s a; 9 (m k)) + ’YES/NP( Is, a)Vsott o (3/) (5)

T(m, k)% (m,k) T(m, k)Y (m,k)

Then, ﬂém, k1) (+|s) is updated according to the policy improvement step using soft Q-learning in
equation [} It does not assume an explicit policy function but uses the Boltzmann distribution of
the Q function, making the probability of choosing an action at some state s proportional to the
exponential of the Q-value of this action-state pair.

W%7n,k+1)(a| ) X eXp(QSOﬁ ,0% (87 a))a Vs (6)

m,k)’" (m,k)

Local training for reward optimization. For the optimization towards the local reward parameter

Gfm ft1)r @ stochastic gradient ascent method is proposed. The gradient of each local likelihood
function /;(0) is given by equation which derives from Lemma 1 in (Zeng et al.,[2022).
VZZ(Q) = ETiNDi ; ’ytVGT(Stv at; 9) - ETiN'ﬂ'Q ; ’ytVQT‘(St, at; 9) @)

We construct a stochastic estimator of the exact gradient VI; (0(m k)) approximating the optimal

policy 7, with the current policy 7r(
(7YL k)

(nj B = {ss, at}t>o from the local dataset D; and one agent trajectory 7'(m K : = {s¢, a1 }4>0 from

k1) Specifically, we sample one expert trajectory

the current policy 7r( k1) Then we use a stochastic estimate g( m,k) 1O approximate the exact
gradient of the local likelihood objective function I; for each local client in equation 8| The update
of the reward relies on both the local softmax policy 7T(m k1) through T(I:’i ) and the local data D;
through T(nfb’k). | | . N

Iim,k) = h(a(m,kﬁT(n;,k)) - h(g(m,kﬁ T(nfhk)) (8)

where h(6;7) = 3,507 tVr(ss, as; 0). Finally, the local reward parameter Gfm ) is updated as:

azm,lﬁ»l) = aém,k) + agfm,k) )]

where « is the learning rate of the reward parameter update.
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Bi-level model aggregation. Every 7" local iterations, local Q-values and local reward parameters
are communicated to the global server for aggregation, while the policy synchronization is per-
formed based on the aggregated Q-values such that each local client has the same policy after the
aggregation. We design the dual aggregation step after thorough thoughts. The reward update in
equation ﬁ depends on how well the trajectories from policy wzm k) approximates the optimal pol-
icy mp ., while the policy 7rz'm k) relies on the Q-value update from equation [5| Therefore, our
(m,k) "
FL algorithm aims to improve the Q-value estimates for local clients by aggregating their Q-values

equation

—soft

N
Q1) ZQOHT ()N (10)

We note that when the Q-values are represented by another network with parameter ¢/, the aggrega-
tion of the Q-values will simply become aggregation of model parameters. The policy synchroniza-
tion is automatically performed by policy improvement based on the aggregated Q-values and sent
to each local client for update such that each local client has the same policy after the Q aggregation

in equation [T T}

—soft

f(m,T)(| ) X eXp(Q(mT 1)( )),VS €S (11)

Since ML-IRL requires a bi-level problem with respect to both the reward parameter and the recov-
ered policy, we consider a dual aggregation that also applies to the reward parameter 6:

N
O,y =D 0!, r_1)/N (12)

Jj=1

After each dual aggregation, the global policy and reward parameters are sent to each local clients
as an initialization for future local training: Fém 0)(18) = T(m—1,)(|s) and 92m 0) = O(m—1,1) for
alli=1,2,..., N. The entire process of the F-ML-IRL algorithm is summarized in Algorithm|[I]

Algorithm 1 Federated Maximum Likelihood Inverse Reinforcement Learning (F-ML-IRL)

: Input: Initialize reward parameter 9(0 0) and policy 71'%0’0). Set the aggregation period to be 7',
number of local server to be N, and reward parameter’s local stepsize as a.

2: form=0,1,...,.M — 1do

3: if m > 0 then

Inherit me 0)( |s) and 9 from last aggregation

4: end if

5: fork=0,..., T —2do

6: fori=1,2,..., Ndo

7: Compute Q" (-,-) using equation

Oy (R

8: Update 7(,,, ;. 1(-|s) based on equation@

9: Sample an expert trajectory T(%'L K from local dataset D;
10: Sample a trajectory T(i; k) from current policy ﬂ’(im k+1)
11: Estimating gradient gém j following equation
12: Update reward parameter Hfm’ k1) using equation@

13: end for
14: end for
15: Setk=T-1
—soft .
16: Aggregate @, i)+, -) by equation
17: Synchronize policies 7, ;+1)(+|s) using equation
18: Aggregate reward parameters g(m, k+1) by equation
19: end for
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4 THEORETICAL ANALYSIS

4.1 ASSUMPTIONS

Ergodicity. For any policy 7, assume the Markov chain with transition kernel P is irreducible and
aperiodic under policy 7. Then there exist constants « > 0 and p € (0, 1) such that

sug |P(s¢ € - | s0=35,7) =tz ()l < kpt, Vt>0 (13)
sE
where || - ||y is the total variation (TV) norm, and y, is the stationary state distribution under 7.

Equation |13| states that the Markov chain mixes at a geometric rate. This is a common assumption
in the RL literature, which holds for any time-homogeneous Markov chain with a finite state space.

Bounded Gradient and Lipschitz Property. For any s € S, a € A, and any reward parameter 6,
the following conditions hold, where L, and L, are positive constants:

Vor(s,a;0)|| < L, and ||[Vgr(s,a;61) — Ver(s,a;02)|| < Ly ||01 — 62]], (14)

Equation [T4] posits that the parameterized reward function has a bounded gradient and is Lipschitz
smooth, which is common in the literature.

4.2 IMPORTANT LEMMAS
We first introduce two important lemmas that are used repeatedly in the converge analysis. Due to
space limitations, the proofs of these lemmas are included in the appendix.

Lemma 1. Suppose the above assumptions hold. Given any reward parameters 0, and 0o, the
Sfollowing results hold for any s € S and a € A:

Qo (5:0) = Qi 7, (5,0)| < Lo |61 = al], (15)
IVL(01) = VL(6a)]| < Le [[61 = o], (16)

where Q%" _ (-, -) denotes the soft Q-function under the reward function (-, -;0) and the policy .

70,0

Lemmalls directly derived from Lemma 2 in (Zeng et al., [2022), where the positive constants L,
and L. are also defined. The Lipschitz properties of the Q value function and the gradient of the
log-likelihood are essential for convergence analysis, as they help control the distance between local
and global models in the FL setting.

Lemma 2. For any two policies m(a|s) and 7' (a|s), the difference in their soft Q-values under some
reward function r for a given state-action pair (s, a) is bounded as follows:

1R = QY lloe < 1 Hlog( ) = log (7)o (17

Controlling the distance between soft Q-values under different policies helps us analyze the opti-
mality of the global policy with respect to the global reward parameter after aggregations.

4.3 MAIN CONVERGENCE RESULT

Theorem 1. Under the above two assumptions, if we choose step size oy iy = ao/(mT + k)7 in

F-ML-IRL (Algorithm , where ag > 0 and o € (0, 1) are constants and M is the total number of
dual aggregations, the following convergence results hold for F-ML-IRL:

- X_ZOE[HlOg (m.1)) — log(mg: 1))HDJ=(9(M*17T*1)+O(M*”T1*f’)(18)
1

33

1
M

m

E [HVL@(WT))M —OM Y+ OM T )+ OM-°T'"%). (19
0
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Remarks: The time complexity of both policy estimate and reward parameter optimization depends
on the number of global aggregation rounds M and the number of local training steps 7". The policy
and reward function parameters in F-ML-IRL converge at the rate of M ~°T1=% and M ~°T~°,
respectively, since we have o € (0,1) and T is often fixed. We note that due to dual-aggregation
and the variance caused by local training on distributed datasets across decentralized clients, F-ML-
IRL exhibits a slightly slower convergence rate, compared with standard centralized ML-IRL with a
single client (whose convergence rate is /M ~?). From Equations and , there exists a sweet
spot with respect to the number of local training steps 7', since 47~ and 7~ both descreases with
T, while T~ increases. Exploring this tradeoff will be considered in future work. Compared with
Fed-Avg (whose convergence rate is M ~'T—1), F-ML-IRL also has a slower convergence rate due
to the complexity of the bi-level optimization problem.

Proof Sketch: Due to space limitations, we outline the key steps of our convergence analysis and
present the complete proof in the appendix. We first analyze the convergence of policy estimates
and reduce it to the convergence of Q-values. We then analyze the distance between Q-values using
the Lipschitz property, tracing back to the start of each dual aggregation around. In particular, we
examine the extra distance between the estimated policy and the optimal policy caused by aggre-
gation, seeking the contraction property of Q-value estimates between adjacent aggregation rounds.
Next, for reward optimization, we leverage the Lipschitz smooth property of the likelihood and con-
trol the discrepancy between the stochastic gradient and the true gradient. This allows us to use
the convergence of Q-values from the previous analysis to demonstrate the gradient convergence
of the reward parameter. For simplicity of notations, we use Q:O(f;n p to denote Q;‘;ﬂ , the
(m,t)
action-value function at a given state for the local policy and reward parameter estimations at round

(m,t). Similarly, ;O(f:n n* denotes Q;‘;f; i o’ which is the Q-function for the optimal policy
(m,t) m,t

Tl 1)

under the reward parameter at round (m, t) and Qi"f‘ 5 denotes fof: s
m ] L)
’ (m,T) (m,T)

the Q-function for the aggregated policy and reward parameter at the m’th aggregation.

, which represents

Convergence of Policy Estimate:

Step 1: We show the distance between the aggregated policy and the optimal policy under the pre-
aggregation local reward parameter could be controlled using the distance between soft Q-functions:

—soft soft

| log (7 (m,T)) — IOg(Weém Moo < 2HQ(m,T—1) = Qi m,r—2) * lloo

T-1)
This step relies on the policy update rule in equation [6]

Step 2: By introducing intermediary terms as bridges, specifically looking back to the time right
after the last aggregation, where all local servers have the same reward parameter 0,1, 1), we
further bound the difference in Step 1 by converting it to the difference of reward parameters using
equation [0} [I0} [[5] Combining this with the y-contraction property of the soft-Q update, we have:

soft soft

A8 T—2 soft soft
||Q(m7T71) — Qi (m,r—2) * o <y HQT@(m—l,T} Fmo1,m) T Qrg(mA,T),ﬂg(mfl’T) lloc + E1

where we use auxiliary variable F; = 4« (1*17_:_2 + T — 2) Lg.

Step 3: Using Lemma [2] we bound the difference in Q-values corresponding to different policies
with the same reward during the aggregation step, and finally have:

—soft soft —soft soft

S T—
HQ(’{n,T—l) - Qi7(7n,T72) #lloo < (T =)y "l (m—1,T—1) — Qi,(mfl,T72) * |loo + B2

T—2

where we use auxiliary variable Fp = 2152 —+ 01— )22 + 17TA’(2T -3)+2(T-2)L.

Finally, we obtain the convergence rate of the policy estimate by the contraction of Q-difference.

Convergence of Reward Parameter Optimization:

Step 1: We first leverage the Lipschitz smooth property of () equation

_ _ _ _ _ Le — _
LO(m,1y)) = LOn—1,1)) + (VLO(m,7))s Om,m) — Om-1,1)) — 7H9(m,T) — Opm_1,1)|?

Step 2: We show the bias between the stochastic gradient estimate gfm k) and the true gradient
VL(G(m,l,T)) could be controlled. In this process, we also compare the increments of local clients



Under review as a conference paper at ICLR 2025

to control the extra error terms introduced by the federated scheme leveraging equation [0} [I2] We
show that the gradient of the global reward parameter could be bounded by the distance between
Q-values:

—Asoft soft

AT = DE[VLOm-1,0)I%] < aCrE[|Qm—1,7-1) = Qiim—17-2)l]

2 d 0)
+E[L(O (1)) — LO(n—1,1))] + E3

B 1471

where ¢ = 00120, ISTTA] and By = 8aLiCay/IS] JA] - 71— +
_ —1)a?L.L2 T _ .

(T-DET-Va Lely | 40" 1)cuLng\/|S| : \A|-[2(2T—3)aL§+1—7-4aL3] are two auxiliary

2 1—v ~
variables. By combining this with the convergence of the Q-value difference that was established in

Step 3 of the Policy Estimation proof, we obtain the desired convergence of the reward parameter.

5 EVALUATIONS

We evaluated the proposed F-ML-IRL method on five high-dimensional robotic control tasks in Mu-
JoCo (Todorov et al, [2012). For comparison, we selected several state-of-the-art baselines, includ-
ing imitation learning approaches that only learn the expert policy—specifically like BC (Pomer-
leau), |1988)) and GAIL (Ho & Ermonl 2016), as well as IRL methods that simultaneously learn both
a reward function and a policy, namely f-IRL (Ni et al.| 2021) and ML-IRL (Zeng et al., |2022).
To ensure fairness, we used Soft Actor-Critic (SAC) (Haarnoja et al., 2018) as the base RL algo-
rithm for all methods since it incorporates elements of Soft Q-Learning and achieves strong per-
formance using the actor-critic scheme. The experiments are conducted on a server with AMD
EPYC 7513 32-Core Processors and NVIDIA RTX A6000 GPUs. We choose M = 200 rounds and
T = 5 local steps and average the results over multiple runs. Our evaluation code is available at
https://anonymous.4open.science/r/F-ML-IRL/.

Environment| Setting |F-ML-IRL . ML-IRL . . BC . . GAIL . . f-IRL .
Mixed Medium| Mixed Medium| Mixed Medium| Mixed Medium
(3,200) | 6425.91 | 6219.78 6161.65 | 983.99 984.04 | 989.30 988.73 | 5615.33 5930.89
Ant (3,1000)| 6398.98 | 5100.25 6402.87 [5952.08 718.87 | 989.00 989.29 | 5370.28 5527.63
(5,200) | 6254.32 | 561491 6161.65 | 983.51 984.04 | 988.67 988.73 | 5628.94 5930.89
(5,1000)| 6528.04 | 6330.67 6402.87 | 411.83 718.87 | 989.77 989.29 | 5388.74 5527.63
(3,200) | 13007.75 | 8054.94 12581.28| -0.63 -0.73 | 7513.31 10288.42|10110.73 12962.52
HalfCheetah (3,1000)| 13228.98 [13642.82 13124.24| -0.66 -11.74 |12112.99 11506.59|13075.95 12871.64
(5,200) | 11827.91 | 6406.45 12581.28| -0.57 -0.73 | 4910.45 10288.42| 7132.01 12962.52
(5, 1000)| 12360.60 |12750.04 13124.24| 110.59 -11.74 |11364.40 11506.59|12659.30 12871.64
(3,200) | 3576.10 | 1871.83 3623.07 | 18.11 18.13 | 1022.90 1023.65 | 1297.25 3456.47
Hopper (3,1000)| 3674.64 | 3518.04 3479.33 | 18.17 2290.58 | 1025.93 1032.07 | 3403.36 3390.08
(5,200) | 3419.95 | 1484.52 3623.07 | 18.12 18.13 | 1020.19 1023.65 | 1313.12 3456.47
(5,1000)| 3618.44 | 3601.40 3479.33 [1016.31 2290.58 | 1111.08 1032.07 | 3468.72 3390.08
(3,200) | 5656.06 | 5484.99 5861.01 | 243.21 242.50 | 4666.38 3035.34 | 5510.06 6004.58
Humanoid (3, 1000)| 5694.79 | 5903.42 5813.57 | 241.46 532.41 | 4627.15 4688.41 | 5708.21 5726.86
(5,200) | 6232.37 | 5462.64 5861.01 | 242.69 242.50 | 4692.86 3035.34 | 5523.40 6004.58
(5,1000)| 6294.25 | 5713.37 5813.57 | 545.01 532.41 | 4577.12 4688.41 | 5608.83 5726.86
(3,200) | 4057.25 |3317.61 4400.43 | 8.38 8.27 353.66 18.74 | 1050.78 5729.55
Walker2d (3,1000)| 5798.37 | 5061.23 5673.49 | 8.27 507.69 | 344.55 19.27 | 4805.53 5255.57
(5,200) | 4540.90 | 3024.14 4400.43 | 8.40 8.27 13.03 18.74 | 1115.37 5729.55
(5,1000)| 5853.42 |4669.73 5673.49 | 711.06 507.69 | 360.10 19.27 | 4704.77 5255.57
Average - 6712.60 | 5661.64 6712.09 | 57597 529.00 | 3183.64 3359.05 | 5424.58 6685.58

Table 1: Compare F-ML-IRL and baselines on MuJoCo tasks, with different number of clients and
demonstration trajectory length. F-ML-IRL achieves similar or higher recovered reward in almost
all scenarios and outperforms the baselines in more than half, as well as in terms of the average.

We evaluate different algorithms using the rewards associated with the recovered expert policies
evaluated in the original environment (same as the method adopted in previous work). We compare
F-ML-IRL with the baselines on five MuJoCo tasks under non-iid data distributions, where each
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client contains different demonstration data corresponding to varying levels of expertise. For the
baselines that rely on centralized learning, we consider two setups: (i) a single client with medium-
level demonstrations, denoted as medium and (ii) a single client with a mixture of demonstrations of
different levels, denoted as mixed. In either case, the total amount of local data per client remains
the same in the experiments. More details on experiment set up is provided in the appendix.

Hopper with Trajectory Length 1000

3 Agents 5 Agents 7 Agents

— single Agent Middle Level
4000 single Agent Mixed Trajectory
— FMLIRL Average

e
3000 / o

§ 20

4
1000 (—4’(

o 200 00 600 800 o 200 400 600 800 o 200 400 600 800
Reration Reration Reration

™

Figure 2: Convergence of F-ML-IRL in Hopper Environment compared with centralized ML-IRL
with mixed and medium data. As the number of clients (and thus the non-iid datasets) increases from
3 (left) to 7 (right), F-ML-IRL takes longer to converge and nevertheless achieves more significant
improvement by leveraging distributed demonstration data on the clients.

The evaluation results are summarized in Table [T} We have tested each algorithm and each MuJoCo
task under 4 settings, i.e., with 3 or 5 clients and with demonstration trajectory length equals to
200 or 1000, respectively. As demonstrated in (Zeng et al., 2022), even a single expert trajectory
of length 1000 can lead to a well-recovered policy using ML-IRL. To investigate the performance
of our model under conditions of scarce and distributed data, we utilize a single expert trajectory of
length 1000 and further reduce its length to 200 in the experiments. In Table|l} we also compute the
average reward for each algorithm across all settings and tasks in our experiments.

We note that F-ML-IRL ensures convergences of the recovered reward in decentralized learning and
achieves similar or higher recovered reward than the baselines in almost all settings and tasks. It
even outperforms centralized baselines in more than half of the settings and tasks, due to its ability
to utilize distributed data. The performance of F-ML-IRL is pretty robust as the number of clients
increases to 5 and the expert trajectory length reduces to 200. Imitation learning baselines like
BC and GAIL generally have lower performance and even fail in some settings. While ML-IRL
performs generally well, it fails to recover a satisfactory policy when data is limited or in tasks
involving mixed trajectories of different expertise. On the other hand, f-IRL performs relatively
well when provided with longer expert trajectories but struggles when demonstration data is limited.
In contrast, our F-ML-IRL consistently achieves similar or higher recovered rewards compared to
all baselines, particularly maintaining robust performance even when data is limited and involves
demonstrations of mixed expertise.

We further illustrate the convergence of our F-ML-IRL algorithm compared with two different cen-
tralized learning baselines using ML-IRL (with medium and mixed-data, respectively) in the Hopper
environment, as shown in Figure @ As the number of clients (and thus the number of non-iid local
datasets) increases (from 3 clients on the left to 7 clients on the right), it takes F-ML-IRL more
rounds to converge, because of the increased variance introduced by local training on more partici-
pating clients and datasets. Nevertheless, F-ML-IRL is able to converge to higher recovered reward
than both baselines. Centralized ML-IRL suffers with mixed demonstration data of varying exper-
tise. In contrast, as the number of clients and demonstration dataset increases, F-ML-IRL shows
more significant improvement by leverage distributed demonstration data on the clients.

6 CONCLUSIONS

This paper proposes F-ML-IRL for federated maximum-likelihood inverse reinforcement learning.
It enables decentralized learning of a shared latent reward function from distributed datasets and
using decentralized clients. F-ML-IRL algorithm leverages a dual-aggregation to update the shared
global model and performs bi-level local updates for inverse learning. We analyze the convergence
and time-complexity of F-ML-IRL. Evaluation results on MuJoCo tasks how that F-ML-IRL ensures
convergences of the recovered reward and achieves similar or higher recovered reward, compared to
state-of-the-art baselines using centralized inverse learning. For further work, we plan to investigate
further communication reduction and the use of heterogeneous local models in F-ML-IRL.

10
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A  PROOF OF LEMMA 2

Given the definition of soft-Q function following Bellman equation:

qOﬂ(s a) IES’NP(-|S,¢1) [T(Sva) +’7Ea/~7r(-\s/) ( sott(s a’) logw(a/\sl))} (21)

The difference between soft-Q values under policies 7 and 7’ is:

Q% (5,0) = Q% (5,0)| = V[Egnp(is,a) [Barmn(ls (Qr (s a) —logm(a']s))]
(22)
- E(‘}/NP(~‘S7Q) [Ea/Nw’(~\s/) (Q:‘(,)g’(slv a/) - IOg 7T/((1/|S/))] |
Using the triangle inequality, we separate the terms in equation 22}
|Q80ﬂ( ) SOft (S a’)| < 7( ’Es '~P(:|s, a)Ea ~(-]s”) [ SOﬁ(S a ) i(,)g’ (Slva/)} ’
(23)

+ |ES/NP(~|S,G)EG/N7T("S/) [10g77(a'|s/) - logwl(a/sl)H)

For the first term in equation 22} we apply Jensen’s inequality to the absolute value function:

By p(|s,a)Earmn(s) [Q f‘(s a') — Qe (s d ]| < sup |Qs°ﬂ(s a') — Qn (s a)] (24

Similarly, the second term in equation [22]involving the log policies is bounded as:

Eg p(fs,a)Earmn(ls) logm(a'|s") —log 7' (a’|s")]| < sup [logm(a’|s") —loga'(a'[s")] (25)
Thus, we combine the two terms in equation [22}

| soft ( soft ( soft( soft (

s a)|+’y§up|logﬂ'( 18" —log 7' (a’|s")|
(26)

Since soft-Q values depend recursively on future rewards, we apply this bound recursively over time.
At t = 1, the same bound holds:

s,a)— sa)|<vsup\ s a)—

|Qr(s1,a1) — Q3 (s1,a1)] < sup |Q)% (s2,a2) — Q)% (52, az))|
e 27)
+ v sup |log w(a’ls") —log 7' (a’|s")]
s’,a’
Substituting this into the previous equation, we get:
|Q% (50 = s,a0 = a) — QN (so = s,a0 = a)|
(28)

<% sup [Q)% (52, a2) — Q) an (82,a2)|+%up\10g7r( 'Is") —logw'(a’s")|(1 + )

52,02

13
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Applying this recursively over n steps:

Q¥ (s0 = s,a0 = a) — Q¥ (so = s,a9 = a)|
fi i o! 1o = k (29)
<" sup |QR (sn, an) — Q% (sn, an)| + sup [log w(a'|s") —log ' (a'|s") Y~
Sn,Qn s',a’ k=0

2N (s n) — Q% (57, )| tends to zero. The geometric series
sumis > o, 7k . Thus, taking the infinity norm with respect to all s and a, the final bound
is:

Asn — oo, the term7 supsn

Qn

QN — QM [l < 17||log( ) — log(7")|| (30)

B PROOF OF THEOREM 1

In this section we show the complete proof for the convergence results for the recovered global poli-
cies T(,,, 7y and the global reward parameter 0., 1) after 7m communications with communication
period T'.

B.1 CONVERGENCE OF POLICY ESTIMATE T (,, T)

We first analyze the approximation error between the logarithm of the synchronized policy
log (7 (m,)(als)) and the logarithm of the optimal policy corresponding to the previous local re-

ward parameter log(y; N (als)) for all 4. Specifically, we aim to bound the difference:

(m,T—
an,Tfl) (a S))

This difference represents the discrepancy between the synchronized policy after the m-th global

aggregation and the optimal policy corresponding to the previous local reward parameter Gfm 1)

1Og(ﬁ('rn,T) (a|s)) - log(ﬂ-G

We aim to show that the distance between the logarithms of the synchronized policy and the optimal
policy can be bounded by the difference between their corresponding soft-Q values. Specifically,
we want to bound:

108 (7,7 (als)) ~ Tog(my: (als))] < Ag,
where Ag involves the difference between the soft-Q values @i(;,f:j_l)(s,a) and
QSOﬁ v (s,a).

O(m, T—2) e%m,,T—Q)

Recall that the policy is proportional to the exponential of the soft-Q value in equation[6] Thus, we
can write:

—soff
exp (Qn:tT—l(sv a))
soft
> 6 €XDp (Q(m T— 1)(5 a))
fi fi
= Qmr-1(5.0) ~log <Z exp (@1 (s, a))) 31
Since log(my:

o (als)) is the optimal policy under reward parameter Gfm 71> according to
(Haarnoja et al.y, 2017), it has the form

log (7 (m, 1) (als)) = log

soft
( | ) eXP(QTGE s ﬂz o (a\s)(sva))
Toi als) = m, m,T— _ (32)
(m.T—1) Z eXp(QSOﬂ ; (a‘s)(S,a))
(m T— 2) 9(77L,T72)

14
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Similarly, we have:

log(mg; (als)) =

(m,T—1)

Q:“(;fzt »Tgi _log E:exp Q;(;fzt »Tgi (S,EL)
(m, T—2) " (m,T—2) Z (m, T—2) " (m,T—2)

(33)

Subtracting the two expressions and use the triangle inequality, we can bound the absolute value of
the difference by the sum of the absolute values:

(als))]

1087 (als)) — log(my;

(m,T—1)

—soft
| [Q(mT (s, a)

_ Qsoft

i
Olm,7—2)" %(m,T—2)

g (z o (T (s
—_ log <Z exp <Qsoft

(m,7—2)’

>>)1

)|

soft

(m, T—-1) ( ) an

Olm,T— 2)

— |log (Zexp( “::T (s, a) )> log (Zexp< soft

(mT 2)

(s;a)
(m,T—2)

_ <s7a>)> |

—soft s
\Qmm (s0) Q" L (s0)
Olm,7—2)" O(m,T—2)
—soft
+ | lo ex ( m sa) —lo ex ( it o s,d)
o (Sesn @0 (S (o oy o

(34)

The second term in equation [34] involves the difference of logarithms of sums. We can bound it
using properties of logarithms and the maximum difference of the soft-Q values.

We utilize the following inequality (as referenced in Equation 47 of (Zeng et al., [2022)):

log <Z exp(Q1 (s, a’))) — log (Z exp(Qa(s, a))) < m&ax |Q1(s,a) — Qa(s,a)| (35)
Applying equation [33] we get:
log <Z exp (7“:: - 1)(3 a))) log (Z exp (Qsoft ; (s, &)>> |
(m,7—2)’ ('m,T72)
< max @?:,;)Tfl)(s,a) Q“Oﬂ y (s,a) (36)
a Olm.r—2)" m,1-2)
Combining the results from equation [34]and equation 36}
108 (7 n. 7 (als)) — log(mg; (als))|
soft o
‘Q(‘; r—1)(s,0) — Q" . (s (37)
(m T—2)’ (m,T72)
+ max QZ(:ST 1(s,a) — Q“’“ y (s,a)
Olm.r—2)" Om, 72

15



Under review as a conference paper at ICLR 2025

Taking the infinity norm on equation [37] gives:

— ft
1108 (Fim,)) —log(mey,, e S 2AQemrny) =@y e B8)

T—2) 9(771,T*2}

By the definition of aggregation in equation[I0] we have

f
Qmr1) = Z et (39)

(mT 2) T (m, T —2)

Plug above definition into equation [38]and by triangle inequality:

N
—soft £t 1 f[ N
Qe = Qg e sV F@T = ey e
(m,T—2) (m,T—2) j=1 (_m T 2) (771,T—2) (m,T—2) (m,T—2)
| X
fi fi
Sedlet Lok
]:1 (m _— T(m,T—2) tm,r—2)" Om,T—2)
(40)
Therefore, we move to analyse ||@Q*°f ; — Qen o loo, Which is the dif-
Tefm T—2)77T(m’T*2) Otm,7—2)" %(m,T—2)

ference of soft-Q values between two different local nodes, one under policy estimation, and the
other under optimal policy. Looking back to the time right after last aggregation, where all local
servers have the same reward parameter g(m—l,T) , we could further bound this difference using the
difference of reward parameters, since the difference of local reward parameters are introduced by
the local increment at each internal iteration except for the aggregation round.

We start by decomposing this difference into three terms and use the triangle inequality, we bound
the sum :

soft ) __ (H)soft
. ol T ST i
) ImT—2) T(m,T—2) Olm,7—2)" (m,T—2)
_ soft soft
- Q J - Qr j ST G
’Tr('m T-2) o7 0
(m,sz) ’ (m,T—2) (m,T—2)
soft soft
(Q T yi B Qng T yd )
=2y Olm,T—2) (m,0)  (m,0)
(Qsoft s Qsoft . ) (41)
(m,0)" (m,0) Olm,7—2) 6('":.,’1"72)
soft soft
< Qr ol s - Tpi i
(m T_2) "(m.7-2) (m,T—2) (m.7-2) ||
soft soft
HQ Py B QTGJ Py
(m 7—2) lm,7—2) (m,0) (m,0)
soft sofl
g — g
(m 0) (nL,O) (m T— 2) (m, T—2)

The first term is the difference between the soft-Q values under the same reward parameter Ggm T—2)

but different policies 7rf and Ty . The second term is the difference due to the change
(m,T—2)

in reward parameters from H(m T_9) O Q(m 0y’ with corresponding optimal policies, and the third
term is similar to the second term but for node i, comparing O(m 0) and QEmnyz). We are utilizing
the fact that 9(m70) = e(m,o) since they are initialized after previous aggregation.
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Applying equation [T3]to equation #1] we have:

||Qsoft ) _ Qsoft ||

pre) Thi s i oo
(m T 2)’ T(m,T—2) 92m,T—2) e%m,,T—Q)
S Qsoft i _ Qi-OfF . (42)

T i T, T—2) 07 el _
(m,T—2) (m,T—2) (m,T—2)
%

+ Lg 9(m T7—2) (m 0) H + Ly |0m.0) = Om.r—2) H

Next, we express the differences in reward parameters in terms of gradient updates. According to
equation [9}

T—3
J Y j
e(m,T—Q) - o(m,o) ta Z im,k) 43)
k=0
T-3
O z—2) = Omo) T D G (44)
k=0
Substituting back into our equation 42}
L . AR I
(m T_2) Tm,7-2) (m,7—2)" (m,T—Q)
T-3 T—2
i fi . )
= QSOt . B Q;(;Jt Tod + Lo Z ggm,k) + Lya Z gzm,k)
O, T—2) T(m,T-2) mr=2 mr-2) || 0 =0

According to equation (56) in (Zeng et al.| 2022)), the gradients are bounded as:

1961l < 2Lg (46)

we can further bound the sums in equation {5}

HQsoft ) __ ()soft ”
oo
) " —2)" O, T2
(47
soft soft 2
< Q o 7er S, +4(T72)an
(m . 2)7 (m,T—z) e(m,T—2) e(mJLQ) -
Now the difference is bounded by the difference between Q-values under reward parameter 03 mT—2)

with respect to the previous approximated policy 7rg and the optimal policy 7791 ; plus
T2

,T—2)
some error terms. We come back from comparing Q-values across different nodes to evaluatlng the
soft-Q value approximation within a single node.

By equation 57 in (Zeng et al.,|2022):

loo <AIQ QL
T(m,k-1) (m,k—1)  (m,k—1) (48)

+4aLl?, 1<k<T-1, meN, Vi

Qsof.t ; _ anfF v
H T"ﬁm,mm(m*‘) Te%?ﬂ,k) ’Wefm, Olm,k—1)

Above inequality provides a bounds of the local Q-value using the previous Q-value times a con-
traction factor v plus some extra term. We could use it to compare the aggregated Q-value at m-th
outer round with the aggregated Q-value at m — 1 - th outer round:
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Apply equation 9] to equation 7}
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9?771,0)7 (m,0) (m,0) (m,0)
T2 i f e 2
ST Qe et (T 2) 12 s0)
O(m—1,T)" T (m—1,T) Om—1,1)"" O(m—1,T) 1—7~
Plug equation |[50|into equation

g¢q q

Hsoft soft

||Q(m,T71) - Qrei i HOO

(m, T—2)  %(m,T—2)

1 N
< = Z ”Qsofl ; - Qsof‘t . Hoo

N j=1 "0y (T D) 1) 1)

1 & T2 f f 1—o72 2
< = —2|| et - — Q% +4a (2 ———+T—-2|L
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T2 f fi 11—~ 2

- soft soft
= — — Q) _ +4o| ——+T -2 | L
v ||QT‘§(nL—1,T) M (m—1,T) QTQ(NL*I,T) ,7T9("L717T) HOO ( 1-— Yy * g
(51)
soft __ ()soft : : :
We further analyze [|Q%! et P21y 111 || and use triangle inequality to

9(77»*1.T)
decompose it into three parts to acquire the same form of Q-value difference in the previous outer
round:

soft __ )soft
HQW(meT) M (m—1,T) QT@(WL—I,T) T8 (m—1,1) |
soft —soft —soft soft
= _ — — _ _ + _ — - . .
H( T8 1,7y (M= 1.T) Q(m 1T 1)) (Q(m 1L,T-1) Qrgfmfl,Tfm’ﬂ—eEm—l,Tfl)
i f
Qe S
1,71y Otm—1,7-1) (m—1,17)""(m—1,T)
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+ sof‘t ‘ o sgft 3
“ ngm—l,T—l)7ﬂ927n—1,T—1) "0m—1,1) 0 (m—1,1) ”
(52)

We first bound the first term in equation [52] by introducing an middle term and triangle inequality:
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For the first term in equation@ we leverage Lemma 7 in (Zeng et al., [2022)), which states:

QO — QN | < L[| — 05, Vm, Y6y, 05, Vs € S,Va € A (54

Ty, Ty,

Then we could further bound the difference between 6’s using equation [9]and equation 6}
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For the second term in equation 53] by Lemma 2}
Qsofl - __ Hsoft i -
” 1, 7—2) (m=1,1) Qre{mil’Tim 777{7,L71,T72)||

- (55)
< T” 1Og(ﬁ(m—l,T)) IOg( (m 1,7-2) )Hoo

We get result similar to equation [38] using similar techniques and decompose equation [53] using
triangle inequality:
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|| 1Og(ﬁ(mfl,T)) - IOg(ﬂ'gm_l,T_Q))Hoo

—soft soft
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The last term could be controlled according to what we did for the last two terms in equation T}

soft soft 2
|| Tpi T gi - Qrei T gi HOO S 2an (57)
(m—1,T-2) (m—1,T-2) (m—1,T-3) (m—1,T-3)

Plugging above results into equation[52] we have:
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We further plug equation [58]to equation [51}
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Summing the inequality from m = 1 to m = M gives:
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Rearranging the inequality, it holds that:
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Dividing by 1 — (1 — «)y* ! on both sides, we get
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Dividing by M on both sides, we get
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Recall the step size is defined as o, 1) = (m;fi 7 where 0 > 0. Then we have the following
result:

M
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Going back to the convergence of policy approximation:
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B.2 CONVERGENCE OF THE GLOBAL REWARD PARAMETER 0, 1

By the Lipschitz smooth property of the likelihood target equation the definition of reward
aggregation equation[I2] and the reward parameter update rule equation

N
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We compare gfm’ ) With the true gradient of L(GEm’ ) and leverage the fact that | VL(0)[|c < 2Ly:
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For g7 (m, k) in equation |66 we evaluate its distance to VL(G{m k)) and also consider the distance

between VL(H{m_ k)) and VL(0(,,, 7y with the help of triangle inequality:
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Taking expectation over both sides:
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According to equation (62) and (63) in (Zeng et al.} 2022)), we have:
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Then, using the Lipschitz property of L in equation[T6}
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Similar to equatlonl we have ||9(m K (m 0) || < 2kaL,, applying equatlonto equation
we have:
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Plugging the result in equation[58] we have:
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Rearranging the inequality above and denote C; = wLQ 2Ca+/|S| - |Al, we obtain:
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Summing the inequality above from m = 1 to M and dividing both sides by «(7" — 1) M, it holds
that
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Since L(0(,, 7)) is negative and L (6 1) is bounded constant, we plug equationinto equation
and get:
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M
= S BIVL@ o )7 = O + OM 7T =) + O(M =0T 7)  (75)
m:l

C EVALUATION
We present the details of the experiment setup and show more convergence plots in MuJoCo tasks.

C.1 EXPERIMENT SETUP

For f-IRL, we utilize the official implementation available at https://github.com/
twni2016/£f-IRL, which also includes implementations for BC and GAIL. The official imple-
mentation of ML-IRL can be found at https://github.com/Cloud0723/ML-IRL.

To ensure a fair comparison, we use SAC as the base RL algorithm for our F-ML-IRL approach as
well as for all baselines, and Adam as the optimizer. Both the Q-network and policy network are
configured as 64 x 64 MLPs with ReLLU activation functions, and the learning rate is set to 1 x 103,

For the Ant and Humanoid environments, the reward function is parameterized by a 128 x 128 MLP
with ReLU activation, while for HalfCheetah, Hopper, and Walker2d, a 64 x 64 MLP with ReLU
activation is used. The learning rate for the reward parameter is 1 x 10~* for Hopper and 1 x 1073
for the other environments.

At each iteration, we sample 10 trajectories from the current local policy estimate and compare them
with the expert demonstration to update the reward parameter.

The reward levels of the expert demonstrations are shown in Table[C.1] For 3 agents, we use Data
3,4, and 5; for 5 agents, Data 2, 3, 4, 5, and 6 are used. For 7 agents, all 7 data sets are distributed
across different local clients.

Environment Datal Data 2 Data 3 Data 4 Data 5 Data 6 Data 7

Ant 5465.10 554483  5699.96  5758.39  5820.41  5927.86  6035.14
HalfCheetah 12831.84 12973.62 13045.36 13187.47 13236.31 13328.38 13434.40
Hopper 3122.05  3217.36  3305.78 342481  3553.03  3603.60  3709.89
Humanoid 493442 507453  5134.65 529735 534538 542032  5501.73
Walker2d 4801.82  4976.41  5081.29  5193.50  5220.25  5379.48 5440.2

Table 2: The reward levels of 7 expert demonstration datasets that are used in our experiments across
5 MuJoCo tasks. We distribute these non-iid datasets to the clients in our experiments.

C.2 CONVERGENCE PLOTS

We provide supplementary plots in other settings (different environment and trajectory length) here
to show the convergence of F-ML-IRL compared with ML-IRL in two centralized learning data
cases:

Ant with Trajectory Length 200

3 Agents 5 Agents 7 Agents
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