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1 FINE-GRAINED ZSAD PERFORMANCE
In themain paper, we have compared FiLowith existing ZSADmeth-
ods on anomaly detection and localization across theMVTec [1] and
VisA [10] datasets. Our evaluation primarily utilizes Image-level
AUC and Pixel-level AUC as metrics for detection and localiza-
tion, respectively. Here, we provide detailed performance analysis
of FiLo and other ZSAD methods at the fine-grained data subset
level, including the methods we using for comparison: CLIP [6],
CLIP-AC [6], WinCLIP [4], APRIL-GAN [2] and AnomalyCLIP [9].

Tables 1 and Tables 2 depict the anomaly localization perfor-
mance of FiLo on the MVTec and VisA datasets, and the anomaly
detection performance of FiLo on the VisA and MVTec datasets
is showcased in Table 4 and Table 3 respectively. Across the 15
classes in the MVTec dataset, FiLo achieves the highest Pixel-level
AUC in 12 classes, while in the VisA dataset comprising 12 classes,
FiLo attains the highest Pixel-level AUC in 8 classes. Notably, FiLo
surpasses the state-of-the-art method AnomalyCLIP [9] by 1.1%
on Pixel-level AUC in the MVTec dataset and by 0.4% in the VisA
dataset, demonstrating the efficacy of FiLo.

2 FINE-GRAINED ANOMALY DESCRIPTIONS
Table 5 and Table 6 present the detailed anomaly types generated
by leveraging LLM for each category within the MVTec and VisA
datasets. During the inference process with FiLo, we substitute these
detailed anomaly descriptions generated by LLM for the "[ANOM-
ALY CLASS]" portion in the text template to obtain the detailed
anomaly description content for each category of items.

In Figure 1, we additionally display the similarity between each
detailed anomaly description generated by LLM and the image
features. We showcase the top 5 detailed anomaly descriptions
with the highest similarity to the image, highlighting the most
similar descriptions in red. By identifying the detailed anomaly
description with the highest similarity, we can further discern the
type of anomaly present in the sample.

3 ADDITIONAL ABLATIONS
In this section, we conducted further ablation studies on various
detailed components of FiLo, including the backbone utilized, learn-
ing rate, employment of VV Attention, different treatments on QKV
and VV Attention results, learning strategies for adaptive learning
templates, number of learnable vectors, the structure and connec-
tivity of Adapters, etc. Subsequently, detailed analyses for each
aspect will be presented.

3.1 Different Backbones and Learning Rates
Previous anomaly detection methods based on CLIP have typi-
cally utilized different CLIP backbones. WinCLIP[4] employs ViT-
B-16@240px, while methods like APRIL-GAN [2] and Anomaly-
CLIP [9] use ViT-L-14@336px. Existing methods have shown that

using a backbone with higher image resolution is more benefi-
cial for pixel-level anomaly localization. However, these methods
with higher resolutions have not surpassed WinCLIP, which uses a
resolution of 240x240, in terms of image-level AUC. We also imple-
mented our FiLo method on these two commonly used backbones,
and the results are shown in Table 7.

In addition to the choice of backbone, the setting of learning rates
also significantly influences experimental results. Table 7 further
illustrates the experimental results of FiLo under different learning
rates ranging from 1e-3 to 1e-5. It can be observed that FiLo achieves
the best anomaly detection and localization performance on both
datasets when using a learning rate of 1e-3 for the learnable text
vectors and a learning rate of 1e-4 for the MMCI module.

3.2 Adaptively Learned Text Templates
CoOp [8] and CoCoOp [7] are two distinct methods that utilize
learnable vectors to replace manually crafted text prompts. These
methods exhibit some differences in their approaches. Specifically,
the learnable vectors in CoOp are agnostic to image content and are
directly embedded into the text prompt, emphasizing the universal-
ity and uniformity of the text prompt. On the other hand, CoCoOp
builds upon the learnable vectors embedded in the text prompt by
incorporating a lightweight meta-net to append image features to
the text prompt. This approach emphasizes generating tailored text
prompts for each image, aiming to better match the image content.

Table 8 presents the experimental results of FiLo under the re-
spective usage of CoOp and CoCoOp. Inspired by AnomalyCLIP [9],
we also explored the performance under the addition of class name
information in the text content. The experimental results indicate
that when using CoOp, omitting class name from the text yields
better results, consistent with findings in AnomalyCLIP. This is
because CoOp inherently emphasizes the generality and unifor-
mity of the text prompt. Conversely, when employing CoCoOp for
learning text templates, including class name information improves
performance. This is attributed to the alignment of CoCoOp’s ap-
proach, which incorporates image features into the text prompt via
a meta-net, with the concept of FiLo, utilizing fine-grained anomaly
description and position enhancement to obtain precise representa-
tions of each image’s text content, aiming for a better match with
image content.

The results in Table 8 further demonstrate that CoCoOp out-
performs CoOp, highlighting the effectiveness of leveraging fine-
grained anomaly descriptions to enhance anomaly detection.

We also examined the impact of varying the number of learn-
able vectors in adaptively learned text templates. The findings are
illustrated in Figure 2. It can be observed that utilizing 12 learnable
vectors yields the best performance in both anomaly detection and
localization tasks.
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Table 1: Fine-grained data-subset-wise performance comparison (AUROC) for anomaly localization on MVTec-AD. The best
performance is in bold, and the second-best is underlined.

Object name CLIP [6] CLIP-AC [6] WinCLIP [4] APRIL-GAN [2] AnomalyCLIP [9] FiLo (ours)

Carpet 11.5 10.7 95.4 98.4 98.8 99.4
Bottle 17.5 23.3 89.5 83.4 90.4 92.6

Hazelnut 25.2 34.0 94.3 96.1 97.1 97.6
Leather 9.9 5.6 96.7 99.1 98.6 99.4
Cable 37.4 37.5 77.0 72.3 78.9 78.4
Capsule 50.9 49.1 86.9 92.0 95.8 96.9
Grid 8.7 11.9 82.2 95.8 97.3 97.8
Pill 55.8 60.8 80.0 76.2 92 89.1

Transistor 51.1 48.5 74.7 62.4 71 74.8
Metal_nut 43.9 53.6 61.0 65.4 74.4 72.5
Screw 80.1 76.4 89.6 97.8 97.5 98.1

Toothbrush 36.3 35.0 86.9 95.8 91.9 96.0
Zipper 51.5 44.7 91.6 91.1 91.4 96.6
Tile 49.9 39.1 77.6 92.7 94.6 97.4
Wood 45.7 42.4 93.4 95.8 96.5 98.3

Mean 38.4 38.2 85.1 87.6 91.1 92.3

Table 2: Fine-grained data-subset-wise performance comparison (AUROC) for anomaly localization on VisA. The best perfor-
mance is in bold, and the second-best is underlined.

Object name CLIP [6] CLIP-AC [6] WinCLIP [4] APRIL-GAN [2] AnomalyCLIP [9] FiLo (ours)

Candle 33.6 50.0 88.9 97.8 98.8 98.7
Capsules 56.8 61.5 81.6 97.5 95.0 92.3
Cashew 64.5 62.5 84.7 86.0 93.8 95.1

Chewinggum 43.0 56.5 93.3 99.5 99.3 99.4
Fryum 45.6 62.7 88.5 92.0 94.6 95.2

Macaroni1 20.3 22.9 70.9 98.8 98.3 99.1
Macaroni2 37.7 28.8 59.3 97.8 97.6 98.1

Pcb1 57.8 51.6 61.2 92.7 94.1 94.4
Pcb2 34.7 38.4 71.6 89.7 92.4 93.7
Pcb3 54.6 44.6 85.3 88.4 88.4 90.8
Pcb4 52.1 49.9 94.4 94.6 95.7 95.8

Pipe_fryum 58.7 44.7 75.4 96.0 98.2 97.7

Mean 46.6 47.8 79.6 94.2 95.5 95.9

3.3 Utilization of V-V Attention
Pre-trained on large-scale datasets, CLIP exhibits excellent zero-
shot performance on downstream image classification tasks. How-
ever, directly using the features extracted from the CLIP Image
Encoder for each position in the feature map and measuring their
similarity with textual features often results in significant noise
activation outside of objects during fine-grained semantic segmenta-
tion or object detection tasks. CLIP Surgery [5] addresses this issue,
identifying it as stemming from the QKV attention mechanism
within CLIP, which leads to feature pooling from semantically dis-
parate regions, consequently causing noise activation in erroneous
areas. The proposed solution involves employing V-V self-attention
to mitigate this problem.

Approaches such as AnoVL [3] and AnomalyCLIP [9] have also
incorporated V-V attention into anomaly detection and localization
tasks, resolving the issue of misalignment between patch-level
features and textual features encountered in WinCLIP and APRIL-
GAN, achieving remarkable zero-shot performance. However, V-V
attention suffers from training difficulties, as slight mishandling
may result in model outputs entirely comprised of zeros, causing the
AUC to plummet to 50. To address this challenge, we simultaneously
utilize the output results of both QKV attention and V-V attention,
exploring the differential effects of applying distinct processing
methods to the output results of QKV attention and V-V attention.
The results, as shown in Table 9, indicate that employing a simple
linear layer projection on the output results of QKV attention and
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Figure 1: Illustration of similarities between images and different fine-grained anomaly descriptions.

inputting the output results of V-V attention into the MMCI module
yields the best detection and localization performance for FiLo.

3.4 Ablations of Adapter
In this section, we compare the performance impact of the struc-
ture and connection methods of the adapter on FiLo. Regarding
structure, we test the use of a simple linear layer and the bottleneck
adapter actually employed. We also conduct experiments to assess
the performance difference of the adapter when utilizing residual
connection versus not utilizing it. Experimental results are shown
in Table 10. It can be observed that when employing the bottleneck
structure without residual connection, the adapter achieves the best
performance.

3.5 Convolution Kernel’s Shape of MMCI
In this section, we extensively experiment on the impact of differ-
ent kernel shapes used in MMCI on the performance of FiLo. We
start with the sole use of 1x1 convolutional kernels and gradually
incorporate shapes such as 3x3, 5x5, 7x7, 1x5, 5x1, and 9x9. We
then evaluate the various experimental results under these settings,
as depicted in Figure 3. Based on the experimental findings, we
ultimately select a combination of kernel shapes including 1x1, 3x3,
5x5, 7x7, 1x5, and 5x1. This combination harnesses the advantages
of multi-scale and multi-shape kernels, enabling precise localization
of anomalous regions of different sizes and shapes.
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Table 3: Fine-grained data-subset-wise performance comparison (AUROC) for anomaly detection on MVTec AD. The best
performance is in bold, and the second-best is underlined.

Object name CLIP [6] CLIP-AC [6] WinCLIP [4] APRIL-GAN [2] AnomalyCLIP [9] FiLo (ours)

Carpet 96 93.1 100.0 99.5 100.0 99.9
Bottle 45.9 46.1 99.2 92.0 89.3 98.6

Hazelnut 88.7 91.1 93.9 89.6 97.2 92.8
Leather 99.4 99.5 100.0 99.7 99.8 100
Cable 58.1 46.6 86.5 88.4 69.8 77.9
Capsule 71.4 68.8 72.9 79.9 89.9 89.2
Grid 72.5 63.7 98.8 86.3 97.0 97.4
Pill 73.6 73.8 79.1 80.5 81.8 87.8

Transistor 48.8 51.2 88.0 80.8 92.8 80.5
Metal_nut 62.8 63.4 97.1 68.4 93.6 77
Screw 78.2 66.7 83.3 84.9 81.1 74.5

Toothbrush 73.3 89.2 88.0 53.8 84.7 94.2
Zipper 60.1 36.1 91.5 89.6 98.5 98.1
Tile 88.5 89.0 100.0 99.9 100.0 100
Wood 94 94.9 99.4 99.0 96.8 99.7

Mean 74.1 71.5 91.8 86.1 91.5 91.2

Table 4: Fine-grained data-subset-wise performance comparison (AUROC) for anomaly detection on VisA. The best performance
is in bold, and the second-best is underlined.

Object name CLIP [6] CLIP-AC [6] WinCLIP [4] APRIL-GAN [2] AnomalyCLIP [9] FiLo (ours)

Candle 37.9 33.0 95.4 83.8 79.3 79.3
Capsules 69.7 75.3 85.0 61.2 81.5 80.9
Cashew 69.1 72.7 92.1 87.3 76.3 90

Chewinggum 77.5 76.9 96.5 96.4 97.4 98.4
Fryum 67.2 60.9 80.3 94.3 93.0 88.3

Macaroni1 64.4 67.4 76.2 71.6 87.2 88.3
Macaroni2 65 65.7 63.7 64.6 73.4 68.5

Pcb1 54.9 43.9 73.6 53.4 85.4 87
Pcb2 62.6 59.5 51.2 71.8 62.2 77.6
Pcb3 52.2 49.0 73.4 66.8 62.7 69.5
Pcb4 87.7 89.0 79.6 95.0 93.9 95.7

Pipe_fryum 88.8 86.4 69.7 89.9 92.4 83.8

Mean 66.4 65.0 78.1 78.0 82.1 83.9
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Figure 2: Comparison of FiLo on MVTec and VisA datasets with different numbers of learnable vectors.
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Table 5: Fine-Grained anomaly description of every object within MVTec dataset.

Class name Descriptions

Carpet discoloration in a specific area, irregular patch or section with a different texture,
frayed edges or unraveling fibers, burn mark or scorching

Grid crooked, cracks, excessive gaps, discoloration, deformation, missing,
inconsistent spacing between grid elements, corrosion, visible signs, chipping

Leather scratches, discoloration, creases, uneven texture, tears,
brittleness, damage, seams, heat damage, mold

Tile chipped, irregularities, discoloration, efflorescence, warping,
missing, depressions, lippage, fungus, damage

Wood knots, warping, cracks along the grain, mold growth on the surface, staining from water damage,
wood rot, woodworm holes, rough patches, protruding knots

Bottle cracked large, cracked small, dented large, dented small, leaking, discolored,
deformed, missing cap, excessive condensation, unusual odor

Cable twisted, knotted cable strands, detached connectors, excessive stretching,
dents, corrosion, scorching along the cable, exposed conductive material

Capsule irregular shape, discoloration coloring, crinkled, uneven seam,
condensation inside the capsule, foreign particles, unusually soft or hard

Hazelnut fungal growth, Unusual discoloration, rotten or foul odor emanating, insect infestation,
wetness, misshapen shell, unusually thin, contaminants, unusual texture

Metal_nut cracks, irregular threading, corrosion, missing, distortion, signs of discoloration,
excessive wear on contact surfaces, inconsistent texture

Pill irregular shape, crumbling texture, excessive powder, uneven coating,
presence of air bubbles, disintegration, abnormal specks

Screw rust on the surface, bent, damaged threads, stripped threads, deformed top,
coating damage, uneven grooves, inconsistent size

Toothbrush loose bristles, uneven bristle distribution, excessive shedding of bristles,
staining on the bristles, abrasive texture, irregularities in the shape

Transistor burn marks, detached leads, signs of corrosion, irregularities in the shape,
presence of cracks or fractures, signs of physical trauma, irregularities in the surface texture

Zipper bent, frayed, misaligned, excessive stiffness, corroded, detaches, loose, warped
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Figure 3: Comparison of FiLo on MVTec and VisA datasets with different convolution kernels.
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Table 6: Fine-Grained anomaly description of every object within VisA dataset.

Class name Descriptions

Candle cracks or fissures in the wax, Wax pooling unevenly around the wick, tunneling, incomplete wax melt pool,
irregular or flickering flame, other, extra wax in candle, wax melded out of the candle

Capsules uneven capsule size, capsule shell appears brittle, excessively soft,
dents, condensation, irregular seams or joints, specks

Cashew uneven coloring, fungal growth, presence of foreign objects,
unusual texture, empty shells, signs of moisture, stuck together

Chewinggum consistency, presence of foreign objects, uneven coloring, excessive hardness, similar colour spot

Fryum irregular shape, unusual odor, uneven coloring, unusual texture,
small scratches, different colour spot, fryum stuck together, other

Macaroni1 uneven shape , small scratches, small cracks, uneven coloring,
signs of insect infestation, uneven texture, Unusual consistency

Macaroni2 irregular shape, small scratches, presence of foreign particles,
excessive moisture, signs of infestation, small cracks, unusual texture

Pcb1 oxidation on the copper traces, separation of layers, presence of solder bridges,
excessive solder residue, discoloration, Uneven solder joints, bowing of the board, missing vias

Pcb2 oxidation on the copper traces, separation of layers, presence of solder bridges,
excessive solder residue, discoloration, Uneven solder joints, bowing of the board, missing vias

Pcb3 oxidation on the copper traces, separation of layers, presence of solder bridges,
excessive solder residue, discoloration, Uneven solder joints, bowing of the board, missing vias

Pcb4 oxidation on the copper traces, separation of layers, presence of solder bridges,
excessive solder residue, discoloration, Uneven solder joints, bowing of the board, missing vias

Pipe_fryum uneven shape, presence of foreign objects, different colour spot, unusual odor,
empty interior, unusual texture, similar colour spot, stuck together

Table 7: Experimental results of FiLo on MVTec and VisA datasets under different backbones and learning rates.

Backbone learnable vec’s lr MMCI’s lr VisA MVTec-AD

Image-AUC Pixel-AUC Image-AUC Pixel-AUC

ViT-B-16@240 1e-3 1e-4 78.1 93.5 77.9 88.2
ViT-L-14@336 1e-3 1e-4 83.9 95.9 91.2 92.3
ViT-L-14@336 1e-3 1e-3 80.3 95.7 86.2 89.7
ViT-L-14@336 1e-4 1e-4 82.4 95.7 88 91.2
ViT-L-14@336 1e-4 1e-5 78.2 95.1 83.5 89
ViT-L-14@336 1e-5 1e-5 80.4 95.2 85.8 90.7

Table 8: Comparison of different learning methods for learnable vectors and whether to use class name.

learning method with class name VisA MVTec-AD
Image-AUC Pixel-AUC Image-AUC Pixel-AUC

CoOp 81.7 95 90.8 89.5
CoOp ✓ 80.9 95.5 89.9 90.4

CoCoOp 82.3 95.4 91 90.5
CoCoOp ✓ 83.9 95.9 91.2 92.3
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Table 9: Comparison of results of different processing methods for the output results of QKV and VV Attention.

QKV results VV results VV’s first layer VisA MVTec-AD
Image-AUC Pixel-AUC Image-AUC Pixel-AUC

Linear MMCI 1 81.9 95.3 87.8 89.2
Linear MMCI 7 83.9 95.9 91.2 92.3
Linear Linear 7 82.7 95.1 88.5 88.8
MMCI MMCI 7 83.2 95.5 50 50
MMCI Linear 7 82.5 95.7 56.9 57.6

Table 10: Comparison of different adapter structures and connection types.

Adapter’s arch residual VisA MVTec-AD

Image-AUC Pixel-AUC Image-AUC Pixel-AUC

Bottleneck 83.9 95.9 91.2 92.3
Bottleneck ✓ 83.6 95.8 89.9 91.4
Linear 83.9 95.9 90.2 92.3
Linear ✓ 83.8 95.9 88.6 91.1
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Figure 4: Anomaly scores of WinCLIP on the MVTec dataset. Each sub-figure represents the visualization of one object.

4 VISUALIZATION
4.1 Anomaly Scores for Every Categories
In this section, we present the statistical analysis of anomaly scores
generated by WinCLIP [4] and FiLo for each class object in the
MVTec and VisA datasets. These visualizations aim to illustrate the
effectiveness of FiLo’s detailed anomaly descriptions and adaptively
learned text templates compared to WinCLIP’s manually crafted
two-class text adjustment. As depicted in Figure 4 and Figure 5,
WinCLIP’s scores for both normal and abnormal samples heavily
overlap and are concentrated around 0.5, indicating its failure to

effectively distinguish between normal and abnormal samples. In
contrast, Figure 6 and Figure 7 illustrate FiLo’s visualization results
on these two datasets, where it can be observed that the scores for
normal samples significantly decrease while those for abnormal
samples notably increase, resulting in a significant reduction in the
overlapping area.

4.2 Anomaly Maps
Figure 8 showcase the Anomaly Maps generated by FiLo on a
broader set of samples from the MVTec and VisA datasets, demon-
strating FiLo’s robust anomaly localization capability.
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Figure 5: Anomaly scores of WinCLIP on the VisA dataset. Each sub-figure represents the visualization of one object.
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Figure 6: Anomaly scores of FiLo on the MVTec dataset. Each sub-figure represents the visualization of one object.

5 LIMITATION AND FUTUREWORK
Compared to previous works like WinCLIP [4], FiLo has made
advancements in anomaly detection, localization, and interpretabil-
ity through the use of Fine-Grained Description and High-Quality
Localization methods. However, despite these strides forward, cer-
tain limitations still persist, warranting further investigation and

refinement. As illustrated in Figure 6 and Figure 7, while the differ-
entiation between normal and abnormal samples is more distinct
compared to previous methods, significant overlap still exists in
certain categories such as zipper and metal nut. In the future, we
plan to further improve the differentiation between normal and ab-
normal sample scores through approaches such as metric learning.
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Figure 7: Anomaly scores of FiLo on the VisA dataset. Each sub-figure represents the visualization of one object.
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