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A MORE VISUALIZATIONS OF BIASED DISTRIBUTIONS
We plot the biased distributions of more existing benchmarks as follows:

CelebA. CelebA Liu et al.|(2015) is a dataset for face recognition where each sample is labeled
with 40 attributes, which has been adopted as a benchmark for debiasing methods. Following the
experiment configuration suggested by Nam et al. [32], we focus on HeavyMakeup attributes that are
spuriously correlated with Gender attributes, i.e., most of the CelebA images with heavy makeup
are women. As a result, the biased model suffers from performance degradation when predicting
males with heavy makeup and females without heavy makeup. Therefore, we use Heavy _Makeup
as the target attribute and Male as a spurious attribute. The joint distribution between the Male
and Heavy_Makeup attribute of the CelebA dataset is plotted in Figure [6a] It is clear that the
biased distribution of CelebbA aligns with that in other existing benchmarks, forming a ”diagonal
distribution”.

WaterBirds. WaterBirds|Liu et al.|(2021)) is a synthetic dataset with the task of classify images of
birds as “waterbird” and “landbird”, which is adopted as a benchmark for debiasing methods. The
label of WaterBirds is spuriously correlated with the image background, i.e. Place attribute, which is
either "land” or ”water”. The joint distribution between the Place and Bird attribute of the WaterBirds
dataset is plotted in Figure [6b]

Additional visualization of the biased distribution within real-world datasets is also plotted as follows:

Adult. The Adult Becker & Kohavil (1996) dataset, also known as the ”Census Income” dataset,
is widely used for tasks such as income prediction and fairness analysis. Each sample is labeled
with demographic and income-related attributes. The dataset has been adopted as a benchmark for
debiasing methods, particularly focusing on the correlation between race and income. The joint
distribution between Race and Income attributes of the Adult dataset is plotted in Figure[6c] It is clear
that the biased distribution of Adult does not align with that of other existing benchmarks.

German. The German Hofmann| (1994) dataset, also known as the ”German Credit” dataset, is
commonly used for credit risk analysis and fairness studies. Each sample is labeled with various
attributes related to creditworthiness. The dataset serves as a benchmark for debiasing methods,
emphasizing the correlation between age and creditworthiness. The joint distribution between Age
and Creditworthiness attributes of the German dataset is plotted in Figure [6d] It is clear that the
biased distribution of German does not align with that of other existing benchmarks.

B FINE-GRAINED EVALUATION FRAMEWORK

In this section, we elaborate on the proposed evaluation framework by mathematically and visually
demonstrating the biased distribution within the biased distribution.

Assume a set of biased features a] € B whose correlated class in the target attribute is defined by
a function g : y* — 4%, which is an injection from the spurious to the target attribute. The bias
magnitude of each biased feature is controlled by corr; = P(y* = g(af)|y® = af). Then, the
empirical distribution of the biased train distribution satisfies the following equations.

For samples with biased feature a; within B:

P(y* = a?) x corr; if g(af) = a',
P(y*=aj,y' =a') = {P(ys—af)*l(l—com)l 1
ly*[-1
For samples without biased features and a set of correlated classes C = {g(af) : ai € B}:
P(y' =a") = Yaep P(y* = aj,y" = af)
ly°| — B

otherwise,

P(y* =a’y' =a') =

Following the above equations, we further designed LMLP, HMLP, and HMHP biased distributions
with the configurations in Table[d] The visualizations of the distributions when the target is a ten-class
attribute are in Figure
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Figure 6: Visualization of the joint distribution for datasets, where the y-axis is the target attribute
and the x-axis is the spurious attribute. Figure [6(a) and [6[b) visualize the distribution of existing
benchmarks. Figure [6[c) and [6(d) visualize the distribution of real-world datasets. The biased
distribution of existing benchmarks and real-world datasets is not alike.

Table 4: Configurations for biased distributions within the proposed evaluation framework

Distribution  |yt| |B| corr;

LMLP 10 10 0.5

HMLP 10 1 0.98

HMHP 10 10 0098
Unbiased 10 0 0.1
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Figure 7: Visualization of biased distributions within the proposed evaluation framework under
ten-class classification task. The left, middle, and right plots are visualizations for LMLP, HMLP,
and HMHP distribution respectively.
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C THEORETICAL PROOFS

C.1 PRELIMINARY

Consider a classification task on binary target attribute y* ~ {—1,+1} and a binary spurious attribute
y® ~ {—1,+1}. Let the marginal distribution of the target and spurious attribute to be p!, = P(y" =
+1) and p§ = P(y® = +1). Then the joint distribution between y' and y* can be defined according
to the conditional distribution of y* given y* = +1, i.e. 7o = P(y' = +1|y* = +1). Specifically,
we can derive the probability of each subgroup in the distribution:

P(y"=+1,y" =+1) =p{ -7y, ®)
P(y"=+1,y" = -1) =pi (1 - 7), 6)
P(y® =+1y"' = -1) =p} —p3 - 74, @)
P(y*=-lLy' =-1)=1-p} —pi(1-74) ®)
We assume that feature y* = +1 and y° = —1 is correlated y* = +1 and y* = —1 respectively, i.e.

74 > ply, in the following analysis.

C.2 PROOF OF PROPOSITION 1

Proposition 1 shows that high bias prevalence distribution assumes matched marginal distributions.

Proposition 1. Assume feature y° = +1 is biased. Then high bias prevalence distribution, i.e.
feature y® = —1 is biased as well, implying that the marginal distribution of y* and vy° is matched,
ie. pfIr = p%. Specifically, as 0 approaches to 1, the marginal distribution of y° approaches to that
of y', i.e. limg_1p% = pl,.

Proof. We first derive the upper and lower bound of the p? , and then we can prove the proposition
with the squeeze theorem |Stewart| (2012)).

According to the condition that both features in the spurious attribute are biased and the definition of
biased feature in ref, we can have the following inequalities:

p+>9'p;am:6'(1_pzr)’ &)
p—>9'p771am:0'pz- (10)
where 0 < 6 < 1 is the threshold.
We can also derive the simplified bias magnitude of feature y° = —1 based on the conditional

distribution, and find its relationship with p_ :

p_=1_ —pt (11)
1_ t _ .8 1_
oA AT g (12)
1—p3
_ P (m4 —pY) (13)
1—p3
ps
=1 _;im (14)

We can then derive the lower bound of p with the above equation and inequalities:

S

j ¢ Py ¢
1-pt)> =p_>0- 15
1—Pi( p+)_1_pip+ p—=0-pl (15)
LA S = LB(6) (16)
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We can also derive the following equation and inequalities of 7 according to its definition.

_ PPyt =1yt = +1) ol

= : < a7
P} it
T =ph +pp > 001 —pY) + ) (18)
Then we can derive the upper bound of p? :
pt
01 —ph)+pl, <7y <—F (19)
Py
Py
pi < —F—— =UB(# (20)
A A
We then demonstrate the convergence of the LB(¢) and UB(6) as § — 1:
. T ot — t
51_% LB(0) = F%1_>m1 6-p, =p} 2D
lim UB(6) = lim % =pt 22)
6—1 0%19(1—p+)+p+
Finally, we can prove the proposition according to the squeeze theorem Stewart (2012):
LB(0) < p} < UB(6) 23)
. s __ . _ . o t
él_}rnlp+fgl_>niLB(9)fgl_>mlUB(9)fp+ (24)

C.3 PROOF OF PROPOSITION 2

Proposition 2 shows that high bias prevalence distribution implies uniform marginal distributions.

Proposition 2. Given that the marginal distribution of y* and y' are matched and not uniform, i.e.
p= pi = pﬁr < 0.5. The bias magnitude. of sparse feature, i.e. p’, is monotone dec;reasing at p,
with lim,,_,o+ p = —log(1 — ¢ ).The bias magnitude of the dense feature, i.e. p*, is monotone
increasing at p, with lim,,_, o+ p* = 0.

Proof. Given the distribution proposed in section and the condition p = p = pﬁr < 0.5, we
further use ¢, = pﬂ% to express 7:
+
T+ =p+éi(1—p) (25)
T—-=1-p+oy-p (26)

We can then derive the bias magnitude of the sparse feature y* = +1, given p = pj = pﬁr < 0.5,
and warp it with a function ¢(p).

pi = KL(P(y"), P(y'ly* = +1)) @7)

—p- 509(%) +(1-p)- log(ll:i) (28)

= e ) + 0 e ) =

— pelog( ) + (1= 1) log( =) (30)

=p- log(}%) +log(5 _1¢+) =t(p) GD
We further derive the partial derivative of p% on p as follows:
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Here we apply substitution method to replace 7})12};(‘?2)) with x:
ot
3(;5) = f(z) =logx — (x — 1) (33)
1 —
0cpoPIZ00) (34)
p+or(1—p)

We then show that f(z) is monotone increasing in the interval 0 < z < 1 and the critical point is at
=1

f(x) = % -1>0 (35)
f(1)=0 (36)

Thus, we have f(x) < 0in the interval 0 < 2 < 1, proving p* = ¢(p) to be monotone decreasing at
P.

dp _ Ot(p)
=<0 37
Op Op < 37)
Similarly, we can derive the bias magnitude of the dense feature y® = —1, and see that it is just
t(1-p)
pL = KL(P(y"),P(y'ly" = -1)) (38)
(1-p)(1—¢y)
—(1-p)-lo +lo (39)
(1= p)-log( =0 log (=)
=t(1—p) (40)
As a result, we can prove the monotonicity of p* with the chain rule.
ap* —
pL _ Ot(1—p) @1
dp dp
_ ot —p) 0(1—p) 42)
ol—p)  Op
ot(1—p)
=" (43)
(1 —p)
= —M >0 (44)
dp

We can then derive the convergence of sparse feature bias magnitude p* when p approaches 0 with
L’Hopital’s Rule |Stewart| (2012)).

i e P 0) 1

_p1_1>%1+(p log(p+¢+(1 7p))> —l—lOg(l 7¢+) (46)

o ) i ) _1-0r !

= lim (p-log(p)) + lim, (p Zog(p+¢+(1_p)))+log(1_¢+) (47)

. log(p)

= Jim =45+ ool =) (48)

_ . (log(p)) 1

gy ) @
i 1

— 1 p

_p1—1>%1+ _1% —|—log(1 — gz5+) (50)
1

=1 51

Og(l—¢+) (5D
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Similarly, we can derive the convergence of dense feature bias magnitude p* when p approaches to 0.

plir& pL = plgg)g t(1—p) (52)
. p(l—¢y) 1
=1 dog(——— T )y 4 53
pg{l_(p og(p+¢+(17p)))+ Og(1f¢+) (53)
1
= log(1 = ¢4) +log(7—-) (54)
=0 (55)

D EXPERIMENT DETAILS

D.1 EVALUATION METRICS

Following previous works Nam et al.|(2020); Lee et al.|(2021); Kim et al.|(2022); [Lim et al.| (2023);
Zhao et al.[(2023)); Lee et al.|(2023), we use the accuracy of BC samples and the average accuracy on
balanced test set as our main metrics. As a complement, we also present the accuracy of BN and BA
samples when analyzing the performance of methods. Formally, we categorize samples according to
the attributes (y*,y*) and a function g : y* — y* that maps the biased features to its correlated class.

BA = {ily*[i] € B,y'[i] = g(y°[i]) } (56)
BC = {ily*[i] € B,y'[i] # g(y°[i])} (57)
BN = {ily°i] ¢ B} (58)

where y*[i] and y'[i] the attribute value of sample 7, and B = {a|p’ > 6} is the set of biased features.

D.2 DATASETS

Colored MNIST [Reddy et al.[(2021). We construct the Colored MNIST dataset based on the
MNIST Lecun et al.[(1998)) dataset and set the background color as the bias attribute. Different from
Colored MNIST used in previous work that simply correlates each of the 10 digits with a distinct
color, where the strength of the correlation is controlled by setting the number of bias-aligned samples
to {0.95%, 0.98%, 0.99%, 0.995%}, we proposed a more fine-grained generation process that is
capable of various biased distributions, including LMLP, HMLP, HMHP. See Appendix [B] for more
details.

Corrupted CIFAR10 Nam et al.| (2020). We construct the Corrupted CIFAR10 dataset based on
the CIFAR10 Krizhevsky| (2009) dataset and set the corruption as the bias attribute. Different from
Corrupted CIFAR10 used in previous work that simply correlates each of the 10 objects with a distinct
corruption, where the strength of the correlation is controlled by setting the number of bias-aligned
samples to {0.95%, 0.98%, 0.99%, 0.995%}, we proposed a more fine-grained generation process
that is capable of various biased distributions, including LMLP, HMLP, HMHP. See Appendix [B|for
more details.

BAR Nam et al.|(2020). Biased Action Recognition (BAR) is a real-world dataset that contains
spurious correlations between six human action classes and six place attributes. Following|Nam et al.
(2020), the ratio of bias-conflicting samples in the training set was set to 5%, and the test set consisted
of only bias-conflicting samples.

NICO Kim et al.| (2022) NICO is a real-world dataset for simulating out-of-distribution image
classification scenarios. Following the setting used by Wang et al.|(2021), we use an animal subset of
NICO, which is labeled with 10 object and 10 context classes for evaluating the debiasing methods.
The training set consists of 7 context classes per object class and they are long-tailed distributed (e.g.,
dog images are more frequently coupled with the ‘on grass’ context than any of the other 6 contexts).
The validation and test sets consist of 7 seen context classes and 3 unseen context classes per object
class. We verify the ability of debiasing a model from object-context correlations through evaluation
on NICO.

20



Under review as a conference paper at ICLR 2025

WaterBirds Sagawa* et al.| (2020). The task is to classify images of birds as “waterbird” or
“landbird”, and the label is spuriously correlated with the image background, which is either “land”
or “water”.

D.3 BASELINES

LfF. Learning from Failure (LfF) |[Nam et al.| (2020) is a debiasing technique that addresses the
issue of models learning from spurious correlations present in biased datasets. The method involves
training two neural networks: one biased network that amplifies the bias by focusing on easily
learnable spurious correlations, and one debiased network that emphasizes samples the biased
network misclassifies. This dual-training scheme enables the debiased network to focus on more
meaningful features that generalize better across various datasets.

DisEnt. The DisEnt|Lee et al.|(2021)) method enhances debiasing by using disentangled feature
augmentation. It identifies intrinsic and spurious attributes within data and generates new samples by
swapping these attributes among the training data. This approach significantly diversifies the training
set with bias-conflicting samples, which are crucial for effective debiasing. By training models with
these augmented samples, DisEnt achieves better generalization and robustness against biases in
various datasets.

BE. BiasEnsemble (BE) |Lee et al.| (2023) is a recent advancement in debiasing techniques that
emphasizes the importance of amplifying biases to improve the training of debiased models. BE
involves pretraining multiple biased models with different initializations to capture diverse visual
attributes associated with biases. By filtering out bias-conflicting samples using these pre-trained
models, BE constructs a refined bias-amplified dataset for training the biased network. This method
ensures the biased model is highly focused on bias attributes, thereby enhancing the overall debiasing
performance of the subsequent debiased model.

D.4 IMPLEMENTATION DETAILS

Reproducibility. To ensure the statistical robustness and reproducibility of the result in this work,
we repeat each experiment within this work 3 times with consistent random seeds [0, 1, 2]. All results
are the average of the three independent runs.

Architecture. Following Nam et al.| (2020); [Lee et al.| (2021)), we use a multi-layer perceptron
(MLP) which consists of three hidden layers for Colored MNIST. For the Corrupted CIFAR10 dataset,
we train ResNet18|He et al.|(2016) with random initialization.

Training hyper-parameters. We set the learning rate as 0.001, batch size as 256, momentum as
0.9, and number of steps as 25000. We used the default values of hyper-parameters reported in the
original papers for the baseline models.

Data augmentation. The image sizes are 28x28 for Colored MNIST and 224224 for the rest of
the datasets. For Colored MNIST, we do not apply additional data augmentation techniques. For
Corrupted CIFAR10, we apply random crop and horizontal flip transformations. Also, images are
normalized along each channel (3, H, W) with the mean of (0.4914, 0.4822,0.4465) and standard
deviation of (0.2023, 0.1994, 0.2010).

Training device. We conducted all experiments on a workstation with an Intel(R) Xeon(R) Gold
5220R CPU at 2.20GHz, 256 G memory, and 4 NVIDIA GeForce RTX 3090 GPUs. Note that only a
single GPU is used for a single task.

D.5 APPLYING DID TO DBAM METHODS
As aforementioned in the main paper, when applying our method to the existing DBAM methods

Nam et al.|(2020); [Lee et al.| (2021} 2023)), we do not modify the training procedure of the debiased
model My. For both methods, we train the biased model M, with target feature destroyed data.
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This is done by simply adding a feature destructive data transformation during data processing, with
minimal computational overhead.

Note, for BE [Lee et al.| (2023), such feature destructive data transformation is not applied when
training the bias-conflicting detectors.

E ADDITIONAL EMPIRICAL RESULTS

E.1 DETAILED RESULTS AND EXPLANATIONS OF THE MAIN EXPERIMENTS

The main results in the main paper are presented in the form of performance gain and only contain
results of BC accuracy and average accuracy on the unbiased test set, here we present the results in
their original form, together with error bars, detailed results of accuracies for BA and BN samples of
each dataset as well. Results on the Colored MNIST and Corrupted CIFAR10 datasets can be found
in Table [5|and Table[6] respectively. It shows that combining DiD not only boosts the performance of
existing DBAM methods but also achieves the best performances.

The performance generally varies between different datasets, different types of biased distribution, and
algorithms with and without BiasEnsemble, e.g. between LfF and BE LfF. Firstly, the inconsistency
between datasets is likely to depend on how thoroughly the target feature is destroyed within the
dataset. The target features of Colored MNIST, i.e. digits, are destroyed more completely by patch
shuffling, for shape is the only feature within digits. In comparison, the target feature of Corrupted
CIFARI10 is more complicated (including shape, texture, color, etc.), and thus can not be thoroughly
destroyed by patch shuffling, causing relatively lower performance gain. Secondly, the performance
inconsistency between different biased distributions is due to the reliance of existing DBAM methods
on the high bias prevalence assumption for bias capturing as discussed in section 4.2. Specifically, as
the bias prevalence of the training distribution becomes higher, better bias capture can be achieved by
existing DBAM even without our method, thus making our improvement on the performance less
significant. This conclusion is supported by our experimental results shown in Figure 5. As for the
performance inconsistency between algorithms with and without BiasEnsemble, it is due to the fact
that BiasEnsemble is also a method targeted to enhance the bias capture procedure of the debiasing
framework. As we can see that BiasEnsemble is much more robust to the change in the bias magnitude
and prevalence from Table 1. In other words, certain overlap between the goals of BiasEnsemble and
our method resulted in smaller improvement of our method on BiasEnsemble-based baselines.

E.2 HYPER-PARAMETER SENSITIVITY

As shown in Table[7, we examine three feature destruction methods: pixel-shuffling, patch-shuffling,
and center occlusion, to destroy object shapes. We observed that patch-shuffle with patch-size 8
exhibits the best performance on Corrupted CIFAR10 which is of size 32x32.

F RELATED WORKS

Model Bias. The tendency of machine learning models to learn and predict according to spurious
Arjovsky et al| (2020) or shortcut |Geirhos et al.| (2020) features instead of intrinsic features, i.e.
model bias, is found in a variety of domains |Heuer et al.| (2016)); |Tang et al.| (2021); |Gururangan
et al.| (2018)); McCoy et al.|(2019)); Sagawa* et al.|(2020) and is of interest from both a scientific and
practical perspective. For example, visual recognition models may overly rely on the background of
the picture rather than the targeted foreground object during prediction. One subtopic of model bias
is model fairness, which generally refers to the issue that social biases are captured by models [Hort
et al.|(2021)), where the spurious features are usually human-related and annotated, such as gender,
race, and age |[Mattu et al.| (2016); Hofmann| (199447?).

Data Bias: spurious correlation. Generally, spurious correlation refers to the phenomenon that
two distinct concepts are statistically correlated within the training distribution, though there is
no causal relationship between them, e.g. background and foreground object |(Chu et al.| (2024).
The spurious correlation is a vital aspect of understanding how machine learning models learn and
generalize |Arjovsky et al.[(2020). Specifically, studies on distribution shift|Wiles et al.| (2022)) claim
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Table 5: Results on Colored MNIST dataset show that combining DiD not only boosts the performance
of existing DBAM methods but also achieves the best performances. The accuracy of BN samples is
marked as ’-” in LMLP and HMHP distribution for there is no BN sample within the dataset according
to our evaluation setting in Appendix @

Distr.  Algorithm Accuracy
BA acc BC acc BN acc Avg acc
ERM 97.73 +0.09 91.13 017 - 91.73 x0.16
LfF 80.25 +4.86 68.41 +2.01 - 69.74 +2.41
+ DiD 92.16 035 91.03 +0.15 - 91.15 +0.17
LMLP BE LfF 82.95 + 1.68 83.60 +0.85 - 83.53 +0.75
+ DiD 93.49 1081 89.25 +0.64 - 89.67 £0.54
DisEnt 84.45 +1.72 73.87 +252 - 74.93 £2.44
+ DiD 94.03 r066  91.09 +0.24 - 91.38 +0.28
BE DisEnt  80.18 +1.94 81.07 +2.50 - 80.98 +2.29
+ DiD 91.89 +0.26 89.80 +0.97 - 90.01 +0.89
ERM 99.32 +0.34 8525162  90.30:056 89.82+0.70
LfF 87.76 +4.12 5798 +358 63.72+322 6335302
+ DiD 82.99 +5.08 90.54 074 89.04 084 89.12 +0.77
HMLP BE LfF 57.65 +3214  80.02 110 82.84 168 82.33+193
+ DiD 63.95 +1564 89.11+129 8728 +154 87.22+158
DisEnt 77.55 +7.93 66.52 +875  72.69x591  72.18 £6.05
+ DiD 88.78 +7.24 88.52+147 89.04 113 88.99 +1.16
BE DisEnt  41.84 621 77.59 069 80.87 178 80.19 +1.71
+ DiD 31.97 +7.08 89.33+107 85.88+08  85.66 +0.89
ERM 99.57 +0.07 48.54 £122 - 53.38 +1.10
LfF 57.16 +827 65.62 +2.87 - 64.59 +331
+ DiD T77.84 £2.49 66.91 +1.73 - 68.00 +1.80
HMHP BE LfF 73.61 +1.03 66.90 +0.43 - 67.57 x047
+ DiD 85.65 +2.53 66.37 £2.54 - 68.30 +2.50
DisEnt 59.89 +4.19 68.29 +1.43 - 67.45 +1.28
+ DiD 83.65 +0.13 69.05 +0.38 - 70.51 033
BE DisEnt  77.74 £251 67.51 +133 - 68.53 +1.45
+ DiD 84.62+116  69.50 +1.23 - 71.01 +1.08

that spurious correlation is one of the major types of distribution shift in the real world, and thus an
important distribution shift that a reliable model should be robust to. Furthermore, studies on fairness
and bias Mehrabi et al.| (2021)) have demonstrated the pernicious impact of spurious correlation in
classification (Geirhos et al.|(2019)), conversation Beery et al.| (2020), and image captioning Tang et al.
(2021). However, despite its broad impact, spurious correlation is generally used as a vague concept
in previous works and lacks a proper definition and deeper understanding of it. This is also the major
motivation of this work.

Debiasing without bias supervision. In this work, we focus only on debiasing methods that do
not require bias information, i.e. without annotation on the spurious attribute, for it is more practical.
Existing work [Nam et al.|(2020); [Lee et al.| (2021)); Kim et al.| (2022); Hwang et al.|(2022); Lim et al.
(2023)); Zhao et al.| (2023); |[Lee et al.|(2023); |Park et al.[(2024) in the area generally involve a biased
auxiliary model to capture biases within the training data, according to which the debiased is trained
with various techniques. We call such paradigm debiasing with biased auxiliary model (DBAM).
Specifically,|[Nam et al.[(2020) is the first work that follows the DBAM paradigm, proposing to use
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Table 6: Results on Corrupted CIFARI10 dataset show that combining DiD not only boosts the
performance of existing DBAM methods but also achieves the best performances. The accuracy of
BN samples is marked as ’-* in LMLP and HMHP distribution for there is no BN sample within the
dataset according to our evaluation setting in Appendix

Distr.  Algorithm Accuracy
BA acc BC acc BN acc Avg acc
ERM 80.40 x081  62.50 +0.15 - 64.29 +0.06
LfF 59.13 +068  55.03 £0.04 - 55.44 +0.09
+ DiD 69.47 +096  62.04 +0.21 - 62.78 +0.10
LMLP BE LfF 70.87 +130  52.10 x030 - 53.98 +0.40
+ DiD 63.23 210 53.21 +0.20 - 54.21 038
DisEnt 61.58 +057  55.45 +023 - 56.06 +0.17
+ DiD 72.23 074  60.84 +0.40 - 61.98 +0.30
BE DisEnt  62.73 061  56.59 x0.08 - 57.20 +0.13
+ DiD 65.98 +040 60.92 +0.20 - 61.42 +0.21
ERM 84.67 064 55.85+017 65.75:000 65.05=x0.13
LfF 73.33+167  47.70 x058  54.58 £049  54.15 +0.41
+ DiD 78.67 +2.14 54.81 +226 63.71 +2.69 63.06 +2.63
HMLP BE LfF 70.33 +219  50.96 235 5414 x025 54.02 036
+ DiD 68.80+08 50.20+079 5439 =:018 54.15=x0.15
DisEnt 61.67 +167 5248 +056 54.65:056 54.53 +049
+ DiD 73.67 264 55.26x093 62.11 017 61.61 +0.13
BE DisEnt 7533 +521  49.15+154 56.86+030 56.35 +035
+ DiD 7840 +1.00 54.09+107 62.05+034 61.50+038
ERM 89.97 034  29.37 x030 - 35.43 1024
LfF 7270 081  35.30 £033 - 39.04 +033
+ DiD 82.07 +1.09  37.05 031 - 41.55 +0.19
HMHP BE LfF 82.73 +092 31.48 1082 - 36.61 +0.65
+ DiD 78.30 047  32.90 +1.79 - 37.44 +1.61
DisEnt 70.77 227  36.04 x0.62 - 39.51 +036
+ DiD 76.60 070  39.05 +0.35 - 42.80 +o0.25
BE DisEnt  78.60 +156  34.20 +043 - 38.64 +0.38
+ DiD 78.70 +147  37.72 +0.96 - 41.82 +091

GCE for bias capture, and the loss-based sample re-weighing scheme to train the debiased model.
Lee et al.| (2021)) further proposed a feature augmentation technique to further utilize the captured
bias, enhancing the BC samples. [Hwang et al.| (2022) proposed to augment biased data identified
according to the biased auxiliary model by applying mixup Zhang et al.|(2018) to contradicting pairs.
Lim et al.| (2023) proposed to conduct adversarial attacks on the biased auxiliary model to augment
BC samples aiming to increase the diversity of BC samples. |Lee et al.| (2023) proposed to first
filter out BC samples before training the biased auxiliary model aiming to enhance the bias capture
process of the biased model. [Liu et al.| (2021) regard the samples misclassified by the biased auxiliary
model as BC samples and emphasize them during training of the debiased model. Recently, [Park
et al.| (2024) proposed to provide models with explicit spatial guidance that indicates the region of
intrinsic features according to a biased auxiliary model. Kim et al.|(2021) create images without bias
attributes using an image-to-image translation model |Park et al.| (2020) built upon a biased auxiliary
model. A recent pair-wise debiasing method x? model Zhang et al.| (2023a)) based on biased auxiliary
models encourages the debiased model to retain intra-class compactness using samples generated via
feature-level interpolation between BC and BA samples.
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Table 7: We experiment with three feature destruction methods with various hyper-parameters on
HMLP distributed dataset with LfF.

Trq param BC Avg

N/A N/A 47.70 £358 54.15 +3.02

pixel-shuffle 1 51.44 +101 5543 020
2 51.07 048 55.29 +0.27
4 49.41 +026 55.40 +0.26

patch-shuffle 8 54812074  63.064077
16 49.74 £1.10  53.69 +0.31
8 4519 +141  51.61 +1.31

16 47.26 054  50.94 +0.59
24 49.00 080 52.60 x0.55
32 52.44 1087 55.76 +o0.16

center-occlusion

G LIMITATIONS AND FUTURE WORK

We uncover the insufficiency of existing debiasing benchmarks theoretically and empirically, highlight-
ing the importance of debiasing on real-world biases. We further proposed a feature-destruction-based
method that focuses on DBAM methods. However, there are still a few limitations of this work:

* While DBAM methods are the predominant works in debiasing, there are also other lines
of work such as data generation methods. Thus, one limitation is that We have not evalu-
ated such methods with our proposed evaluation framework which might also yield some
interesting insights on debiasing.

* Another limitation is that, though we have already seen the potential of target feature
destruction, whether it can be applied to other lines of work remains to be studied.

* As shown in section [E] while our proposed approach effectively improves the performance
of existing DBAM methods on all biased distributions from the real world, the performance
is still far from satisfactory, which remains to be further improved in future works.

We see potential within those limitations and leave them for future research.

H BOARDER IMPACT

From a technical standpoint, our research provides a comprehensive framework for analyzing and
mitigating biases in datasets. The proposed fine-grained analysis framework and evaluation bench-
marks offer a new perspective on how biases manifest in real-world data and how existing debiasing
methods can be improved. Our approach, which involves the destruction of target features during
bias capture, demonstrates significant improvements in handling real-world biases, as evidenced by
our extensive experimental results.

By advancing the understanding of dataset biases and improving the performance of debiasing
methods, our research contributes to the development of more robust and generalizable AI models.
This is particularly relevant in an era where Al systems are increasingly deployed in dynamic and
diverse environments, necessitating models that can adapt and maintain high performance across
different contexts and populations.
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