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Abstract
Zero-shot anomaly detection (ZSAD) methods detect anomalies
without prior access to known normal or abnormal samples within
target categories. Existing methods typically rely on pretrained mul-
timodal models, computing similarities between manually crafted
textual features representing "normal" or "abnormal" semantics and
image patch features to detect anomalies. However, the generic
descriptions of "abnormal" often fail to precisely match diverse
types of anomalies across different object categories. Addition-
ally, computing feature similarities for single patches struggles
to pinpoint specific locations of anomalies with various sizes and
scales. To address these issues, we propose a novel ZSAD method
called FiLo, comprising two components: adaptively learned Fine-
GrainedDescription (FG-Des) and position-enhancedHigh-Quality
Localization (HQ-Loc). FG-Des introduces fine-grained anomaly
descriptions for each category using Large LanguageModels (LLMs)
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and employs adaptively learned textual templates to enhance the ac-
curacy and interpretability of anomaly detection. HQ-Loc, utilizing
Grounding DINO for preliminary localization, position-enhanced
text prompts, and Multi-scale Multi-shape Cross-modal Interac-
tion (MMCI) module, facilitates more accurate localization of anom-
alies of different sizes and shapes. Experimental results on datasets
like MVTec and VisA demonstrate that FiLo significantly improves
the performance of ZSAD in both detection and localization, achiev-
ing state-of-the-art performance with an image-level AUC of 83.9%
and a pixel-level AUC of 95.9% on the VisA dataset. Code is available
at https://github.com/CASIA-IVA-Lab/FiLo.
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Figure 1: Comparison of anomaly detection and localiza-
tion between FiLo and previous ZSAD methods. Previous
ZSAD methods utilize fixed templates and generic anom-
aly descriptions, potentially resulting in errors. Our FG-Des
enhances detection accuracy with adaptively learned text
templates and fine-grained anomaly descriptions. For local-
ization, ZSAD methods often produce false positives in back-
ground areas by directly comparing image patches with text
features. Our HQ-Loc approach, using Grounding DINO, lo-
cation enhancement, and MMCI, effectively removes back-
ground regions and improves localization accuracy.

1 Introduction
The anomaly detection task aims to identify whether industrial
products contain abnormalities or defects and locate the abnormal
regions within the samples, which plays a crucial role in prod-
uct quality control and safety monitoring. Traditional anomaly
detection methods [6, 7, 31, 35] typically require a large number of
normal samples for model training. While performing well in some
scenarios, they often fail in situations requiring protection of user
data privacy or when applied to new production lines. Zero-Shot
Anomaly Detection (ZSAD) has emerged as a research direction
tailored to such scenarios, aiming to perform anomaly detection
tasks effectively without prior data on the target item categories,
demanding high generalization ability from the model.

Multimodal pre-trained models [18, 19, 29] have recently demon-
strated strong zero-shot recognition capabilities in various visual
tasks. Many works have sought to leverage the vision-language
comprehension ability of multimodal pre-trained models for ZSAD
tasks, such asWinCLIP [17], APRIL-GAN [5], andAnomalyGPT [16].
Thesemethods assess whether an image contains anomalies by com-
puting the similarity between image features and manually crafted
textual features representing "normal" and "abnormal" semantics.
They also localize abnormal regions by calculating the similarity
between the image patch features and the textual features. While
these approaches partly address the challenges of ZSAD, they en-
counter issues in both anomaly detection and localization. The
generic "abnormal" descriptions fail to precisely match the diverse
types of anomalies across different object categories. Moreover,
computing feature similarity for individual patches struggles to
precisely locate abnormal regions of varying sizes and shapes. To

tackle these issues, we propose FiLo (Fine-Grained Description and
High-Quality Localization), which addresses the shortcomings of
existing ZSAD methods through adaptively learned Fine-Grained
Description (FG-Des) and High-Quality Localization (HQ-Loc), as
depicted in Figure 1.

Concerning anomaly detection, manually crafted abnormal de-
scriptions typically employ generic terms such as "damaged" or "de-
fect" [5, 16, 17], which do not adequately capture the specific types
of anomalies present across different object categories. Furthermore,
existing methods’ text prompt templates like A xxx photo of xxx.
are primarily designed for foreground object classification tasks
and may not be suitable for identifying normal and abnormal parts
within objects. In FG-Des, we first leverage the capabilities of Large
Language Models (LLMs) to generate fine-grained anomaly types
for each object category, replacing generic abnormal descriptions
with specific anomaly content that matches the anomaly samples
better. Next, we utilize learnable text vectors instead of manually
crafted sentence templates and embed the detailed anomaly con-
tent generated in the previous step into the adaptively learned text
templates to improve the match between the text and the abnormal
images, enhancing the textual features for anomaly detection. Our
FG-Des not only improves the accuracy of anomaly detection but
also enables the identification of the specific anomaly categories
present in the samples, thus enhancing the interpretability.

Regarding anomaly localization, existing methods [5, 8, 16] lo-
calize anomalies by computing the similarity between the features
of each image patch and the textual features. However, anomalies
often span multiple patches with different shapes and sizes, some-
times requiring comparison with surrounding normal regions to
determine their abnormality. While WinCLIP [17] addresses this
issue by employing windows of different sizes, it incurs signifi-
cant time and space costs by inputting a large number of images
corresponding to each window into CLIP’s image encoder during
inference. To tackle this problem, we design HQ-Loc, which consists
of three main components: first, preliminary anomaly localization
based on Grounding DINO [22]. Considering that even in abnormal
samples, most regions are normal, and anomalies only exist in small
local areas, we utilize the detailed anomaly descriptions generated
in the previous step and employ Grounding DINO [22] for prelim-
inary anomaly localization. Although directly using Grounding
DINO for zero-shot anomaly localization yields low accuracy, the
localized regions are always in the foreground, effectively avoiding
false positives in background regions. Second, position enhance-
ment involves adding the position detected by Grounding DINO
to the text prompt, resulting in a more accurate description of the
anomaly position. Third, the Multi-scale Multi-shape Cross-modal
Interaction (MMCI) module aggregates patch features extracted by
the Image Encoder using convolutional kernels of different sizes
and shapes to enhance the method’s ability to localize anomalies
of different sizes and shapes.

Extensive experiments are conducted on multiple datasets like
MVTec [2] and VisA [39]. Our FiLo improves the accuracy of anom-
aly detection and localization, achieving new state-of-the-art zero-
shot performance. Trained on the MVTec dataset and tested on
the VisA dataset, FiLo achieves an image-level AUC of 83.9% and a
pixel-level AUC of 95.9%, outperforming other ZSAD methods.

Our contributions can be summarized as follows:
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• We propose an adaptively learned Fine-Grained Descrip-
tion (FG-Des) that leverages domain-specific knowledge to
introduce detailed anomaly descriptions, replacing generic
"normal" and "abnormal" descriptions. Also, we use learn-
able vectors instead of manually crafted text templates to
learn textual content which is more suitable for anomaly
detection, improving both the accuracy and interpretability.

• Additionally, we design a High-Quality Localization method
(HQ-Loc) that employs GroundingDINO [22] for preliminary
anomaly localization, enhances text prompts with descrip-
tions of anomaly positions, and utilizes an MMCI module to
localize anomalies of different sizes and shapes more accu-
rately, improving anomaly localization accuracy.

• Extensive experiments on multiple datasets demonstrate
significant performance improvements in anomaly detection
and localization compared to baseline methods. FiLo has
been proved to be effective for zero-shot anomaly detection
and localization, achieving state-of-the-art performance.

2 Related work
2.1 Vision-Language Models
Recently, multimodal models integrating visual and textual con-
tent have achieved significant success in various visual tasks [3,
19, 22, 29]. Among these, CLIP [29], pre-trained on a massive scale
internet dataset, emerges as one of the most prominent methods.
CLIP employs two structurally similar Transformer [34] encoders
to extract features from images and text, aligning features with
the same semantics through contrastive learning methods. With
appropriate prompts, CLIP demonstrates remarkable zero-shot gen-
eralization capabilities across multiple datasets for downstream
image classification tasks. However, the quality of prompts sig-
nificantly affects the performance of downstream tasks. Tradi-
tional approaches [4, 17] require experts to manually craft suitable
text prompts for each task, demanding domain-specific knowledge
and being time-consuming. Recent methods like coop [37] and
cocoop [36] propose using learnable vectors instead of manually
crafted prompts, requiring minimal training cost while achieving
superior performance across multiple datasets.

While the original CLIP was designed for image classification
tasks, researchers have extended their efforts to explore vision-
language models for object detection and semantic segmentation
tasks. Grounding DINO [22] is a notable example, combining the
Transformer-based object detector DINO with Grounded pretrain-
ing, achieving excellent performance as an open-set object detector.

Our FG-Des method, incorporating adaptive learned fine-grained
anomaly descriptions, is built upon CLIP [29] and cocoop [36]. How-
ever, straightforward utilization of cocoop-enhanced CLIP does not
excel in anomaly detection tasks. Detailed anomaly descriptions
for each item category are crucial for achieving outstanding per-
formance. Grounding DINO [22] serves as a vital component of
HQ-Loc. Yet, employing Grounding DINO [22] directly for zero-shot
anomaly localization yields low accuracy. We utilize Grounding
DINO solely for preliminary anomaly localization, capturing the
approximate location of anomalies and avoiding false positives in
background regions.

2.2 Zero-shot Anomaly Detection
Most zero-shot anomaly detection methods leverage the transfer-
ability of pre-trained vision-language models. Early methods like
ZoC [13] and CLIP-AD [23], simply apply CLIP to anomaly detec-
tion data, resulting in low accuracy and inability to localize abnor-
mal regions. WinCLIP [17] first achieves anomaly localization by
cropping windows of different sizes in images and significantly
enhances anomaly detection by employing carefully crafted text
prompts. APRIL-GAN [5] aligns patch-level image features with
textual features using a learnable linear projection layer to accom-
plish anomaly localization, overcoming the inefficiency caused by
WinCLIP’s input of numerous windows and further enhancing per-
formance. AnoVL [8] resolves themismatch between patch-level im-
age features and textual features by introducing V-V attention [20],
enabling direct application of CLIP to anomaly detection tasks with-
out any additional training. However, all the above methods require
carefully designed and manually crafted text templates. Anoma-
lyCLIP [38], an emerging approach, substitutes object-agnostic
learnable text vectors for manually crafted text templates. Never-
theless, AnomalyCLIP describes anomalies uniformly using the
word "damaged", which is evidently insufficient to cover all types
of anomalies.

SAA [4] is a zero-shot anomaly localization method based on the
Grounded-SAM [30] approach. SAA utilizes Grounding DINO to
generate anomaly bounding boxes, which are then used as prompts
input into the Segment Anything Model [18] to obtain anomaly
localization results. However, SAA [4] requires expertly crafted
text inputs for Grounding DINO, and its results heavily rely on the
detection outcomes of Grounding DINO, which may lead to low
precision when directly applied to ZSAD. In our method, Grounding
DINO serves solely as a preliminary anomaly localization module,
aiming to prevent false positives in background regions of images.
The primary dependency of our approach lies in the MMCI module
for anomaly localization.

Moreover, none of the above methods incorporate location in-
formation of anomalies in the text prompt. Compared to existing
methods, our approach enhances anomaly detection performance
and interpretability by adaptive learned Fine-Grained anomaly De-
scriptions.We also improve the localization capability for anomalies
of different sizes and shapes through our position-enhanced High-
Quality localization method HQ-Loc.

2.3 Visual Description Enhancement
As mentioned earlier, numerous prior studies [36, 37] have exten-
sively demonstrated that the quality of the text prompt significantly
impacts the performance of downstream tasks for pretrained Vision-
Language models like CLIP [29]. In contrast to text content meticu-
lously crafted by experts, recent works [14, 25, 26] have delegated
the task of generating high-quality text prompts to large language
models (LLMs), which are called visual description enhancement.
LLMs such as GPT-3.5 [28] and GPT-4 [1] encapsulate extensive
knowledge across various domains, showcasing impressive perfor-
mance across a spectrum of tasks. Our FiLo method harnesses the
profound domain knowledge embedded within LLMs to generate
potential anomaly types for each item category, thereby deriving
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fine-grained anomaly descriptions. We are the first to apply visual
description enhancement techniques to anomaly detection tasks.

2.4 Multi-Scale Convolution
In recent years, multi-scale convolution has been a research hotspot
to detect objects of different sizes appearing in images [10, 11,
32, 33]. Multi-scale convolution methods aggregate features of re-
gions with different sizes by using convolutional kernels of various
sizes, achieving significant performance improvements in image
classification, semantic segmentation, and object detection. Incep-
tionNet [32] is a typical representative, simultaneously employing
convolutional kernels of 1×1, 3×3, 5×5, etc. within the same layer
to address the uncertainty of the optimal kernel size across different
samples. MixConv [33] groups input channels and applies convolu-
tional kernels of different sizes to each channel group. RepVGG [11]
decomposes all sizes of convolutional kernels into a series of com-
posite operations of 3 × 3 convolutions. ACNet [10] changes the
order of convolution and summation, first summing convolutional
kernels of different sizes and then performing a single convolu-
tion operation, thereby reducing computational overhead. Most
existing multi-scale methods focus on square convolutional kernels
of different sizes. ACNet [10] employs multi-shape convolutional
kernels, but its emphasis is on computational efficiency, neglecting
multi-scale aspects. Since anomalies in images may exhibit vari-
ous shapes and sizes, our MMCI module introduces convolutional
kernels of different sizes and shapes to fully localize anomalies.

3 FiLo
In this paper, we propose FiLo to enhance the capability of zero-shot
anomaly detection and localization. Regarding anomaly detection,
we devise the adaptively learned Fine-Grained Description method
(FG-Des, Sec 3.2), which leverages fine-grained anomaly descrip-
tions generated by LLMs and adaptable text vectors to identify
the most precise textual representation for each anomaly sample.
FG-Des facilitates more accurate judgments regarding the presence
of anomalies in images and determines detailed anomaly types,
thereby enhancing the interpretability of the method. For anomaly
localization, we introduce the position-enhanced High-Quality Lo-
calization method (HQ-Loc, Sec 3.3), which employs preliminary
localization via Grounding DINO, position-enhanced text prompts,
and a Multi-scale, Multi-shape Cross-modal Interaction module to
more accurately pinpoint anomalies of various sizes and shapes.

3.1 Overall Architecture
The overall architecture of the model is illustrated in Figure 2. For
an input image 𝐼 ∈ R𝐻×𝑊 ×3, we first utilize information from the
dataset or LLM to generate a list of fine-grained anomaly types that
may exist for this item category. Subsequently, the anomaly text
is inputted into Grounding DINO to obtain preliminary bounding
boxes for anomaly localization. Simultaneously, the combination
of fine-grained anomaly type and previously learned text vector
templates yields text descriptions for both normal and abnormal
cases. These descriptions are then fed into the CLIP Text Encoder for
feature extraction, resulting in representations of normal and abnor-
mal text features. Next, the image is passed through the CLIP Image
Encoder to extract intermediate patch features 𝑃𝑖 ∈ R𝐻𝑖×𝑊𝑖×𝐶𝑖

from M stages, where 𝑖 indicates the 𝑖-th stage. These intermediate
patch features are subjected to the MMCI module together with text
features to generate anomaly map for each layer𝑀𝑖 ∈ R𝐻×𝑊 . Sub-
sequently, after filtering with bounding boxes, the score maps for
each layer are summed and normalized to obtain the final anomaly
map 𝑀 ∈ R𝐻×𝑊 . The global features of the image are compared
with text features after adaptation, and the maximum value of the
final anomaly map𝑀 is added to derive the global anomaly score
for the image.

3.2 FG-Des
Numerous existing methods [5, 8, 17] have demonstrated that the
quality of text prompts significantly affects the effectiveness of
anomaly detection when performing zero-shot inference on new
categories. Therefore, we first focus on prompt engineering to gen-
erate more accurate and efficient text prompts for enhancing anom-
aly detection in ZSAD. In FG-Des, we achieve this goal through
adaptively learned text templates and fine-grained anomaly descrip-
tions generated by LLMs.

3.2.1 Adaptively Learned Text Templates. Following the success of
methods like WinCLIP [17], subsequent methods such as APRIL-
GAN [5] and AnomalyGPT [16] directly adopt the text templates
used in WinCLIP to construct text prompts. However, the text tem-
plate in WinCLIP, A xxx photo of [state] [class], is primarily derived
from the text template used by CLIP for image classification tasks
on the ImageNet [9] dataset, which mainly indicates the category
of foreground objects in the image rather than whether the object
contains anomalies internally. To address this issue, we employ
adaptive text templates learned based on anomaly detection-related
data. During the learning process, these templates can combine the
normal and abnormal content in the image to generate text prompts
that better distinguish between normal and abnormal cases, while
avoiding the need for extensive manual template engineering. Our
adaptive normal and abnormal text templates are defined as follows:

𝑇𝑛 = [𝑉1] [𝑉2] ...[𝑉𝑛] [𝑆𝑇𝐴𝑇𝐸] [𝐶𝐿𝐴𝑆𝑆] .
𝑇𝑎 = [𝑊1] [𝑊2] ...[𝑊𝑛] [𝑆𝑇𝐴𝑇𝐸] [𝐶𝐿𝐴𝑆𝑆]

𝑤𝑖𝑡ℎ [𝐴𝑁𝑂𝑀𝐴𝐿𝑌 𝐶𝐿𝐴𝑆𝑆] 𝑎𝑡 [𝑃𝑂𝑆] .
[𝑉𝑖 ] and [𝑊𝑖 ] are learnable text vectors, [𝑆𝑇𝐴𝑇𝐸] represents the
general "normal" or "abnormal" state, [𝐶𝐿𝐴𝑆𝑆] denotes the item
category, [𝐴𝑁𝑂𝑀𝐴𝐿𝑌 𝐶𝐿𝐴𝑆𝑆] specifies the detailed anomaly con-
tent, and [𝑃𝑂𝑆] indicates the location of the anomaly region, which
can be one of nine possible scenarios, e.g., "top left" or "bottom".

Based on this template, we only need to replace the [𝐶𝐿𝐴𝑆𝑆],
[𝐴𝑁𝑂𝑀𝐴𝐿𝑌 𝐶𝐿𝐴𝑆𝑆], and [𝑃𝑂𝑆] parts for different objects to gen-
erate different text prompt content.

3.2.2 Fine-Grained Anomaly Descriptions. As mentioned earlier,
the generic "anomaly" texts in existing methods are insufficient to
accurately describe the diverse types of anomalies that may appear
on different object categories. Therefore, there is an urgent need
for more personalized, informative text prompts to accurately char-
acterize each image. LLMs such as GPT-4 [1] possess rich expert
knowledge across various domains. We harness the power of LLMs
to generate specific lists of potential anomaly types for each item
category, replacing the vague and general "anomaly" or "damaged"



FiLo: Zero-Shot Anomaly Detection by Fine-Grained Description and High-Quality Localization MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

Normal Texts

Detailed Abnormal Texts

[v1][v2]…[vn][STATE][CLASS].

[w1][w2]…[wn][STATE][CLASS] 

with [ANOMALY CLASS] at [POS].

e.g. [v1][v2]…[vn] normal chewinggum.

e.g. [w1][w2]…[wn] abnormal 

chewinggum with scratch at right.

Normal 

Text 

Features

Grounding DINO

Abnormal 

Texts 

w/o [POS]

Global 

Anomaly Score

Adapter

CLIP Image 

Encoder

CLIP Text 

Encoder

Conv

Abnormal 

Text

 Features

bbox

Stage1 Stage2 Stage3 Stage4

P1 P2 P3 P4

bbox

Global 

Image 

Feature

Anomaly Map

Max 

ValueMMCI

Add

& 

Norm

Fn & Fa

Fn Fa

Trained Modules Frozen Modules Matrix Multiplication

Pi ：  Patch Features of Stage i Fn & Fa ：  Normal and Abnormal Text Features

[POS]

Figure 2: Overall architecture of FiLo. Given an input image, fine-grained anomaly types are generated by LLM. Then normal
and detailed abnormal texts are input into Grounding DINO to obtain bounding boxes and are fed into CLIP Text Encoder
to get 𝐹𝑛 and 𝐹𝑎 . Intermediate patch features of input image are subjected to MMCI together with text features to compute
anomaly map, and the global image features are compared with text features after adaptation to obtain global anomaly score.

descriptions used in previous methods. Such detailed textual fea-
tures, when combined with features extracted by CLIP from images,
lead to better anomaly detection results.

By incorporating fine-grained anomaly descriptions generated
by large language models (LLMs) into the adaptive text templates’
[𝐴𝑁𝑂𝑀𝐴𝐿𝑌 𝐶𝐿𝐴𝑆𝑆] section, we obtain complete text prompts.
These prompts are then inputted into the CLIP Text Encoder, and
after group averaging, we obtain text features representing normal
and abnormal cases, denoted as 𝐹 = [𝐹𝑛, 𝐹𝑎] ∈ R2×𝐶 . For the global
features 𝐺 extracted from the image via the CLIP Image Encoder,
we first pass them through a linear adapter layer to obtain adapted
image features 𝐴 ∈ R𝐶 that better match the textual content. Next,
we calculate the global anomaly score by Eq (1):

𝑆𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐴 · 𝐹𝑇𝑎 ) +max(𝑀) . (1)
𝑀 represents the anomaly map calculated in Sec 3.3 and max(·)
denotes the maximum operation.

Fine-grained anomaly descriptions not only improve the accu-
racy of anomaly detection but also enhance the interpretability of
the detection results. Specifically, we can calculate the similarity
between image features and each precise anomaly description. By
examining the textual descriptions with high similarity, we can de-
termine which category the anomaly in the image belongs to, thus
gaining deeper insight into the model’s decision-making process.

3.3 HQ-Loc
Existing Zero-Shot Anomaly Detection (ZSAD) methods often lo-
cate anomaly positions by computing the similarity between the

features of each image patch and textual features. However, an
anomaly region often spans multiple patches, exhibiting various
positions, shapes, and sizes. Sometimes, it requires comparison
with surrounding normal regions to determine if it’s an anomaly.
To address this, we propose this position-enhanced High-Quality
Localization method HQ-Loc, which enhances anomaly localization
from coarse to fine. This is achieved through three key components:
Grounding DINO preliminary localization, position-enhanced tex-
tual prompts, and Multi-Scale Multi-Shape Cross-modal Interaction
Module (MMCI). Below, we provide detailed explanations for each
component.

3.3.1 Grounding DINO Preliminary Localization. Existing ZSAD
methods typically lack discrimination between patches at different
positions in the image, often resulting in the misidentification of
background perturbations as anomalies. To mitigate this, we utilize
detailed anomaly descriptions generated in the previous step to
perform preliminary anomaly localization using Grounding DINO.
While direct application of Grounding DINO may not precisely
determine the exact location of anomalies, the localization boxes
obtained generally reside in the foreground of objects, often near
the anomaly area. Therefore, using the localization results from
Grounding DINO to restrict anomaly regions effectively avoids false
positives in the background, thus enhancing the accuracy of anom-
aly localization. Additionally, since Grounding DINO localization
is not entirely accurate and may have missed detections, we adopt
a strategy of suppressing anomaly scores outside all localization
boxes by multiplying them with a parameter 𝜆.
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3.3.2 Position-Enhanced Textual Prompt. After obtaining the pre-
liminary anomaly localization results from Grounding DINO, we in-
corporate the position information from the localization boxes into
textual prompts to enhance position descriptions. Textual prompts
with detailed anomaly descriptions and position enhancements are
more aligned with the content in the image being examined. This
alignment assists the model in concentrating on specific areas of the
image during anomaly localization in the subsequent step, thereby
improving localization accuracy.

3.3.3 MMCI Module. To comprehensively locate anomalies of dif-
ferent shapes and sizes, our approach does not directly compute
the similarity between each image patch feature and textual fea-
tures. Instead, we design a Multi-Scale Multi-Shape Cross-Modal
Interaction Module (MMCI). MMCI is inspired by WinCLIP’s use of
windows of different sizes to select subregions in images and then
determine if each subregion contains an anomaly. However, MMCI
significantly reduces the computational overhead incurred by Win-
CLIP when simultaneously inputting dozens of images selected by
windows into the CLIP’s Image Encoder. Specifically, we design
convolutional kernels of different sizes and shapes to process patch
features extracted by the CLIP Image Encoder in parallel. Subse-
quently, we aggregate these features and compute their similarity
with position-enhanced textual features. Through this approach,
our MMCI module can effectively handle anomalies of different
sizes and shapes, greatly enhancing the model’s ability to localize
anomaly regions.

Let𝑛 different shaped convolutional kernels be denoted as𝐶𝑜𝑛𝑣 𝑗 ,
where 𝑗 ranges from 1 to 𝑛. Given patch features 𝑃𝑖 ∈ R𝐻𝑖𝑊𝑖×𝐶 ,
position-enhanced text features [𝐹𝑛, 𝐹𝑎] ∈ R2×𝐶 , normalmap𝑀𝑛

𝑖
∈

R𝐻×𝑊 and anomaly map𝑀𝑎
𝑖
∈ R𝐻×𝑊 can be calculated by Eq. (2):

𝑀𝑛
𝑖 , 𝑀

𝑎
𝑖 = 𝑈𝑝 (𝑁𝑜𝑟𝑚(

𝑛∑︁
𝑗=1

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐶𝑜𝑛𝑣 𝑗 (𝑃𝑖 ) · [𝐹𝑛, 𝐹𝑎]𝑇 ))), (2)

where𝑈𝑝 (·) denotes the upsampling operation, and 𝑁𝑜𝑟𝑚(·) rep-
resents the normalization operation, ensuring that the values in the
anomaly map lie between 0 and 1. By summing and normalizing
𝑀𝑖 for each layer, we can obtain the normal and anomaly map:

𝑀𝑛 = 𝑁𝑜𝑟𝑚(
∑︁
𝑖

𝑀𝑛
𝑖 ), 𝑀

𝑎 = 𝑁𝑜𝑟𝑚(
∑︁
𝑖

𝑀𝑎
𝑖 ), (3)

and the final localization result can be calculated by Eq (4):

𝑀 = 𝐺𝜎 (𝑀𝑎 + 1 −𝑀𝑛)/2, (4)

where 𝐺𝜎 is a Gaussian filter, and 𝜎 controls smoothing.

3.4 Adapter
We employ a common bottleneck structure Adapter to align global
image features and text features, consisting of two linear layers, one
ReLU [15] layer, and one SiLU [12] layer, as shown in Algorithm 1.

3.5 Loss Functions
To learn the content of adaptive text templates and the convolu-
tional kernel parameters in MMCI, we chose different loss functions
for training from the perspectives of global anomaly detection and
local anomaly localization.

Algorithm 1 Adapter Module

Require: Input vector x ∈ R768

Ensure: Output vector y ∈ R768

1: h1 = ReLU(W1x + b1) ∈ R384

2: y = SiLU(W2h1 + b2)

3.5.1 Global Loss. We employ cross-entropy loss to optimize our
global anomaly score as follows:

𝐿𝑔𝑙𝑜𝑏𝑎𝑙 = 𝐿𝑐𝑒 (𝑆𝑔𝑙𝑜𝑏𝑎𝑙 , 𝐿𝑎𝑏𝑒𝑙), (5)
where 𝑆𝑔𝑙𝑜𝑏𝑎𝑙 represents the global anomaly score calculated in
Sec 3.2.2, and 𝐿𝑎𝑏𝑒𝑙 denotes the label indicating whether the image
is anomalous or not.

3.5.2 Local Loss. We employ two commonly used loss functions
in semantic segmentation tasks: Focal loss [21] and Dice loss [27],
to optimize our anomaly map𝑀 , as shown by Eq. (6):

𝐿𝑙𝑜𝑐𝑎𝑙 = 𝐿𝑓 𝑜𝑐𝑎𝑙 (𝑀𝑎, 𝑔𝑡) + 𝐿𝑑𝑖𝑐𝑒 (𝑀𝑎, 𝑔𝑡) + 𝐿𝑑𝑖𝑐𝑒 (𝑀𝑛, 1 − 𝑔𝑡) . (6)

where gt is the ground truth value of anomaly maps.

4 Experiments
4.1 Datasets
Our experiments primarily focus on two datasets: MVTec [2] and
VisA [39]. MVTec [2] is one of the most widely used industrial
anomaly detection datasets, containing 5354 images of both normal
and abnormal samples from 15 different object categories, with
resolutions ranging from 700 × 700 to 1024 × 1024 pixels. VisA [39]
is an emerging industrial anomaly detection dataset comprising
10821 images of normal and abnormal samples covering 12 image
categories, with resolutions around 1500 × 1000 pixels. Similar to
APRIL-GAN [5] and AnomalyCLIP [38], we conduct supervised
training on the test set of one dataset and directly performed zero-
shot testing on the other dataset.

4.2 Evaluation Metrics
Following existing AD methods [6, 35], we employ the Area Under
the receiver operating Characteristic (AUC) as our evaluation met-
ric, with image-level and pixel-level AUC used to assess anomaly
detection and anomaly localization performance, respectively.

4.3 Implementation Details
We utilize the publicly available CLIP-L/14@336px model as our
backbone, with frozen parameters for CLIP’s Text Encoder and
Image Encoder. Training is conducted on either the MVTec or VisA
dataset, with zero-shot testing performed on the other dataset. For
intermediate-level patch-based image features, we employ features
from the 6-th, 12-th, 18-th, and 24-th layers of the CLIP Image
Encoder. Starting from the 6-th layer, both QKV Attention and V-V
Attention results are simultaneously utilized, where the outputs
of QKV Attention are aligned with text features through a simple
linear layer, and the outputs of V-V Attention are inputted into
the MMCI module for multi-scale, multi-shape deep interaction
with text features. During training, input images are resized to a
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Method Backbone Anomaly Description VisA MVTec-AD

Image-AUC Pixel-AUC Image-AUC Pixel-AUC

CLIP [29] ViT-L/14@336px normal / anomalous 66.4 46.6 74.1 38.4
CLIP-AC [29] ViT-L/14@336px normal / anomalous 65.0 47.8 71.5 38.2
WinCLIP [17] ViT-B/16@240px state ensemble 78.1 79.6 91.8 85.1
APRIL-GAN [5] ViT-L/14@336px state ensemble 78.0 94.2 86.1 87.6

AnomalyCLIP [38] ViT-L/14@336px normal / damaged 82.1 95.5 91.5 91.1
AnomalyCLIP- ViT-L/14@336px normal / damaged 81.7 95.0 90.8 89.5
FiLo (ours) ViT-L/14@336px fine-grained description 83.9 95.9 91.2 92.3

Table 1: Comparison results between FiLo and other ZSAD methods. The best-performing method is in bold.

Setup VisA MVTec

CLIP baseline (65.0, 47.8) (71.5, 38.2)
+ generic [state] (65.4, 83.9) (79.9, 83.5)

+ fine-grained [anomaly class] (71.2, 85.5) (80.8, 83.8)

Table 2: Ablation results of anomaly descriptions. Results
are displayed in the format of (Image-AUC, Pixel-AUC).

Setup VisA MVTec

CLIP baseline (65.0, 47.8) (71.5, 38.2)
+ learnable template (72.5, 93.1) (82.1, 85.2)

+ fine-grained description (78.1, 93.2) (85.8, 85.1)
Table 3: Ablation results of text template. Results are dis-
played in the format of (Image-AUC, Pixel-AUC).

resolution of 518 × 518, and the AdamW [24] optimizer is used to
optimize model parameters for 15 epochs. The learning rate for
learnable text vectors is set to 1e-3, while the learning rate for
the MMCI module is set to 1e-4. After that, we train the adapter
for 5 epochs with a learning rate of 1e-5. Additionally, due to the
varying number of fine-grained anomaly descriptions for each item
category, training is conducted with a batch size of 1. Following
previous methods [35, 38], a Gaussian filter with 𝜎 = 4 is applied
to obtain a smoother anomaly score map during testing.

4.4 Main Results
To demonstrate the effectiveness of our FiLo, we compare FiLo
with several existing ZSAD methods, including CLIP [29], CLIP-
AC [29], WinCLIP [17], APRIL-GAN [5], and AnomalyCLIP [38].
Following [38], for CLIP, we conduct experiments using simple
text prompts A photo of a normal [class]. and A photo of an anoma-
lous [class], and we add more text prompt templates that are rec-
ommended for ImageNet dataset for CLIP-AC. Results for Win-
CLIP [17], APRIL-GAN [5], and AnomalyCLIP [38] are adopted
from their respective papers. Specifically, AnomalyCLIP [38] incor-
porates additional learnable embeddings in the CLIP Text Encoder,
while other methods, including FiLo, directly use the frozen parame-
ters of CLIP. To ensure fair comparison, we reproduceAnomalyCLIP
without learnable embeddings, referred as AnomalyCLIP-.

Table 1 presents the experimental results of FiLo and existing
methods on the VisA and MVTec datasets, which demonstrates
superiority of FiLo across most metrics on both datasets, validating
the effectiveness of our FG-Des and HQ-Loc modules. Compared
to the state-of-the-art ZSAD method AnomalyCLIP [38], after in-
troducing the FG-Des and HQ-Loc modules, FiLo achieves a 1.1%
improvement in image-level AUC and a 0.4% improvement in pixel-
level AUC on the VisA dataset. Additionally, FiLo also achieves a
1.2% improvement in pixel-level AUC on the MVTec dataset.

4.5 Ablation Study
We conduct extensive ablation experiments on the VisA and MVTec
datasets, confirming the efficacy of every component in our ap-
proach. Table 2, Table 3 and Table 4 present the experimental results
of FiLo on the MVTec and VisA datasets.

In Table 2, we initially employ the same setup as CLIP-AC as
our baseline, using simple two-category texts A photo of a normal
[class] and A photo of an anomalous [class]. Upon realizing that the
simple words "normal" and "anomalous" alone did not effectively
distinguish between normal and abnormal samples, we modify
the sentence structure to A photo of a [state] [class], where [state]
encompasses some generic descriptions for normal (e.g., perfect,
flawless) and abnormal (e.g., damaged, defective) states, and observe
a significant performance improvement with the introduction of
more detailed [state] descriptions. Subsequently, we utilize LLMs to
generate more fine-grained [anomaly class] for each class of items,
resulting in further performance enhancements. This experiment
underscores the effectiveness of fine-grained anomaly descriptions.

In Table 3, also starting from the CLIP baseline, we first replace
all parts of the text except for [class] with learnable vectors, i.e.,
[v1][v2]...[vn][class]. We find that compared to handcrafted text,
the text vectors learned by the model are more suitable for anomaly
detection tasks, exhibiting higher detection and localization accu-
racy. Further, by combining the learned text vectors with detailed
anomaly descriptions generated by LLMs as described earlier, we
utilize the text prompt [v1][v2]...[vn][state][class] with [anomaly
class], resulting in significant improvements.

In Table 4, we experiment with each component of HQ-Loc.
From the table, it can be observed that both Grounding and Posi-
tion Enhancement contribute to improvements in pixel-level AUC.
Additionally, the MMCI module, which integrates multi-shape and
multi-size capabilities, can effectively detect anomalies of various
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Grounding Position Enhancement MMCI VisA MVTec

Multi-shape Multi-scale Image-AUC Pixel-AUC Image-AUC Pixel-AUC

78.1 93.2 85.8 85.1
✓ 78.1 93.4 85.8 85.3
✓ ✓ 78.6 93.6 85.5 85.7
✓ ✓ ✓ 79.2 95.3 86.2 89.4
✓ ✓ ✓ 80.7 95.6 88.9 91.4
✓ ✓ ✓ ✓ 83.9 95.9 91.2 92.3

Table 4: The results of ablation experiments for each proposed modules in HQ-Loc.

Test  samples

CLIP output

Grounding output

Final mask

Ground Truth

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3: Visualization result of FiLo on MVTec and VisA datasets. "CLIP output" refers to the localization results without
HQ-Loc, while "Final mask" represents the final localization result.

sizes and shapes, resulting in performance enhancements in both
detection and localization aspects.

4.6 Visulization Results
Figure 3 illustrates the visualization results of our FiLo on the
MVTec and VisA datasets. In the absence of any prior access to
data from the target dataset, FiLo can achieve anomaly localization
results that closely resemble the ground truth, showcasing FiLo’s
robust ZSAD capability.

As observed in the second row of Figure 3, directly computing
the similarity between all patch features extracted using CLIP and
textual features representing normal and abnormal semantics of-
ten yields imprecise anomaly localization results. This approach
sometimes leads to false positives in non-anomalous objects or back-
ground regions of the image. However, by employing HQ-Loc’s
grounding for preliminary localization and position enhancement,
the final output effectively mitigates this phenomenon.

Furthermore, during the preliminary localization process, Ground-
ing associates each bounding boxwithmatched textual descriptions,
indicating the type of anomaly present in that area. For instance, in

Figure 3(e), the corresponding text for the bounding box accurately
identifies two anomalies on the hazelnut: "hole" and "crack."

5 Conclusion
Our FiLo method represents a significant advancement in the field
of Zero-Shot Anomaly Detection (ZSAD), effectively addressing
prevalent challenges in both anomaly detection and localization.
Our FG-Des method harnesses the capabilities of Large Language
Models (LLMs) by generating specific descriptions for potential
anomaly types associated with each object category. This approach
notably enhances both the precision and interpretability of anomaly
detection. Furthermore, our devised HQ-Loc strategy effectively
mitigates the deficiencies of existing methods in terms of anomaly
localization accuracy, particularly demonstrating superior perfor-
mance in localizing anomalies of various sizes and shapes. Exten-
sive experiments validate the superiority of FiLo across multiple
datasets, affirming its efficacy and practicality in the realm of zero-
shot anomaly detection tasks.
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