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1 FINE-GRAINED ZSAD PERFORMANCE

In the main paper, we have compared FiLo with existing ZSAD meth-
ods on anomaly detection and localization across the MVTec [1] and
VisA [10] datasets. Our evaluation primarily utilizes Image-level
AUC and Pixel-level AUC as metrics for detection and localiza-
tion, respectively. Here, we provide detailed performance analysis
of FiLo and other ZSAD methods at the fine-grained data subset
level, including the methods we using for comparison: CLIP [6],
CLIP-AC [6], WinCLIP [4], APRIL-GAN [2] and AnomalyCLIP [9].

Tables 1 and Tables 2 depict the anomaly localization perfor-
mance of FiLo on the MVTec and VisA datasets, and the anomaly
detection performance of FiLo on the VisA and MVTec datasets
is showcased in Table 4 and Table 3 respectively. Across the 15
classes in the MV Tec dataset, FiLo achieves the highest Pixel-level
AUC in 12 classes, while in the VisA dataset comprising 12 classes,
FiLo attains the highest Pixel-level AUC in 8 classes. Notably, FiLo
surpasses the state-of-the-art method AnomalyCLIP [9] by 1.1%
on Pixel-level AUC in the MVTec dataset and by 0.4% in the VisA
dataset, demonstrating the efficacy of FiLo.

2 FINE-GRAINED ANOMALY DESCRIPTIONS

Table 5 and Table 6 present the detailed anomaly types generated
by leveraging LLM for each category within the MVTec and VisA
datasets. During the inference process with FiLo, we substitute these
detailed anomaly descriptions generated by LLM for the "[ANOM-
ALY CLASS]" portion in the text template to obtain the detailed
anomaly description content for each category of items.

In Figure 1, we additionally display the similarity between each
detailed anomaly description generated by LLM and the image
features. We showcase the top 5 detailed anomaly descriptions
with the highest similarity to the image, highlighting the most
similar descriptions in red. By identifying the detailed anomaly
description with the highest similarity, we can further discern the
type of anomaly present in the sample.

3 ADDITIONAL ABLATIONS

In this section, we conducted further ablation studies on various
detailed components of FiLo, including the backbone utilized, learn-
ing rate, employment of VV Attention, different treatments on QKV
and VV Attention results, learning strategies for adaptive learning
templates, number of learnable vectors, the structure and connec-
tivity of Adapters, etc. Subsequently, detailed analyses for each
aspect will be presented.

3.1 Different Backbones and Learning Rates

Previous anomaly detection methods based on CLIP have typi-
cally utilized different CLIP backbones. WinCLIP[4] employs ViT-
B-16@240px, while methods like APRIL-GAN [2] and Anomaly-
CLIP [9] use ViT-L-14@336px. Existing methods have shown that

using a backbone with higher image resolution is more benefi-
cial for pixel-level anomaly localization. However, these methods
with higher resolutions have not surpassed WinCLIP, which uses a
resolution of 240x240, in terms of image-level AUC. We also imple-
mented our FiLo method on these two commonly used backbones,
and the results are shown in Table 7.

In addition to the choice of backbone, the setting of learning rates
also significantly influences experimental results. Table 7 further
illustrates the experimental results of FiLo under different learning
rates ranging from le-3 to le-5. It can be observed that FiLo achieves
the best anomaly detection and localization performance on both
datasets when using a learning rate of le-3 for the learnable text
vectors and a learning rate of 1e-4 for the MMCI module.

3.2 Adaptively Learned Text Templates

CoOp [8] and CoCoOp [7] are two distinct methods that utilize
learnable vectors to replace manually crafted text prompts. These
methods exhibit some differences in their approaches. Specifically,
the learnable vectors in CoOp are agnostic to image content and are
directly embedded into the text prompt, emphasizing the universal-
ity and uniformity of the text prompt. On the other hand, CoCoOp
builds upon the learnable vectors embedded in the text prompt by
incorporating a lightweight meta-net to append image features to
the text prompt. This approach emphasizes generating tailored text
prompts for each image, aiming to better match the image content.

Table 8 presents the experimental results of FiLo under the re-
spective usage of CoOp and CoCoOp. Inspired by AnomalyCLIP [9],
we also explored the performance under the addition of class name
information in the text content. The experimental results indicate
that when using CoOp, omitting class name from the text yields
better results, consistent with findings in AnomalyCLIP. This is
because CoOp inherently emphasizes the generality and unifor-
mity of the text prompt. Conversely, when employing CoCoOp for
learning text templates, including class name information improves
performance. This is attributed to the alignment of CoCoOp’s ap-
proach, which incorporates image features into the text prompt via
a meta-net, with the concept of FiLo, utilizing fine-grained anomaly
description and position enhancement to obtain precise representa-
tions of each image’s text content, aiming for a better match with
image content.

The results in Table 8 further demonstrate that CoCoOp out-
performs CoOp, highlighting the effectiveness of leveraging fine-
grained anomaly descriptions to enhance anomaly detection.

We also examined the impact of varying the number of learn-
able vectors in adaptively learned text templates. The findings are
illustrated in Figure 2. It can be observed that utilizing 12 learnable
vectors yields the best performance in both anomaly detection and
localization tasks.
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Table 1: Fine-grained data-subset-wise performance comparison (AUROC) for anomaly localization on MVTec-AD. The best

performance is in bold, and the second-best is underlined.

Object name CLIP [6] CLIP-AC [6] WinCLIP [4] APRIL-GAN [2] AnomalyCLIP [9] FiLo (ours)

Carpet 11.5 10.7 95.4 98.4 98.8 99.4
Bottle 17.5 233 89.5 834 90.4 92.6
Hazelnut 25.2 34.0 94.3 96.1 97.1 97.6
Leather 9.9 5.6 96.7 99.1 98.6 99.4
Cable 374 37.5 77.0 72.3 78.9 784
Capsule 50.9 49.1 86.9 92.0 95.8 96.9
Grid 8.7 11.9 82.2 95.8 97.3 97.8
Pill 55.8 60.8 80.0 76.2 92 89.1
Transistor 51.1 48.5 74.7 62.4 71 74.8
Metal_nut 43.9 53.6 61.0 65.4 74.4 72.5
Screw 80.1 76.4 89.6 97.8 97.5 98.1
Toothbrush 36.3 35.0 86.9 95.8 91.9 96.0
Zipper 51.5 44.7 91.6 91.1 91.4 96.6
Tile 49.9 39.1 77.6 92.7 94.6 97.4
Wood 45.7 42.4 93.4 95.8 96.5 98.3
Mean 384 38.2 85.1 87.6 911 92.3

Table 2: Fine-grained data-subset-wise performance comparison (AUROC) for anomaly localization on VisA. The best perfor-

mance is in bold, and the second-best is underlined.

Object name CLIP [6] CLIP-AC [6] WinCLIP [4] APRIL-GAN [2] AnomalyCLIP [9] FiLo (ours)
Candle 33.6 50.0 88.9 97.8 98.8 98.7
Capsules 56.8 61.5 81.6 97.5 95.0 92.3
Cashew 64.5 62.5 84.7 86.0 93.8 95.1
Chewinggum  43.0 56.5 93.3 99.5 99.3 99.4
Fryum 456 62.7 88.5 92.0 94.6 95.2
Macaronil 20.3 22.9 70.9 98.8 98.3 99.1
Macaroni2 37.7 28.8 59.3 97.8 97.6 98.1
Pcb1 57.8 51.6 61.2 92.7 94.1 94.4
Pcb2 34.7 38.4 71.6 89.7 92.4 93.7
Pcb3 54.6 44.6 85.3 88.4 88.4 90.8
Pcb4 52.1 49.9 94.4 94.6 95.7 95.8
Pipe_fryum  58.7 447 75.4 96.0 98.2 97.7
Mean 46.6 47.8 79.6 94.2 95.5 95.9

3.3 Utilization of V-V Attention

Pre-trained on large-scale datasets, CLIP exhibits excellent zero-
shot performance on downstream image classification tasks. How-
ever, directly using the features extracted from the CLIP Image
Encoder for each position in the feature map and measuring their
similarity with textual features often results in significant noise
activation outside of objects during fine-grained semantic segmenta-
tion or object detection tasks. CLIP Surgery [5] addresses this issue,
identifying it as stemming from the QKV attention mechanism
within CLIP, which leads to feature pooling from semantically dis-
parate regions, consequently causing noise activation in erroneous
areas. The proposed solution involves employing V-V self-attention
to mitigate this problem.

Approaches such as AnoVL [3] and AnomalyCLIP [9] have also
incorporated V-V attention into anomaly detection and localization
tasks, resolving the issue of misalignment between patch-level
features and textual features encountered in WinCLIP and APRIL-
GAN, achieving remarkable zero-shot performance. However, V-V
attention suffers from training difficulties, as slight mishandling
may result in model outputs entirely comprised of zeros, causing the
AUC to plummet to 50. To address this challenge, we simultaneously
utilize the output results of both QKV attention and V-V attention,
exploring the differential effects of applying distinct processing
methods to the output results of QKV attention and V-V attention.
The results, as shown in Table 9, indicate that employing a simple
linear layer projection on the output results of QKV attention and
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Tears (0.552)
Creases (0.545)
Discoloration (0.543)
Scratches (0.531)

Holes (0.620)

Knots (0.612)

Cracks along the grain (0.593)
Mold growth on the surface (0.578)
Warping (0.565)
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Uneven texture (0.526)

Discoloration in a specific area (0.619)
Burn mark or scorching (0.617)
Frayed edges or unraveling fibers (0.589)

Irregular patch or section with a different texture (0.499)

Normal (0.339)

Unusual texture (0.656)
Insect infestation (0.653)
Misshapen shell (0.650)

Wetness (0.641)

Unusual discoloration (0.639)

Figure 1: Illustration of similarities between images and different fine-grained anomaly descriptions.

inputting the output results of V-V attention into the MMCI module
yields the best detection and localization performance for FiLo.

3.4 Ablations of Adapter

In this section, we compare the performance impact of the struc-
ture and connection methods of the adapter on FiLo. Regarding
structure, we test the use of a simple linear layer and the bottleneck
adapter actually employed. We also conduct experiments to assess
the performance difference of the adapter when utilizing residual
connection versus not utilizing it. Experimental results are shown
in Table 10. It can be observed that when employing the bottleneck
structure without residual connection, the adapter achieves the best
performance.

3.5 Convolution Kernel’s Shape of MMCI

In this section, we extensively experiment on the impact of differ-
ent kernel shapes used in MMCI on the performance of FiLo. We
start with the sole use of 1x1 convolutional kernels and gradually
incorporate shapes such as 3x3, 5x5, 7x7, 1x5, 5x1, and 9x9. We
then evaluate the various experimental results under these settings,
as depicted in Figure 3. Based on the experimental findings, we
ultimately select a combination of kernel shapes including 1x1, 3x3,
5x5, 7x7, 1x5, and 5x1. This combination harnesses the advantages
of multi-scale and multi-shape kernels, enabling precise localization
of anomalous regions of different sizes and shapes.
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349 Table 3: Fine-grained data-subset-wise performance comparison (AUROC) for anomaly detection on MVTec AD. The best 407

350 performance is in bold, and the second-best is underlined. 408
351 409
352 Object name CLIP [6] CLIP-AC [6] WinCLIP [4] APRIL-GAN [2] AnomalyCLIP [9] FiLo (ours) 410
jsi Carpet 9% 93.1 100.0 99.5 100.0 99.9 jii
255 Bottle 45.9 46.1 99.2 92.0 89.3 98.6 s
256 Hazelnut 88.7 91.1 93.9 89.6 97.2 92.8 i
357 Leather 99.4 99.5 100.0 99.7 99.8 100 s
258 Cable 58.1 46.6 86.5 88.4 69.8 77.9 e
450 Capsule 71.4 68.8 72.9 79.9 89.9 89.2 "
560 Grid 72.5 63.7 98.8 86.3 97.0 97.4 s
261 Pill 73.6 73.8 79.1 80.5 81.8 87.8 1o
260 Transistor 48.8 51.2 88.0 80.8 92.8 80.5 20
163 Metal_nut 62.8 63.4 97.1 68.4 93.6 77 w1
26 Screw 78.2 66.7 833 84.9 81.1 74.5 122
265 Toothbrush 73.3 89.2 88.0 53.8 84.7 94.2 23
s Zipper 60.1 36.1 91.5 89.6 98.5 98.1 o
267 Tile 88.5 89.0 100.0 99.9 100.0 100 w5
268 Wood 94 94.9 99.4 99.0 96.8 99.7 126
369 Mean 74.1 71.5 91.8 86.1 91.5 91.2 427
370 428
371 Table 4: Fine-grained data-subset-wise performance comparison (AUROC) for anomaly detection on VisA. The best performance 429
372 is in bold, and the second-best is underlined. 430
373 431
e Object name  CLIP [6] CLIP-AC [6] WinCLIP [4] APRIL-GAN [2] AnomalyCLIP [9] FiLo (ours) 2
375 433
376 Candle 37.9 33.0 95.4 83.8 79.3 79.3 434
377 Capsules 69.7 75.3 85.0 61.2 81.5 80.9 435
378 Cashew 69.1 72.7 92.1 87.3 76.3 90 436
379 Chewinggum 77.5 76.9 96.5 96.4 97.4 98.4 137
380 Fryum 67.2 60.9 80.3 94.3 93.0 88.3 438
381 Macaronil 64.4 67.4 76.2 71.6 37.2 88.3 439
382 Macaroni2 65 65.7 63.7 64.6 73.4 68.5 440
383 Pcb1 54.9 43.9 73.6 53.4 85.4 87 441
384 Pcb2 62.6 59.5 51.2 71.8 62.2 77.6 442
385 Pcb3 52.2 49.0 73.4 66.8 62.7 69.5 443
386 Pcb4 87.7 89.0 79.6 95.0 93.9 95.7 444
387 Pipe_fryum 88.8 86.4 69.7 89.9 92.4 83.8 145
388 Mean 66.4 65.0 78.1 78.0 82.1 83.9 446
389 447
390 Ablation on the length of learnable text prompt E 448
391 449
392 ':V\. 961 - :‘/lli\slzec 50
393 £l 95 451
394 ° - 452
395 2% s 453
396 2 BeE 454
397 E@ae g o 455
398 456
399 8 Sl 457
400 ™ 458
401 & 459
4 6 8 10 12 14 16 4 6 8 10 12 14 16
402 Length of Text Prompt E Length of Text Prompt E 460
403 461
404 Figure 2: Comparison of FiLo on MVTec and VisA datasets with different numbers of learnable vectors. 462
405 463

406 464
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165 Table 5: Fine-Grained anomaly description of every object within MVTec dataset. 523

466 524

467 Class name Descriptions 525

468 . . . . . . . . 526

160 Carpet discoloration in a specific area, irregular patch or section with a different texture, 07

arpe ; .

0 P frayed edges or unraveling fibers, burn mark or scorching 525

471 Grid crooked, cracks, excessive gaps, discoloration, deformation, missing, 529
ri . . . : . . ; -

472 inconsistent spacing between grid elements, corrosion, visible signs, chipping 530

473 . . 531

scratches, discoloration, creases, uneven texture, tears,
474 Leather . 532
brittleness, damage, seams, heat damage, mold

475 533

476 Til chipped, irregularities, discoloration, efflorescence, warping, 534
ile . . .

a7 missing, depressions, lippage, fungus, damage 535

478 Wood knots, warping, cracks along the grain, mold growth on the surface, staining from water damage, 336
00 ,

479 537

wood rot, woodworm holes, rough patches, protruding knots
480 538
cracked large, cracked small, dented large, dented small, leaking, discolored,

481 Bottle 539
180 deformed, missing cap, excessive condensation, unusual odor 510
483 Cabl twisted, knotted cable strands, detached connectors, excessive stretching, 541
able . . . .
484 dents, corrosion, scorching along the cable, exposed conductive material 542
485 B B B B - 543
irregular shape, discoloration coloring, crinkled, uneven seam,
436 Capsule . . . 544
condensation inside the capsule, foreign particles, unusually soft or hard
487 545
488 Hazelnut fungal growth, Unusual discoloration, rotten or foul odor emanating, insect infestation, 546
azelnu . . .
489 wetness, misshapen shell, unusually thin, contaminants, unusual texture 547
490 . . . - . . . . . 548
cracks, irregular threading, corrosion, missing, distortion, signs of discoloration,
491 Metalinut 549

excessive wear on contact surfaces, inconsistent texture
492 550

irregular shape, crumbling texture, excessive powder, uneven coating,

493 P 551
ill . . .
194 presence of air bubbles, disintegration, abnormal specks 559
495 S rust on the surface, bent, damaged threads, stripped threads, deformed top, 553
crew . . . .
496 coating damage, uneven grooves, inconsistent size 554
497 555
loose bristles, uneven bristle distribution, excessive shedding of bristles,
498 Toothbrush .. . . . e 556
190 staining on the bristles, abrasive texture, irregularities in the shape .
500 T st burn marks, detached leads, signs of corrosion, irregularities in the shape, 558
ransistor . . . o
501 presence of cracks or fractures, signs of physical trauma, irregularities in the surface texture 559
502 . . . . . 560
Zipper bent, frayed, misaligned, excessive stiffness, corroded, detaches, loose, warped
503 561
504 - - 562
Ablation on the kernels in MMCI
505 563
506 77 (e % 564
507 o0 565
508 0 94 566
18]
509 S g 567
— <
510 g 86 T 568
3 ]
511 2 3 569
. £ &
512 £ 0 570
82
513 571
S14 80 B MVTec 572
515 * Vish 573
1x1 +3x3 +5x5 +7x7  +1x5&5x1  +9x9 1x1 +3x3 +5x5 +7x7  +1x5&5x1  +9x9
516 Kernels in MMCI Kernels in MMCI 574
517 575
o8 Figure 3: Comparison of FiLo on MVTec and VisA datasets with different convolution kernels. 376
519 577
520 578
521 579

522 580
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Table 6: Fine-Grained anomaly description of every object within VisA dataset.

Anonymous Authors

Class name Descriptions
cracks or fissures in the wax, Wax pooling unevenly around the wick, tunneling, incomplete wax melt pool,
Candle . . . .
irregular or flickering flame, other, extra wax in candle, wax melded out of the candle
Capsules uneven capsule size, capsule shell appears brittle, excessively soft,
P dents, condensation, irregular seams or joints, specks
Cashe uneven coloring, fungal growth, presence of foreign objects,
W . .
unusual texture, empty shells, signs of moisture, stuck together
Chewinggum consistency, presence of foreign objects, uneven coloring, excessive hardness, similar colour spot
irregular shape, unusual odor, uneven coloring, unusual texture,
Fryum .
small scratches, different colour spot, fryum stuck together, other
Macaronil uneven shape , small scratches, small cracks, uneven coloring,
signs of insect infestation, uneven texture, Unusual consistency
. irregular shape, small scratches, presence of foreign particles,
Macaroni2 . . . . .
excessive moisture, signs of infestation, small cracks, unusual texture
Pebi oxidation on the copper traces, separation of layers, presence of solder bridges,
excessive solder residue, discoloration, Uneven solder joints, bowing of the board, missing vias
Pcb2 oxidation on the copper traces, separation of layers, presence of solder bridges,
excessive solder residue, discoloration, Uneven solder joints, bowing of the board, missing vias
Peb3 oxidation on the copper traces, separation of layers, presence of solder bridges,
excessive solder residue, discoloration, Uneven solder joints, bowing of the board, missing vias
Peba oxidation on the copper traces, separation of layers, presence of solder bridges,
excessive solder residue, discoloration, Uneven solder joints, bowing of the board, missing vias
. uneven shape, presence of foreign objects, different colour spot, unusual odor,
Pipe_fryum

empty interior, unusual texture, similar colour spot, stuck together

Table 7: Experimental results of FiLo on MVTec and VisA datasets under different backbones and learning rates.

Backbone learnable vec’sIr  MMCI’s Ir MVTec-AD
Image-AUC Pixel-AUC Image-AUC Pixel-AUC

ViT-B-16@240 le-3 le-4 78.1 93.5 77.9 88.2
ViT-L-14@336 le-3 le-4 83.9 95.9 91.2 92.3
ViT-L-14@336 le-3 le-3 80.3 95.7 86.2 89.7
ViT-L-14@336 le-4 le-4 82.4 95.7 88 91.2
ViT-L-14@336 le-4 le-5 78.2 95.1 83.5 89
ViT-L-14@336 le-5 le-5 80.4 95.2 85.8 90.7

Table 8: Comparison of different learning methods for learnable vectors and whether to use class name.

learning method  with class name

VisA

MVTec-AD

Image-AUC Pixel-AUC

Image-AUC Pixel-AUC

CoOp 81.7
CoOp 80.9
CoCoOp 82.3
CoCoOp 83.9
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Table 9: Comparison of results of different processing methods for the output results of QKV and VV Attention.

s VisA MVTec-AD
QKVresults VVresults  VV's first layer 70 e AUC PixelAUC Tmage-AUC _ Pixel-AUC
Linear  MMCI 1 81.9 953 873 89.2
Linear ~ MMCI 7 83.9 95.9 91.2 92.3
Linear Linear 7 82.7 95.1 88.5 88.8
MMCI  MMCI 7 83.2 95.5 50 50
MMCI  Linear 7 82.5 95.7 56.9 57.6

Table 10: Comparison of different adapter structures and connection types.

, . VisA MVTec-AD
Adapter’s arch  residual
Image-AUC Pixel-AUC Image-AUC Pixel-AUC
Bottleneck 83.9 95.9 91.2 92.3
Bottleneck v 83.6 95.8 89.9 914
Linear 83.9 95.9 90.2 92.3
Linear v 83.8 95.9 88.6 91.1
Anomaly scores of every categories in MVTec dataset via WinCLIP
bottle cable capsule carpet grid
Normal Normal 100 Normal Normal 50 Normal
30 Anomaly 80 Anomaly Anomaly 60 Anomaly Anomaly
80 40
60
20 60 40 30
40
40 20
10 20
20 20 10
0 0 0 0 0
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
hazelnut leather metal nut pill screw
oy Normal 60 Normal Normal Normal 220 Normal
50 Anomaly 50 Anomaly 80 Anomaly | 125 Anomaly | 100 Anomaly
40 40 60 100 80
30 30 73] 60
40
20 20 50 40
10 10 20 25 20
[ 0 0 0 0
0.500 0.505 0510 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
tile toothbrush transistor wood zipper
& 30 60 120
Normal Normal Normal 30 Normal Normal
50 Anomaly 25 Anomaly 50 Anomaly 25 Anomaly 100 Anomaly
Y 20 40 20 80
30 15 30 15 60
20 10 20 10 40
10 5 10 5 20
0 0 0 0 0
0.0 0.5 1.0 0.0 0.5 1.0 0.0 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Figure 4: Anomaly scores of WinCLIP on the MVTec dataset. Each sub-figure represents the visualization of one object.

4 VISUALIZATION

4.1 Anomaly Scores for Every Categories

In this section, we present the statistical analysis of anomaly scores
generated by WinCLIP [4] and FiLo for each class object in the
MVTec and VisA datasets. These visualizations aim to illustrate the
effectiveness of FiLo’s detailed anomaly descriptions and adaptively
learned text templates compared to WinCLIP’s manually crafted
two-class text adjustment. As depicted in Figure 4 and Figure 5,
WinCLIP’s scores for both normal and abnormal samples heavily
overlap and are concentrated around 0.5, indicating its failure to

effectively distinguish between normal and abnormal samples. In
contrast, Figure 6 and Figure 7 illustrate FiLo’s visualization results
on these two datasets, where it can be observed that the scores for
normal samples significantly decrease while those for abnormal
samples notably increase, resulting in a significant reduction in the
overlapping area.

4.2 Anomaly Maps

Figure 8 showcase the Anomaly Maps generated by FiLo on a
broader set of samples from the MV Tec and VisA datasets, demon-
strating FiLo’s robust anomaly localization capability.
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Anomaly scores of every categories in MVTec dataset via WinCLIP

candle capsules cashew chewinggum
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Figure 5: Anomaly scores of WinCLIP on the VisA dataset. Each sub-figure represents the visualization of one object.
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Figure 6: Anomaly scores of FiLo on the MVTec dataset. Each sub-figure represents the visualization of one object.

5 LIMITATION AND FUTURE WORK

Compared to previous works like WinCLIP [4], FiLo has made
advancements in anomaly detection, localization, and interpretabil-
ity through the use of Fine-Grained Description and High-Quality
Localization methods. However, despite these strides forward, cer-
tain limitations still persist, warranting further investigation and

refinement. As illustrated in Figure 6 and Figure 7, while the differ-
entiation between normal and abnormal samples is more distinct
compared to previous methods, significant overlap still exists in
certain categories such as zipper and metal nut. In the future, we
plan to further improve the differentiation between normal and ab-
normal sample scores through approaches such as metric learning.
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Figure 7: Anomaly scores of FiLo on the VisA dataset. Each sub-figure represents the visualization of one object.
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