Under review as submission to TMLR

After Appendix [A] the appendix is organized according to the major sections and subsections of the main
content.

A Limitations and ethics

A.1 Limitations

Some limitations of the regret preference model are discussed in the paragraph “Regret as a model for human
preference” in Section [2.2] including assumptions that a person giving preferences can distinguish between
optimal and suboptimal segments, that they follow a Boltzmann distribution (i.e., a Luce Shepard choice rule),
and that they base their preferences on decision quality even when transition stochasticity results in segment
pairs for which the worse decision has a better outcome.

Our proposed algorithm (Section has a few additional limitations. Generating candidate successor features
for the approximations Q;ﬁ and V. may be difficult in complex domains. Specifically, challenges include
choosing the set of policies or reward functions for which to compute successor features (line 3 of Algorithm
discussed in Appendix and creating a reward feature vector ¢ for non-linear reward functions (discussed
in Appendix. Additionally, although learning with P.cgc; is more sample efficient in our experiments, it
is computationally slower than learning with Ps;,. because of the additional need to compute successor features
and the use of the softmax function to approximate Q% and V. Nonetheless, we may accept the tradeoff of an
increase in computational time that reduces the number of human samples needed or that improves the reward
function’s alignment with human stakeholders’ interests. Lastly, the loss during optimization with Prcgre: Was
unstable, which we addressed by taking the minimum loss over all epochs during training. Therefore, for more
complex reward feature vectors (¢) than our 6-element vector for the delivery task, extra care might be needed
to avoid overfitting 7, for example by withholding some preference data to serve as a test set.

We also generally assume that the RL algorithm and reward learning algorithm use the same discount factor as
in the MDP\r specification. One weakness of contemporary deep RL is that RL algorithms require artificially
lower discount factors than the true discount factor of the task. The interaction of this discounting with
preference models is considered in Appendix Our expectation though is that this weakness of deep RL
algorithms is likely a temporary one, and so we focused our analysis on simple tasks in which we do not need to
artificially lower the RL algorithm’s discount factor. However, further investigation of the interaction between
preference models and discount factors would aid near-term application of Pr¢gre: to deep RL domains.

This work also does not consider which segment pairs should be presented for labeling with preferences used for
reward learning. However, other research has addressed this problem through active learning (Lee et al., [2021a;
Christiano et al.,|2017; |Akrour et al.,[2011)), and it may be possible to simply swap our Algorithm into these
active learning methods, combining the improved sample efficiency of Py.egre; With that of these active learning
methods.

Regarding the human side of the problem of reward learning from preferences, further research could provide
several improvements. First, we are confident that humans can be influenced by their training and by the
preference elicitation interface, which is a particularly rich direction for follow-up study. We also do not consider
how to handle learning reward functions from multiple human stakeholders who have different preferences, a
topic we revisit in Appendix Lastly, we expect humans to deviate from any simple model, including Prcgret,
and a fine-grained characterization of how humans generate preferences could produce preference models that
further improve the alignment of the reward functions that are ultimately learned from human preferences.

A.2 Ethical statement

This work is meant to address ethical issues that arise when autonomous systems are deployed without properly
aligning their objectives with those of human stakeholders. It is merely a step in that direction, and overly
trusting in our methods—even though they improve on previous methods for alignment—could result in harm
caused by poorly aligned autonomous systems.

20

Under review as submission to TMLR

When considering the objectives for such systems, a critical ethical question is which human stakeholders’
interests the objectives should be aligned with and how multiple stakeholders’ interests should be combined
into a single objective for an autonomous system. We do not address these important questions, instead making
the convenient-but-flawed assumption that many different humans’ preferences can simply be combined. In
particular, care should be taken that vulnerable and marginalized communities are adequately represented
in any technique or deployment to learn a reward function from human preferences in high-impact settings.
The stakes are high: for example, a reward function that is only aligned with a corporation’s financial interests
could lead to exploitation of such communities or more broadly to exploitation of or harm to users.

In this specific work, our filter for which Mechanical Turk Workers could join our study is described in Appendix|[D]
We did not gather demographic information and therefore we cannot assess how representative our subjects are
of any specific population.

A.3 On the challenge of using regret preference models in practice

We have provided evidence—theoretically and with experimentation—that the regret preference model is
more effective when precisely measured or effectively approximated. The challenge of efficiently creating such
approximations presents one clear path for future research. We believe this challenge does not justify staying
within the local maximum of the partial return preference model.

Like the regret preference model, inverse reinforcement learning (IRL) was founded on an algorithm that
requires solving an MDP in an inner loop of learning a reward function. For example, see the seminal work
on IRL by Ng & Russell (2000). IRL has been an impactful problem despite this challenge, and handling this
inner-loop computational demand is the focus of much IRL research.

Future work on the application of the regret preference model can face the challenge of scaling to more complex
problems. Given that IRL has made tremendous progress in this direction and |Brown et al. (2020) have scaled
an algorithm with similar needs to those of Algorithm [I, we are optimistic that the methods to scale can be
developed, likely with light adaptation from existing methods (e.g., in Brown et al. or in Appendix|F.1.1 and
F.1.2)).

B Preference models for learning reward functions

Here we extend the content of Section [2] focusing on preference models and learning algorithms that use them.
This corresponding section of the appendix provides a simple derivation of the logistic form of these preference
models, discusses extensions of the regret preference model, sketches an alternative way to learn a policy with
it, and discusses the relationship of inverse reinforcement learning to learning reward functions with a regret
preference model.

B.1 Derivation of the logistic expression of the Boltzmann distribution

For the reader’s convenience, below we derive the logistic expression of a function that is based on two subtracted
values from the Boltzmann distribution (i.e., softmax) representation that is more common in past work. These
values are specifically the same function f applied to each segment, which is a general expression of both of the
preference models considered here.

exp [f(01)]

exp [f(o1)]+exp [f(o2)]
1
1
 1+exp [f(o2)— f(01)]

=logistic(f(o1)— f(02)).

P(0'1>-0'2):

21

Under review as submission to TMLR

B.2 Learning reward functions from preferences, with discounting

For the equations from the paper’s body that assume that there is no temporal discounting (i.e., y=1), we
share in this section versions that do not make this assumption. If y=1, then the equations below simplify to
those in the body of the paper. To allow for fully myopic discounting with y=0, we define 0°=1.

Recall that 7 indicates an arbitrary reward function, which may not be the ground-truth reward function, r,
and 7 refers to a learned reward function. Similarly, 4 refers to an arbitrary exponential discount factor, which
may not be the ground-truth discount factor, -y, and 4 refers to the discount factor during learning, which could
be inferred or hand-coded. Also, the notation of V¥ and @)} are expanded in this subsection to denote the
discounting in their expected return: V(*Fﬁ) and fom, respectively.

In most of this article, the discount factor used during reward function inference is hard-coded as 4=1. However,
in the theory of Section [3, we assume ~ is not known to reach more general conclusions. In this subsection,
for generality we likewise assume that - is not known, using 4 generally and using 4 in notation we consider
specific to reward function inference.

The discounted versions of the preference models below rely on a cross entropy loss function that is identical to
Equation [T except for the inclusion of discounting notation:

1053(72,%1%):—2 pilogP(o1 = o2|P)+ palog P01 < 02| F,4) (8)
(01,02,)EDy

Partial return With discounting, the partial return of a segment o is Zt 0 vtﬁ,’t. This notation differs
from that in Section [2.1] E in that the subscript of the reward symbol 7, ; is now expanded to include which
segment it comes from.

The preference model based on partial return with exponential discounting is expressed below, generalizing
Equation

[o2|—1

Py, (01 = 02|7,7) —logzstzc(Z Aoyt — Z ’ytfgzyt). (9)
=0 t=0

Regret With discounting, for a transition (s¢,as,8¢41) in a segment containing only deterministic transitions,
regretq (Ut |7z,,§/) = V(:;,:y) (5;57) - [7:75 +’~YV(>:~7;/) (3?+1)] .

For a full deterministic segment, regretq(-|7,7) with exponential discounting is defined as follows, generalizing
Equation

o]
regreta(olF7) 2 Y A'regreta(oliA)
t=0

lo|—1 (10)
Vi 68— (D2 57w + 3V (5T,
t=0

Like Equation [3, this discounted form of deterministic regret also measures how much the segment reduces
expected return from the start state value, V(7 5 (sg)-

To create the general expression of discounted regret that accounts for potential stochastic transitions, we note
that, with discounting, the effect on expected return of transition stochasticity from a transition (s;,as,s;41) is
[Fe +3Vi5 5 (St41)] = Q{7 5 (st,a¢) and add this expression once per transition to get regret(c|7,7), removing
the subscript d that refers to determinism. The discounting does not change the simplified expressions in
Equation [4] the regret for a single transition:

regret(on|77) = [V 5) () = [Fe VG 5) (ST)N+ 7 V(G 5) (57400 = Q. 5) (57 ,07)]
:V(y;m(sf)—QZ}m(sf,ag) (11)
= —Azfm(s;’,a;’).

22

Under review as submission to TMLR

With both discounting and accounting for potential stochastic transitions, regret for a full segment is
lo|—1
regret(o|r,y)= Z Ftregret(os|F,7)
t=0
lo|—1
= > [Viry (57) = Qi (57 7)) (12)
t=0
lo|—1
_:/tA*F,’y) (s7,af).
t=0

The expression of regret above is the most general in this paper and can be used in Equation[f|identically as can
the undiscounted version in Equation

Equation @ the approximation Pregret of the regret preference model derived in Section is expressed with
discounting below.

PTegret(Ul >0—2|7z7;}/) _lOgZStZC< lt(:()‘_l:yt |:‘7(tﬁ74/) (ng)_QE‘fﬂ)(Sg27a?2)i| - L‘;lol‘l,.’yt [‘7(2,&)(8?1)_Q*’Fﬂ) (S?I ’agl):|)
(13)

Note that the successor features used in Section to determine these approximations, ‘7(”; %) and Q’(*T .
already include discounting.

As with the undiscounted versions of the above equations, if two segments have deterministic transitions, end
in terminal states, and have the same starting state, this regret model reduces to the partial return model:

Pregret('va’?) :PZT(V?:)/)

If hard-coding 4, when to set 4 <1 during reward function inference In reinforcement learning, both
~v and r together determine the set of optimal policies. Changing either « or r while holding the other constant
will often change the set of optimal policies.

For both preference models, we suspect that learning would benefit from using the same discounting during
reward inference as the human used while evaluating segments to provide preferences (i.e., setting 4=-. And
this same 4 would be used for learning a policy from the learned reward function. On the other hand, when 4 is
hand-coded and 4 #+y, the reward inference algorithm will regardless attempt to find an 7 that explains those
preferences; however, a set of optimal policies is determined by a reward function with the discount, and the set
of optimal polices created by the human’s reward function and discounting may not be determinable under a
different discounting.

Not only is a specific human rater’s v unobservable, but psychology and economics researchers have firmly
established that humans do not typically follow exponential discounting (Frederick et al.l|2002), which should
evoke skepticism for hard-coding 4 < 1 during reward function inference. One exception is humans who have been
trained to apply exponential discounting, such as in certain financial settings. The best model for how humans
discount future rewards and punishments is not settled, but one popular model is hyperbolic discounting. Some
exploration of RL with hyperbolic discounting exists, including approximating hyperbolically discounted value
function using a mixture of exponentially discounted value functions (Kurth-Nelson & Redish} [2009; [Redish &
Kurth-Nelson, 2010). However, it has not found clear usage beyond as an auxiliary task to aid representation
learning (Fedus et al.||2019). The interpretation of human preferences over segments appears to us to be a
strong candidate for using these methods to approximate hyperbolic discounting.

This research topic currently lacks a rigorous treatment of discounting when learning reward functions from
human preferences and such an investigation is beyond our scope, and so we leave our guidance above as
speculative.

B.3 Logistic-linear preference model

In Appendices [F.2.5] and |F.3.2| we also consider preference models that arise by making the noiseless
preference model a linear function over the 3 components of Py.cgret,. Building upon Equation above, we set

23

Under review as submission to TMLR

flo)=w-(VF(sg), X0, VF (sloa‘)). This preference model, Pjog—1in, can be expressed after algebraic manipulation
as

Progtin(o1 »az|f>=zogism'c(w VE(SG) = V(557 ST — S, Vi (ST >—v~*<s";2>>)- (14)

This logistic-linear preference model is a generalization of Ps;, and also of Pregret,, the regret preference model
for deterministic transitions. Specifically, if w=(0,1,0), then Pjog—in (-|F) = Ps,(-|7). And if W= (—1,1,1), then
Piog—1in(:|7) = Pregret, (-|7). More generally, for some constant ¢, @ = (0,¢,0) and & = (—c,c,c) recreate P,
and Pycgret, respectively but with different reward function scaling, which is the same as allowing a different
temperature in the Boltzmann distribution that determines preference probabilities. In Appendix we fit W
to maximize the likelihood of the human preference dataset under Plog,lm(~|r), using the ground-truth r, and
compare the learned weights to those of Ps;, and Pregret, -

B.4 Adding a constant probability of uniformly distributed preference

Appendix also considers adaptations of Ps,, Pregret,, and Pog—1in that add a constant probability of
uniformly distributed preference, as was done by |Christiano et al.| (2017). The body of the paper does not
consider these adaptations.

We create this adaptation, which we will call P’ here, from another preference model P by P’(o1 > 03) =
[(1—logistic(c))* P(o1 = 03)]+[logistic(c) /2], where ¢ is a constant that in practice we fit to data and logistic(c)
is the constant probability of uniformly random preference. The logistic(c) allows any constant ¢ to result in a
the constant probability of uniformly distributed preference to be in (0,1). The term logistic(c)/2 gives half of
the constant probability to oy and half to o5. The term [1—logistic(c)] scales the P(o1 > 02) probability—which
could be Psy., Pregret,, O Plog—1in—t0 a proportion of the remaining probability. The only difference in this
adaptation and Christiano et al’s 0.1 probability of uniformly distributed preference is that we learn the value
of ¢ from training data (in a k-fold cross-validation setting), as we see in Appendix whereas Christiano et al.
do not share how 0.1 was chosen.

B.5 Expected return preference model

In Appendix|[F.3] we test reward learning on a third preference model. This expected return preference model is
derived by making f(o)=—(3,7+V; (s“;‘)), in Equation |7l This segment statistic f(o) can be considered be
in between deterministic regret (Equation and partial return, differing from each by one term.

We include this preference model because judging by expected return is intuitively appealing in that it considers
the partial return along the segment and the end state value of the segment, and we found it plausible that
human preference providers might tend to ignore start state value, as this preference model does. However,
reward learning with the regret model outperforms or matches that by this expected return preference model,
as we show in Appendix[F.3!

B.6 Relationship to inverse reinforcement learning

Like learning reward functions from pairwise preferences, inverse reinforcement learning (IRL) also involves
learning a reward function. However, the inputs to IRL and learning reward functions from pairwise preferences
are different: IRL requires demonstrations, not preferences over segment pairs. However, because a a regret-based
preference model always prefers optimal segments over suboptimal segments, at least one further connection can
be made. If one assumes that a demonstrated trajectory segment is noiselessly optimal—as in the foundational
IRL paper on apprenticeship learning (Abbeel & Ng, 2004)—then such a demonstration is equivalent to
expressing preference or indifference for the demonstrated segment over all other segments. In other words, no
other segment is preferred over the demonstrated segment. However, IRL has its own identifiability issues in
noiseless settings (e.g., see Kim et al. (2021))) that, viewed from the lens of preferences, come in part from the
“indifference” part of the above statement: since there can be multiple optimal actions from a single state, it
is not generally correct to assume that a demonstration of one such action shows a preference over all others,

24

Under review as submission to TMLR

and therefore it remains unclear in IRL what other actions are optimal. Note that since partial-return-based
preferences can prefer suboptimal segments over optimal segments, the common assumption in IRL that
demonstrations are optimal does not map as cleanly to partial-return-based preferences.

The regret preference model also relates to IRL in that the most basic version of IRL requires solving an MDP
in the inner loop (see Algorithm 1 in the survey of IRL by |Arora & Doshi|(2021)), as appears necessary for a
perfect measure of regret while learning a reward function. The progress that IRL has made addressing this
challenge gives us optimism that it is similarly addressable for complex tasks in for our proposed algorithm. We

discuss potential solutions in Appendix and

C Theoretical comparisons

The relevance of noiseless preference generators Because we model preferences as stochastic in Section|[2]
one might reasonably wonder how the above theoretical analysis of noiseless preference generators are relevant.
We offer four arguments below.

First, having structured noise provides information that can help both preference models, but these proofs
show that there are cases where the signal behind the noise—either regret or partial return—is not sufficient in
the partial return case to identify an equivalent reward function. So, in a rough sense, regret more effectively
uses both the signal and the noise, which might explain its superior sample efficiency in our experiments across
both human labels and synthetic labels. Relatedly, the noiseless setting can help us understand each preference
model’s sample efficiency in a low-noise setting.

Second, noiseless preferences are also feasible, even if they are rare. Therefore, understanding what can be
learned from them is worthwhile. Theorem [3.2]shows that there are MDPs in which there is no class of preference
models—stochastic or deterministic—that can identify an equivalent reward function from partial-return-based
preferences if the preference generator noiselessly prefers according to partial return. Specifically, we show that
the mapping from two reward functions with different sets of optimal policies to partial-return based preferences
is a many-to-one-mapping, and therefore the information simply does not exist to invert that mapping and
identify a reward function with the same set of optimal policies. In contrast, Theorem [3.I]shows that preferences
generated noiselessly (and in certain stochastic settings) by regret do not have this issue.

Third, noise is often motivated as modeling human error. Having an algorithm rely on noise—structured in a
very specific, Boltzmann-rational way—is an undesirable crutch. [Skalse et al. (2022) justify including noiseless
preferences in their examinations of identifiability with a similar argument: “these invariances rely heavily on
the precise structure of the decision noise revealing cardinal information in the infinite-data limit”.

Beyond the work of [Skalse et al. (2022), there is broader precedent for considering noiseless human input
for theory or derivations. For instance, the foundational IRL research on apprenticeship learning (Abbeel &
Ngl 2004) treats demonstrations as noiselessly optimal. Recent work by [Kim et al.| (2021) focuses on reward
identifiability with noiseless, optimal demonstrations.

D Additional information for creating a human-labeled preference dataset

D.1 The preference elicitation interface and study overview

Here we share miscellaneous details about the preference elicitation interface from which we collected human
subjects’ preferences. This description builds on Section [4.2

In selecting preferences, subjects had four options. They could prefer either trajectory (left or right), or they
could express their preference to be the same or indistinguishable. To provide these preferences, subjects could
either click on each of the buttons labeled "LEFT", "RIGHT", "SAME", or "CAN'T TELL" (shown in Figure
or by using the arrow keys to select amongst these choices.

For the interface, all icons used to visualize the task were obtained from [icons8.com under their Paid Universal
Multimedia Licensing Agreement.

25

https://icons8.com/

Under review as submission to TMLR

We paid all subjects $5 per experiment (i.e., for each a Mechanical Turk HIT), which was chosen using the
median time subjects took during a pilot study and then calculating the payment to result in $15 USD per hour.
This hourly rate of $15 was chosen because it is commonly recommended as an improved US federal minimum
wage. The human subject experiments cost $2,145 USD in total.

An experimental error resulted in the IRB-approved consent form not being presented to human subjects after
Mechanical Turk Workers accepted our study. We reported this error to our IRB and received their approval to
use the data.

Table 2: The task comprehension survey, designed to test participant’s comprehension of the domain for the purpose of filtering
data. Each full credit answer earned 1 point; each partial credit answer earned 0.5 points. We discarded the data of participants
who scored less than 4.5 points overall.

Question

Full credit answer

Partial credit answer

Other answer choices

What is the goal of
this world? (Check
all that apply.)

e To maximize profit

o To get to a specific loca-
tion.

e To maximize profit

Partial credit was given if both
answers were selected.

o To drive as far as possible to explore
the world.

e To collect as many coins as possible.
e To collect as many sheep as possible.

¢ To drive sheep to a specific location.

‘What happens
when you run into a
house? (Check all
that apply.)

e You pay a gas penalty.

¢ You can’t run into a house;
the world doesn’t let you
move into it.

Full credit was given if both
answers were selected.

« You pay a gas penalty.

¢ You can’t run into a house;
the world doesn’t let you
move into it.

Partial credit was given if only
one answer was selected.

e The episode ends.
¢ You get stuck.

e To collect as many sheep as possible.

What happens
when you run into a
sheep? (Check all
that apply.)

e The episode ends.

¢ You are penalized for run-
ning into a sheep.

Full credit was given if both
answers were selected.

e The episode ends.

¢ You are penalized for run-
ning into a sheep.

Partial credit was given if only
one answer was selected.

e You are rewarded for collecting a
sheep.

What happens
when you run into a
roadblock? (Check
all that apply.)

¢ You pay a penalty.

o The episode ends.
e You get stuck.

¢ You can’t run into a roadblock; the
world doesn’t let you move into it.

Is running into a
roadblock ever a
good choice in any
town?

e Yes, in certain circum-
stances.

« No.

‘What happens
when you go into
the brick area?
(Check all that
apply.)

¢ You pay extra for gas.

e The episode ends.
e You get stuck in the brick area.

e You can’t go into the brick area; the
world doesn’t let you move into it.

Is entering the brick
area ever a good
choice?

e Yes, in certain circum-
stances

D.2 Filtering subject data

To join our study via Amazon Mechancial Turk, potential subjects had to meet the following criteria. They had
to be located in the United States, have an approval rating of at least 99%, and have completed at least 100

26

Under review as submission to TMLR

other MTurk HITs. We selected these criteria to improve the probability of collecting data from subjects who
would attentively engage with our study and who would understand our training protocol.

We assessed each subject’s understanding of the delivery domain and filtered out those who did not comprehend
the task, as described below. Specifically, subjects completed a task-comprehension survey, through which we
assigned them a task-comprehension score. The questions and answer choices are shown in Table[2] Each fully
correct answer was worth 1 point and each partially correct answer was worth 0.5 points. Task-comprehension
scores were bounded between 0 and 7. We removed the data from subjects who scored below a threshold of 4.5.
The threshold of 4.5 was chosen based on visual analysis of a histogram of scores, attempting to balance high
standards for comprehension with retaining sufficient data for analysis.

In addition to filtering based off the task comprehension survey, we also removed a subject’s data if they ever
preferred colliding the vehicle into a sheep over not doing so. Since such collisions are highly undesirable in this
task, we interpreted this preference as evidence of either poor task understanding or inattentiveness.

)

In total, we collected data from 143 subjects. Data from 58 of these subjects were removed based on subjects
responses to the survey. From what remained, data from another 35 subjects were removed for making the
aforementioned sheep-collision preference errors. After this filtering, data from 50 subjects remained. This
filtered data consists of 1812 preferences over 1245 unique segment pairs and is used in this article’s experiments.

Regarding potential risks to subjects, this data collection had limited or no risk. No offensive content was shown
to subjects while they completed the HIT. Mechanical Turk collected Worker IDs, which were used only to link
preference data with the results from the task-comprehension survey for filtering data (see Appendix and
then were deleted from our data. No other potentially personally identifiable information was collected.

D.3 The two stages of data collection

We collected the human preference dataset in two stages, as mentioned in Section[4.2] Here we provide more
detail on each stage. These stages differed largely by their goals for data collection and, following those goals,
how we chose which segment pairs were presented to subjects for their preference.

First stage Figure[l12|illustrates the coordinates that segment pairs were sampled from in the first stage of
data collection, varying by state value differences and by differences in partial returns over the segments. We
sought a range of points that would allow a characterization of human preferences that is well distributed across
different parts of the plot. To better differentiate the consequences of each preference model, we intentionally
chose a large number of points in the gray area of Figure [8, where the regret and partial return preference
models would disagree (i.e., each giving a different segment a preference probability greater than 0.5).

We now describe our segment-pair sampling process more specifically. We
first we constructed all unique segments of length 3 and then exhaustively
paired them, resulting in nearly 30 million segment pairs. Fach segment
pair’s partial returns, start-state values, end-state values place the segment
pair on a coordinate in Figure[8] and segment pairs that are not on any
of the dots in Figure [§ were discarded. For the segment pairs at each
coordinate, we further divided them into 5 bins: non-terminal segments
with the same start state and different end states, non-terminal segments
with different start states and different end states, terminal segments with
the same start state and same end state, terminal segments with a different Figure 12: Coordinates from which seg-
start states and the same end state, and bin of segment pairs that fit in g:?sfjéfgzeéztiaglorﬁlsgﬁfgim%ﬁ?;iiﬁ
none of the other bins. Segment pairs in the 5th bin were discarded. From g state value differences between the two
each of the 4 bins corresponding to each point in Figure[8, we randomly = segments and the y-axis is partial return
sampled 20 segment pairs. If the bin did not have at least 20 segment ~ differences between the two segments. The
pairs, all segment pairs in the bin were “sampled”. All sampled segment izeriizi g}es;;if;a;f f}f;)tp ?)1:11;:: a;ntg :ng
pairs from all bins for all points in Figure made up the pool of segment proportionality is consistent ac}oss this
pairs used with Mechanical Turk. For each subject, 50 segment pairs were plot and the 3 subplots of Figure[13]
randomly sampled from this pool. We gathered data until we had roughly

AV - AV

27

Under review as submission to TMLR

20 labeled segment pairs per bin. After filtering subject data, this first stage contributed 1437 segment pairs out
of the 1812 pairs used in our reward learning experiments in Section [6.3]and Appendix[F.3!

5 . 52 . -46
- . .
©
N [[* . . . DR Y
'™ 30e ¢ 0 0 o o . co} e . 50 42 .
N . o *
44 - -56
ANV - AV AV - AV ANV - AV

Figure 13: Coordinates from which segment pairs were sampled from during the second stage of data collection. The points are
in 3 distant clusters, so they are presented in 3 separate subplots for readability. The areas of the circles are proportional to the
number of samples at that point, and the proportionality is consistent across these 3 subplots and Figure

Second stage When we conducted the reward-learning evaluation in Section[6with only the data from the first
stage, Py, performed very poorly, always performing worse than uniformly random. This performance difference
is shown in Appendix @ In contrast Ppcgre: performed well, always achieving near-optimal performance. To
better assess Px,., we investigated its results with synthetic preferences in detail and speculated that two types
of additional segment pairs would aid its performance. The first of these two types include one segment that is
terminal and one that is non-terminal, which we expected to help differentiate the reward for reaching terminal
states from that of reaching non-terminal ones.

The second of these two types are two segments that each terminate at different ¢ values. For example, one
segment terminates on its end state, Sral’ and another terminates after its first transition, at s7. These
early-terminating segments can be viewed either as shorter segments or as segments of the same length as
the other segments (Jo|=3), where they reach absorbing state from which no future reward can be received.
We speculated that this second type of segment pairs would help learn the negative reward component for
each move (i.e., the gas cost). Specifically, in the first stage’s data, both segments in a pair always have the
same number of non-terminal transitions, seemingly preventing preferences from providing information about
whether an extra transition (from non-absorbing state) generally resulted in positive or negative reward. These
segment pairs were included in all results unless otherwise stated. Note that this second type addresses the
identifiability issue of the partial return model related to a constant shift in the reward function and discussed
in Section[3.2.2]and Appendix[F.2.2] The speculation described above was a conceptual predecessor of our
understanding of this identifiability issue. In particular, any change to this gas cost—which is given at every
time step—is equivalent to a constant shift in the reward function.

We now describe our segment-pair sampling process for the second stage more specifically. For the first additional
type of segment pair, where one segment is terminal and one is not, we randomly pair terminal and non-terminal
segments from the first-stage pool of segment pairs drawn from to present to subjects. In this pairing, each
segment is only used once, and pairing stops when one of all terminal segments or all non-terminal segments have
been paired. The corresponding coordinates for these pairs are shown in the two right most plots of Figure
For the second additional type of segment pair, we utilize all terminal segments from the pool of segment pairs
shown to subjects in the first stage. For each of these terminal segments, we construct two additional segments:
one that shifts the segment earlier, removing the first state and action and adds a dummy transition within
absorbing state at the end, and another that shifts the segment two timesteps earlier and adds two such dummy
transitions at the end. These two newly constructed segments are then each paired with the original segment,
producing two new pairs for each terminal segment in the data set. The corresponding coordinates for these
segment pairs are shown in the left most plot of Figure

All of both types of additional segments pairs are then characterized by the coordinates shown in Figure[I3] Then,
as with the first stage, we randomly sampled 20 segment pairs from each coordinate to make the experimental
pool for the second round of Mechanical Turk data collection. If 20 segment pairs were not available at a
coordinate, we used all segment pairs for that coordinate. As in the first stage, 50 segment pairs were randomly

28

Under review as submission to TMLR

sampled from this pool to be presented to each subject during preference elicitation. After filtering subject data,
this first stage contributed 311 segment pairs out of the 1812 pairs used in our reward learning experiments in

Section [6.3]and Appendix[F.3!

D.4 The study design pattern

This work follows an experimental design pattern that is often used for studying methods that take human
input for evaluating the desirability of behaviors or outcomes. This pattern is illustrated for the specific case of
learning reward functions from preferences in Figure[d] In this pattern, human subjects are taught to understand
a specific task metric and/or are incentivized to align their desires with this metric. The human subjects then
provide input to some algorithm that has no knowledge of the performance metric, and this algorithm or learned
model is evaluated on how well its output performs with respect to the hidden metric. For another example, see
Cui et al.| (2020)).

E Descriptive results
E.1 Derivation of regretq(o2|7) —regretq(o1|7) =(Ag, Vi —Ag, Vi) + (X5, T — X0, 7)
The derivation below supports our assertion in the first paragraph of Section [5.1]
regretq(oa|F) —regretq(o1|7)

= (V2 (557) = CaaT 4 V2 (572, 1= V7 (5§7) = (S T VE (52,)])
((55 =V (o2, = V3 (56) =V (6,)]) = (BoaF = B, 7)

oul) =V (51~ V7 (s) = ‘/f*(582)]>+(201f—2027’)
— A, Vi) + (E6, F— 25, T)

(15)

V7 (o]
(Aal Vi —

E.2 Losses of an expanded set of preference models on the human preferences dataset

. . . Table 3: Expanding on Table mean cross-entropy test
Table [3 shows an expansion of Table L, including models loss over 10-fold cross validation (n=1812) from predicting

introduced in Appendix [Bl The logistic linear preference human preferences. Lower is better.
model, Pjoq_1in, provides a lower bound, given that it can

express either Progre; 0r Ps, and that we do not not observe Preference model (ni f,sssm)
any overfitting of its 3 parameters. [P()=05 (uninformod) T 0693 |
Including the constant probability of a uniformly random | Psr (partial return) 0.620
response, as in|Christiano et al.| (2017), also increases the]Ij’”eg”ft ((Eegl.rit.) Trear) g'gzz
expressivity of the model. The final three results in Table Plog-i:/?th Oillg - E?Zrm — 0.620
show the best test loss achieved across different training Pf;;yret wi?:h prob of uniformzesp onse 0573
runs that differ by initializing logistic(c) of this model to Plog-lin With prob of uniform response 0.548

be 0.01, 0.1, or 0.5. Surprisingly, no benefit is observed
from including a constant probability of a uniformly random response. Because this augmentation of our models
appears to have no effect on the likelihood, we do not include it in further analysis.

Across the 10 folds, the mean weights learned for Pjog—in (-|7) were w=(—0.18,0.34,0.32), where each weight
applies respectively to segments’ start state values, partial returns, and end state values. Scaled to have a
maximum weight of 1 for easy comparison with Py, and Pregret,; Wscatea = (—0.53,1.0,0.94). First, we note
that these weights are closer to those that make Piog_iin, = Pregret, (.., W=(—1,1,1)) than to those that make
Piog—tin="Ps, (ie., W=(0,1,0)). Also, the notable deviation from the weights of Pregret, is the weight for the
start state value, which has half as much impact as the regret preference model gives it. In other words, this
lower weight suggests that our subjects did tend to weigh the maximum possible expected return from each
segment’s start state, but they did so less than they weighed the reward accrued along each segment and the
maximum expected return from each segment’s end state.

29

Under review as submission to TMLR

F Results from learning reward functions

This section provides additional implementation details for Section[6] discussion of potential improvements,
and additional analyses that thematically fit in Section [6}

F.1 An algorithm to learn reward functions with regret(c|#)

We describe below additional details of our instantiation of Algorithm

Doubling the training set by reversing preference samples Because the ordering of preference pairs is
arbitrary—i.e., (o1 < 09)<= (02 > o1)—for all preference datasets we double the amount of data by duplicating
each preference sample with the opposite ordering and the reversed preference. This provides more training
data and avoids learning any segment ordering effects.

Collecting the policies from which successor feature functions are calculated For this article’s
instantiation of Algorithm|[I, we collect successor feature functions by randomly sampling a large number of
reward functions and then calculating the successor feature functions for their optimal polices. This procedure
is more precisely described below.

1. Create a reward function by sampling with replacement each element of its weight vector, wz, from
{-50,-10,—2,—1,0,1,5,10,50}.

2. For this reward function, use value iteration to approximate its maximum entropy optimal policy and
that policy’s successor feature function.

3. If this successor feature function policy differs from all previously calculated successor feature functions,
save it and go to step 1.

4. Otherwise it is a redundant policy. If less than 300 consecutive redundant policies have been found, go
to step 1.

The policy collection process above is terminated after 300 consecutive redundant policies are found. Finally,
we calculate the maximum entropy optimal policy for the optimal policy for the ground-truth reward function,
r, and remowve the successor feature function for any policy that matches the optimal policy for r. In other
words, we remove any policies for other reward functions that were also optimal for r, making the regret-based
learning problem more difficult. We ensured that the ground-truth reward function was not represented to
better approximate real-world reward learning applications, in which one would be unlikely to have the optimal
policy for learning a successor features function. On the specific delivery task on which we gathered human
preferences, the process above resulted in 70 reward functions.

Early stopping without a validation set During training, the loss for the P,.4.e; model tended to show
cyclical fluctuations, reaching low loss and then spiking. To handle this volatility, we used the # that achieved
the lowest loss over all epochs of training, not the final #. For Ps, and P,¢gyet, we found no evidence of overfitting
with our linear representation of the reward function, but with a more complex representation, such early
stopping likely should be based upon the loss of the model on a validation set. A better understanding of the
cyclical loss fluctuations we observe during training could further improve learning with Pregret-

Discounting during value iteration Despite the delivery domain being an episodic task, a low-performing
policy can endlessly avoid terminal states, resulting in negative-infinity values for both its return and successor
features based on the policy. To prevent such negative-infinity values, we apply a discount factor of v=0.999
during value iteration—which is also where successor feature functions are learned—and when assessing the
mean returns of policies with respect to the ground-truth reward function, 7. We chose this high discount factor
to have negligible effect on the returns of high-performing policies (since relatively quick termination is required
for high performance) while still allowing value iteration to converge within a reasonable time.

30

Under review as submission to TMLR

Hyperparameters for learning Below we describe the other specific hyperparameters used for learning a
reward function with both preference models. These hyperparameters were used across all experiments. For all
models, the learning rate, softmax temperature, and number of training iterations were tuned on the noiseless
synthetic preference data sets such that each model achieved an accuracy of 100% on our specific delivery task
and then were tuned further on stochastic synthetic preferences on our specific delivery task.

Reward learning with the partial return preference model
learning rate: 2; number of training epochs: 30,000; and optimizer: Adam (with 5 =0.9 and 82 =0.999, and
eps= 1le—08).

Reward learning with the regret preference model
learning rate: 0.5; number of training epochs: 5,000; optimizer: Adam (with 81 = 0.9, S = 0.999, and
eps=1e—08); and softmax temperature: 0.001.

Logistic regression with both preference models, for the likelihood analysis in Section[5.2 and Appendiz[E.3
learning rate: 0.5; number of training iterations: 3,000; optimizer: stochastic gradient descent; and evaluation:
10-fold cross validation.

Computer specifications and software libraries used The computer used to run experiments shown in
Figures E@E@, @, E, @, and@had the following specification. Processor: 2x AMD EPYC 7763 (64
cores, 2.45 GHz); Memory: 284 GB.

The computer used to run all other experiments had the following specification. Processor: 1x Core™ i9-9980XE
(18 cores, 3.00 GHz) & 1x WS X299 SAGE/10G | ASUS | MOBO; GPUs: 4x RTX 2080 Ti; Memory: 128 GB.

Pytorch 1.7.1 (Paszke et al.,[2019) was used to implement all reward learning models, and statistical analyses
were performed using Scikit-learn 0.23.2 (Pedregosa et al.| 2011)).

F.1.1 For Algorithm [T} choosing an input set of policies for learning successor feature functions

A set of policies is input to Algorithm [I]and used to create successor feature functions, which are in turn used
for generalized policy improvement (GPI) to efficiently estimate optimal value functions for # during learning.
Which policies to insert is an important open question for successor-feature-based methods in general, but our
intuition is that the performance of GPI under successor-feature-based methods is improved with a greater
diversity of successor feature functions (via a diverse set of policies) and by having some policies that perform
decently (but not necessarily perfectly) on the reward functions for which V* and Q* outputs values are being
estimated via GPI.

Recalling that an input policy can come from policy improvement with an arbitrary reward function, we offer
the following ideas for how to source an input set of policies.

o Choose reward function parameters according to some random distribution (as we do).

o Create a set of reward functions that differ in a structured way, such as each reward function being a
point in a grid formed in parameter space.

e Learn policies from a separate demonstration dataset, using an imitation learning algorithm.

e Bootstrap from 7. Specifically, during learning augment the current set of successor feature functions
(U757 and UTsF) by learning one new successor feature function via policy improvement on the current
7; then continue reward learning with the augmented set of successor feature functions and repeat this
process as desired.

The input set of policies could come from multiple different sources, including the ideas above.

31

Under review as submission to TMLR

F.1.2 Instantiating Algorithm [I]for reward functions that may be non-linear

Algorithm [I]operates under the assumption that the reward function can be represented as a linear combination
of reward features. These reward features are obtained through a reward-features function ¢, which is given as
input to the algorithm. Here we address situations when the linearity assumption does not hold.

If the state and action space are discrete, one could linearly model all possible (deterministic) reward functions
by creating a feature for each (s,a,s’) that is 1 for (s,a,s’) and 0 otherwise. A downside of this approach is that
the learned reward function cannot benefit from generalization, which has two negative consequences. First, in
complex tasks, generalization would typically have decreased the training set size required to learn a reward
function 7 with optimal policies that perform well on the ground-truth reward function, r. Second, the reward
function will not generalize to different tasks that share the same symbolic reward function, such as always
having the same reward from interacting with a particular object type.

If the reward features are unknown or the reward is known to be non-linear, another method is to create a
reward features function that permits a linear approzimation of the reward function. Several methods to derive
some or all of these reward features appear promising:

e Reward features can be learned by minimizing several auxiliary losses in a self-supervised fashion, as by
Brown et al.| (2020). After optimizing for these various objectives using a single neural network, the
activations of the penultimate layer of this network can be used as reward features. Such auxiliary
tasks may include minimizing the mean squared error of the reconstruction loss for the current state
from a lower-dimensional embedding and the original state, predicting how much time has passed
between states by minimizing the mean squared error loss (i.e., learning a temporal difference model),
predicting the action taken between two states by minimizing the cross entropy loss (i.e., learning an
inverse dynamics model), predicting the next state given the current state and action by minimizing
the mean squared error loss(i.e., learning a forward dynamics model), and predicting which of two
segments is preferred given a provided ranking by minimizing the t-rex loss.

e Reward features could also be learned by first learning a reward function represented as a neural
network using a partial return preference model, and then using the activations of the penultimate layer
of this neural network to provide reward features.

F.2 Results from synthetic preferences

F.2.1 Learning reward functions from 100 randomly generated MDPs

Here we describe how each MDP in the set of 100 MDPs discussed in section [6.2]was generated. We also extend
the analysis to illustrate how often each preference model performs better than uniformly random and give
further details on our statistical tests.

Design choices The 100 MDPs are all instances of the delivery domain, but they have different reward
functions. The height for each MDP is sampled from the set {5,6,10}, and the width is sampled from {3,6,10,15}.
The proportion of cells that are terminal failure states is sampled from the set {0,0.1,0.3}. There is always
exactly one terminal success state. The proportion of “mildly bad” cells were selected from the set {0,0.1,0.5,0.8},
and the proportion of “mildly good” cells were selected from {0,0.1,0.2}. Mildly good cells and mildly bad
cells respectively correspond to cells with coins and roadblocks in our specific delivery task, but the semantic
meaning of coins and roadblocks is irrelevant here. Each sampled proportion is translated to a number of cells
(rounding down to an integer when needed) and then cells are randomly chosen to fill the grid with each of the
above types of states until the proportions are satisfied.

Then, the ground-truth reward component for each of the above cell types were sampled from the following sets:

o Terminal failure states: {0,1,5,10,50}

o Terminal success states: {—5,—10,—50}

32

Under review as submission to TMLR

o Mildly bad cells: {—2,—5,-10}

Mildly good cells always have a reward component of 1, and the component for white road surface cells is always
-1. There are no cells with a higher road surface penalty (analogous to the bricks in the delivery domain).

Better than random performance Figure[l4complements the results in Figure[10} showing the percentage
of MDPs in which each preference model outperforms a policy that chooses actions according to a uniformly
random probability distribution. We can see that at this performance threshold, lower than that in Figure[10]
the regret preference model outperforms the partial return preference model in most conditions. Even when their
performance in this plot—based on outperforming uniformly random actions—is nearly identical, Figure[I0
shows that the regret preference model achieves near optimal performance at a higher proportion.

Details for statistical tests We per-

formed a Wilcoxon paired signed-rank test -5 2 g 100%

on the normalized average returns achieved JE _§ S .. — Regret

by each model over the set of 100 randomly g.2 § 80% (nms.eless)
generated MDPs. All normalized average re- & S _; N Eiﬁﬁelszf turn
turns below —1 were replaced with —1, sothat & g E 00%F -- Regret

all such returns were in the range [—1,1]. This L.Ea g = (stochastic)
clipping was done because any normalized av- ° ig 5 40% -- Partial return
erage return below 0 is worse than uniformly 310 30 100 300 1000 3000 (stochastic)
random, so the difference between a normal- Preferences per training set

ized return of —1 and —1000 is relatively unim- Figure 14: Comparison of performance over 100 randomly generated
portant compared to the difference between deterministic MDPs, showing the percentage of MDPs in which each model

1 and 0. Results are shown in Table[dl performed better than an agent taking actions by a uniformly random
policy. This plot complements Figure which shows the percentage of
MDPs in which the models perform near-optimally.

Table 4: Results of the Wilcoxon paired signed-rank test on normalized average returns for each preference model.

Preference |D.|=3 |D,.|=10 |D,-|=30 |D,|=100 | |D,|=300 | |Ds|=1000 | |D,|=3000
generator

type

Noiseless w=1003, w=917, w=1739, w=487, w=284, w=301, w=289,
(Pregret vs. | p=0.115 p=0.007 p=0.012 p=0.007 p<0.001 p=0.002 p=0.001
PET‘)

Stochastic w=979, w=1189.5, | w=891, w=T710, w=285, w=460, w=199,
(Pregret vs. | p=0.541 p=0.018 p=0.027 p=0.018 p<0.001 p=0.002 p<0.001
PET)

Additionally, we investigate whether P,y and Ps;,. learn near-optimal policies on the same MDPs within this
set of 100 randomly generated MDPs. Results for this analysis are shown below.

Table 5: A table showing the count of the number of MDPs where both, either, or neither of the models achieved near optimal
performance.

Model(s) D, [=3 [D_[=10 | [Dy]|=30 | |Ds]|=100 | |D~|=300 | [Dy|=1000 | |D,|=3000
Both models || 31 40 66 72 83 87 88

Only Pregrer || 20 26 17 18 14 8 8

Only P, 10 12 7 8 3 3 3

Neither 39 22 10 2 0 2 1

F.2.2 The effect of including transitions from absorbing state

In Section|3.2.2/we describe one context in which partial return is not identifiable because reward functions that
differ by a constant can have different sets of optimal policies yet will have identical preference probabilities
according to the partial return preference model (via Egs. and@[). This lack of identifiability arises specifically

33

Under review as submission to TMLR

in tasks that have the characteristic of having at least one state from which trajectories of different lengths
are possible. Tasks that terminate upon completing a goal or reaching a failure state typically have this
characteristic. Below we describe an imperfect method to remove this lack of identifiability. Then we show that
the partial return preference model does much worse in our main experiments with synthetic preferences and
human preferences when this method is not applied.

An imperfect method to prevent this source of unidentifiability for partial return Put simply, the
approach to prevent all constant shifts of reward from resulting in the same preference probabilities is to force
7(s,a,8")=0 in at least one tuple of state, action, and next state, (s,a,s’), and include in the training dataset one
or more segments with that tuple.

Technically, this solution addresses the Regret

source of this 1dent1ﬁab1hty issue, that any — znc!ud]es e)arly terminating segments
. . noiseless

constant shift in the output of the reward 100% -~ Includes early terminating segments

(stochastic)

— No early terminating segments
(noiseless)

--- No early terminating segments
(stochastic)

function will not change the likelihood of
a preferences dataset (but can change the
set of optimal policies). With this solution,
a constant shift cannot be applied to all
outputs, since at least one reward output is
hard-coded to 0. And applying a constant

80%

Partial return

— Includes early terminating segments
(noiseless)

is near-optimal

60% /"

% of MDPs in
which performance

40%

---Includes early terminating segments

7 B (stochastic)
shift to all other outputs would change 310 30 100 300 1000 3000 — No early terminating segments
. L. (noiseless)
the likelihood of the infinite, exhaustive Preferences per training set ~--No early terminating segments
preferences dataset that is assumed in iden- (stochastic)
tifiability theory.

) o] R Figure 15: Performance comparison over 100 randomly generated determin-
More 1ntu1t1ve1y, setting one r(s,a,s’) =0 istic MDPs. The results in this plot expand upon the experiments in Figure@,
for one (s,a, s’) tuple anchors the reward adding results for datasets that do not have any segments that terminate early.
function. To explain, reward function in-
ference effectively learns an ordering over (s,a,s’) tuples. Let us arbitrarily assume this ordering is in ascending
order of preference. Then setting the reward for one such tuple to 0 forces all (s,a,s’) tuples that are later in the
ordering to have positive reward and all (s,a,s’) tuples that are earlier in the ordering to have negative reward.
(s,a,s") tuples that are equal in the ordering are assigned a reward of 0.

However, assuming that reward is 0 in any state has at least two undesirable properties. First, it requires
adding human task knowledge that is beyond what the preferences dataset contains, technically changing the
learning problem we are solving. Second, while it resolves some ambiguity regarding what reward function has
the highest likelihood, this resolution may not actually align with the ground-truth reward function. In an
attempt to reduce the impact of these undesirable properties, we only set the reward for absorbing state to 0.
Absorbing state is the theoretical state that an agent enters upon terminating the task. All actions from the
absorbing state merely transition to the absorbing state.

In practice, to include segments with transitions from absorbing state, we add early terminating segments,
meaning that termination in an n-length segment occurs before the final transition.

The method above is not a perfect fix, however. Assuming that transitions from absorbing state have 0 reward
also consequently assumes that humans consider time after termination to have 0 return. We are uncertain that
humans will always provide preferences that are aligned with this assumption. For instance, if termination frees
the agent to pursue other tasks with positive reward, then we might be mistaken to assume that humans are
giving preferences as if there is only 0 reward after termination.

As mentioned in Section [3.2.2] past authors have acknowledged this issue with learning reward functions under
the partial return preference model, apparently unaware of this solution of including transitions from absorbing
states. Instead, they have used normalization (Christiano et al.,2017;|Ouyang et al.|[2022), tanh activations (Lee
et al., 2021a)), and L2 regularization (Hejna & Sadigh, 2023) that resolve their algorithms’ insensitivity to
constant shifts in reward. However, these papers do not discuss what assumptions regarding alignment are
implicitly made by these ambiguity-resolving choices. Curiously, artificially forcing episodic tasks to be fixed
horizon is common (e.g., as done by |Christiano et al.| (2017, p. 14) and |Gleave et al. (2022)) but has not, to

34

Under review as submission to TMLR

100%

75%

50%

Regret
1 transtion
2 transtions
—— 3 transtions
— 10 transtions
— 20 transtions

Partial return
1 transtion
2 transtions
3 transtions

100%

75%

S0%LF% /.-

Regret
1 transtion
2 transtions
~== 3 transtions
——- 10 transtions
=== 20 transtions

Partial return
1 transtion
2 transtions
=== 3 transtions

% of MDPs in which
performance is near optimal

===10 transtions

— 10 transtions
—_— === 20 transtions

% of MDPs in which
performance is near optimal

20 transtions

3 10 30 100 300 1000 3000

3 10 30 100 300 1000 3000

of preferences # of preferences

Figure 16: Using noiselessly generated preferences, com-
parison of performance over 100 randomly generated deter-
ministic MDPs, showing the percentage of MDPs in which
each model performed near-optimally after learning from
preference datasets of different segment lengths.

Figure 17: Using stochastically generated preferences,
comparison of performance over 100 randomly generated
deterministic MDPs, showing the percentage of MDPs in
which each model performed near-optimally after learning
from preference datasets of different segment lengths.

our knowledge, been justified as a way to address this identifiability issue. Our solution above involving early
termination could be cast as a specific form of forcing a fixed horizon (infinite in this case). In one recent analysis
of reward identifiability, [Skalse et al.| (2022]) make assumptions that are identical to our solution above but do
not discuss their assumptions’ relationship to the partial return preference model otherwise being insensitive
to constant shifts in reward when the lengths of segments in pairs are the same. We advise researchers, when
forcing a fixed horizon via other methods, to explain what bias they are introducing regarding the set of optimal
policies, either for generating synthetic preferences or during reward function inference.

Empirical results Figure[15 expands upon the synthetic-preferences results of Figure[10 in Section
adding results for datasets that lack segments that terminate early. For each combination of preference model
and whether early terminating segments are included (i.e., for each different color in Figure , we used a
learning rate chosen from testing on a set of 30 MDPs. Specifically, we chose the learning rate from the set
{0.005,0.05,0.5,1,2} that had the highest mean percentage of near-optimal performance on these 30 MDPs across
training sets of 30, 300, and 3000 preferences. These 30 MDPs were taken from the 100 randomly generated
MDPs used in Section[6.2] So, for testing with the chosen learning rates, we replaced them with 30 new MDPs
generated by the same sampling procedure, determining the 100 MDPs used for these results. Also, a different
random seed is used here than in Section[6.2] In these results shown in Figure[15, performance by the partial
return model is worse without early terminating segments, whereas the regret model does not appear to be
sensitive to their inclusion.

The effect of removing such early-terminating segments from the human preferences dataset is tested in
Appendix There we similar results: only performance with the partial return model is harmed by
removing segment pairs with early-terminating segments and the decrease in performance is severe.

F.2.3 Varying segment length

Here we consider empirically the effect of different fixed lengths of the segments in the preference data set. All
other experiments in this article assume the segment length |o| =3, and this analysis is a limited investigation
into whether changing |o| affects results. In general, we suspect that increasing segment length has a trade off:
it makes credit assignment within the segment more difficult yet also gives preference information about more
unique and complex combinations of events, which could reduce the probability of the preference providing new
information that is not already contained in the remainder of the training dataset. Put more simply, preferences
over larger segments appear to give information that is harder to use but covers more transitions.

To conduct this analysis, the following process is followed for each of 30 MDPs that were sampled as described
in Appendix For each n€{1,2,3,4,6,10,20}, we synthetically create preference datasets with segment
length |o| =n. Each segment was generated by choosing a non-terminal start state and n actions, all uniformly
randomly. As in Appendix[F.2.1, each preference model acts as a preference generator to label these segment

35

Under review as submission to TMLR

Partial return

100%0 1 transtion

Partial return

100% 1 transtion

= —é 75% ﬁ 2 transtions Tg 75% PR 2 transtions
S B —— 3 transtions S = 0 PP et —— 3 transtion
§ ? 50% —— 10 transtions ::;) % 50%':::’—" J—]30[‘:,:&:;

< —_ ranstions 5 F anstions
2 g 310 30 100 300 10003000 — " R 310 30 100 300 10003000 "
a > Regret £ 2 Regret
= % 100% — “‘"‘“5‘%““ % § 100% e T 1 transtion
TE T~ 3 mion BE % e 2 nsions
IS g 50% — 10 transtions S é 50%;“‘ —_— l'() !rar;slior;s

L — stions o) — anstions

= 310 30 100 300 10003000 & 310 30 100 300 10003000

of preferences # of preferences

Figure 18: The results from Figure (noiselessly gen- Figure 19: The results from Figure (stochastically
erated preferences) divided by preference model, allowing generated preferences) divided by preference model, allowing
further perspective. further perspective. Segment lengths 4 and 6 are added here.

pairs, resulting in datasets that differ only in their labels, and then each preference model is used for reward
learning on the same dataset it labeled.

We observe the following:

o With noiselessly generated preferences (Figure, the performance with each preference model is
similar for segments with 20 transitions, though it is sometimes slightly better with the partial return
preference model. At a segment length of 10, performance with the regret preference model is better or
similar, depending on the number of preferences. For all other segment lengths, performance with the
regret preference model is better.

o With stochastically generated preferences (Figure , the performance with each preference model is
generally better with the regret preference model, although sometimes the partial return preference
model has marginally better performance. Additionally, the variance of performances with the partial
return preference model is higher.

Additionally, we conduct Wilcoxon paired signed-rank tests for a positive effect of segment length on performance.
Four tests are conducted, one per combination of preference model and whether preferences are generated
noiselessly or stochastically. The steps to conduct this test are below. For each combination of preference model
and each preference dataset of size | D, | € {3,10,30,100,300,1000,3000}, we calculate Kendall’s 7 correlation
measures between the following two orderings:

o segment lengths in ascending order, (1,2,3,10,20), and

e segment lengths in the ascending order of the corresponding percentage of MDPs in which near-optimal
performance was achieved (e.g., if performance is near-optimal in 90% of MDPs for |o| =20 and is
near-optimal in 60% of MDPs for |o| =10, then |o| =20 would be later in the ordering than |o|=10).

For each of the resultant 7 7 values—one for each | D, |—we create a pair for a Wilcoxon paired signed-ranked
test: (7,0). The 0 in the pair is the expected Kendall’s 7 value for uniformly random orderings of segment
lengths. Therefore, the pair represents a comparison between the correlation between a training dataset’s
segment length and its performance and no correlation. Each Wilcoxon paired signed-rank test is conducted on
these 7 pairs.

o With noiselessly generated preferences and the partial return preference model (Figure , p=0.016
and the mean 7 across the 7 training dataset sizes is 0.80, indicating a significant and large correlation
between segment length and ordering by performance. Our visual inspection of Figure |18|shows that
the effect size is large, so we conclude that in this experiment increasing segment length meaningfully
improves performance.

36

Under review as submission to TMLR

o With stochastically generated preferences and the partial return preference model and (Figure[19),
p=0.016 and the mean 7 across the 7 training dataset sizes is 0.51, indicating a significant and moderate
correlation between segment length and ordering by performance. Our visual inspection of Figure
shows that the effect size is smaller but still observable, so we conclude that in this experiment increasing
segment length somewhat improves performance.

o With noiselessly generated preferences and the regret preference model (Figure , p=0.219 and the
mean T across the 7 training dataset sizes is 0.25, which is not a significant between segment length and
ordering by performance. Likewise, our visual inspection of Figure[19]does not reveal any effect, so we
conclude that in this experiment increasing segment length does not improve performance.

o With stochastically generated preferences and the regret preference model (Figure, p=0.016 and
the mean 7 across the 7 training dataset sizes is 0.47, indicating a significant and moderate correlation
between segment length and ordering by performance. Our visual inspection of Figure[19]does not reveal
this effect, indicating that the effect size is small, so we conclude that in this experiment increasing
segment length improves performance with only minor effect.

F.2.4 Reward learning in stochastic MDPs

Table 6: Stochastic MDPs: Proportion of 10 MDPs in which performance was near optimal, with varied reward functions.
Entering a terminal risk cell results in 7y, and ry,se, each with 50% probability.

Preference generator Twin =1 Twin = 1000 Twin =100 Twin =100
rlose:_50 rlosc:_50 rlosc:_l rlose:_looo

Noiseless Pregret 1.0 1.0 1.0 1.0

Stochastic Pregret 1.0 1.0 1.0 1.0

Noiseless Py, 1.0 0.0 1.0 0.0

Stochastic Psy,. 1.0 0.0 1.0 1.0

Although we theoretically consider MDPs with stochastic transitions in Section 3} we have not yet empirically
compared Ps, and Py.cgre: in tasks with stochastic transitions, which we do below.

We randomly generated 20 MDPs, each with a 5 x5 grid. Instead of terminal cells that are associated with
success or failure, these MDPs have terminal cells that are either risky or safe. A single terminal safe cell
was randomly placed, and the number of terminal risk cells was sampled from the set {1,2,7} and then these
terminal risk cells were likewise randomly placed. No other special cells were used in this set of MDPs. To add
stochastic transitions, the delivery domain was modified such that when an agent moves into a terminal risk cell
there is a 50% chance of receiving a lower reward, 7,5, and a 50% chance of receiving a higher reward, 7y,
All other transitions are deterministic. As in the unmodified delivery domain, moving to any non-terminal state
results in a reward of -1. Moving to the terminal safe state yields a reward of 450, like the terminal success
state of the unmodified delivery domain. Therefore, depending on the values of 7, and r;,se, it may be better
to move into a terminal risk state than to avoid it. All segments were generated by choosing a start state and
three actions, all uniformly randomly. For each MDP, the preference dataset D. contains 3000 segment pairs.

The 10 MDPs of each condition differed from those of the other conditions by their ground-truth reward function
r, with different r,;, and . values. As in Section[6.2] regardless of whether the stochastic or noiseless version
of preference model generates the preference labels, the stochastic version of the same preference model is used
for learning the reward function.

The results are shown below in Table 6, indicating that for both noiseless and stochastic preference datasets,
Pregret is always able to achieve near-optimal performance, whereas Ps,. is not. These results expand upon and
support the first proof of Theorem [3.2]in Section 3]

F.2.5 Generating preferences and learning reward functions with different preference models

Using synthetically generated preferences, here we investigate the effects of choosing the incorrect model.
Specifically, either P.cgre: or Pxy, generates preference labels, and then the other preference model is used to
learn a reward function from these preference labels. Through this mixing of preference models, we add two new

37

Under review as submission to TMLR

conditions to the analysis in the delivery domain in Section[6.2] The results are shown in Figure We observe
that, as expected, each preference model performs best when learning on preference labels it generated. Of all
four combinations of preference models during generation and reward function inference, the best performing
combination is doing reward inference with P,.cg.c¢ on preferences generated by Pregret.

Between the two mixed-model conditions, 100% Partial return preference labeling,
we observe that learning with the partial partial return reward learning
s —Noiseless
return Preference model on preferences cre- = E - Stochastic
ated via regret outperforms the reverse. -2 & gou Regret preference labeling, partial
These results suggest that learning reward 2 g return ﬁ(‘)‘_’a:lieleamm‘é
. . s 2 iseless
functions with the regret preference model ¢ » Stochastic
may be more sensitive to how much the % S 60% Regret preference labeling, regret
preference generator deviates fromit. How- % g rew“_r‘;\]'ef’f"l"fg_
e 5 oise es:s
ever, we note that humans do not ap- = € -- Stochastic
. . 15} 7 - T
pear to be giving preferences according S 40% Partial 'etu"(‘lll’mfefence labeling,
. T regret reward learning
to partial return, so these results—though : " Noiseless
3 10 30 100 300 1000 3000 -- Stochastic

informative—are not worrisome.

F.3 Results from human preferences

In this section we expand upon the results
described in Section which involve

of preferences

Figure 20: Performance comparison over 100 randomly generated determin-
istic MDPs, with synthetically generated preferences. This plot expands upon
Figureby including mismatches between the preference model generating
preference data and the preference model used during learning of the reward
function.

learning reward functions from the dataset
of human preferences we collected.

F.3.1 Wilcoxon paired signed-rank test

For the Wilcoxon paired signed-rank test described in Section normalized mean returns were clipped to
[—1,1] as in Appendix The result from each test is shown in Table |z These results are surprisingly
significant, given that both models reach 100% near-optimal performance for 5 and 10 partitions in Figure
However, in this setting, learning a reward function with the regret preference model tends to result in a higher
mean score than learning one with the partial return preference model, even when both are above the threshold
for near optimal performance.

Table 7: Results from Wilcoxon paired signed-rank tests.

100 partitions
w=939
p=0.076

50 partitions
w=216
p=0.003

10 partitions
w=6
p=0.028

20 partitions
w=24
p=0.007

5 partitions
w=0
p=0.043

Pregret vs. Ps, preference models

F.3.2 Expanded plots, with the expected return and logistic linear preference models included

Figure [21| show the same results as Figure but with additional results from the expected return preference
model introduced in Appendixand the logistic linear preference model (Pog—:n) introduced in Appendix
Figure[22]shows the same results with a different performance threshold, that of performing better than uniformly
random action selection, which receives a 0 on our normalized mean return metric. The regret preference model
matches or outperforms both other preference models in all partitionings of the human data, at both thresholds
(near optimal and better than random).

F.3.3 Performance on only human preferences from the first stage of data collection

As previously mentioned in Section[D]and Appendix[D] when learning reward functions only from the data from
the first stage of human data collection, the partial return model does worse. This first stage of data contains
1437 preferences, which is 79% of the full dataset. The specific performance of the partial return preference
model on the full set of first-stage data (i.e., 1 partition) is a normalized mean return of —12.7, worse than a
uniformly random policy. The regret preference model achieves 0.999, close to optimal performance of 1.0.

38

Under review as submission to TMLR

5 E 100% S , 100%
£ 8 — = _
E ? 80% Regret £3 g 80% Regret
£ 8 — Partial return =R — Partial return
2 = 60% 2y S 60%
g .i — Expected return S 2= 20 — Expected return
b= 0 E
g % 40% — Logistic linear 5 g g % — Logistic linear
o B 20% 28E 20%
° 3 S o 5
SE= gy
a 19 36 91 182 363 906 1812 19 36 91 182 363 906 1812

(100) (50) (20) (1) (5) () (1) (100) 50) 20) (10) @ (@
Preferences per training set

Preferences per training set &
(partitions)

(partitions)

Figure 21: Performance comparison over various amounts Figure 22: Performance comparison over various amounts

of human preferences. Each partition has the number of of human preferences. Each partition has the number of
preferences shown or one less. This plot is identical to Fig- preferences shown or one less. This plot tests the same
ure[11]except that results for the expected return preference learned reward functions as in Figure[21] but it thresholds
model are included and a different random seed was used to on outperforming a uniformly random policy rather than on
partition the human preferences. near-optimal performance.

F.3.4 Performance without early-terminating segments

Segment pairs with early-terminating segments are one type of segment pairs (of two types) that are in the
second stage of data collection but not in this first stage. The identifiability issue of the partial return model
related to a constant shift in the reward function—discussed in Section [3.2.2]and Appendix [F.2.2}—provides
sufficient justification for the low performance in Appendix[F.3.3Jobserved without inclusion of early-terminating
segments.

To more directly test the effect of early-terminating segments, we repeat the analysis in Appendix [F.3.3| while
only removing the segment pairs from the second stage that have early-terminating segments. We get the same
normalized mean return, —12.7 for the partial return preference model and 0.999 for the regret preference model.
Therefore, removal of the early-terminating segments is sufficient to cause the partial return preference model
to perform poorly.

F.3.5 Generalization of learned reward functions to other MDPs with the same ground-truth reward
function

We also test how well these learned reward functions
generalize to other instantiations of the domain. To

0,
do so, we keep the same hidden ground-truth reward 5 100%
function but otherwise randomly sample MDP config- § g 80
urations identically as done for the analysis of Sec.[6.2] 2 2 ’ — Regret
which is detailed in Appendix Procedurally, 3 § g , _ Partial return
this analysis starts identically as that in Section [6.3] Eo E o 0%
learning a reward function from randomly sampled & E_
partitions of the human preference data. Each learned 40%

L. . 19 36 91 182 363 906 1812
reward function is then tested within the 100 MDPs. (100) (50) 20) (1) 5) @) (1)

For example, for two partitions of the data, each algo- L

. . <. Preferences per training set
rithm learns two reward functions and each such # is (partions)
tested on 100 MDPs. To test a reward function in an
MDP, the same procedure of value iteration is used as Figure 23: Performance comparison of learned reward functions’
in Sections and to find an approximately opti- generalization to 100 MDPs with the same reward function, when
mal policy, the performance of which is then tested on lt‘?am}‘fd fZﬁm Va“l‘))us afmou;lts of hurﬁan preferenlces. Each parti-
the MDP (with the ground-truth reward function). 0" " /¢ HHRET OF PIEIGIENCES SROWR OF Ohe fess.

The results are shown in Figure[23] The two preference
models perform similarly at 100, 10, 2, and 1 partition(s), and otherwise the regret preference model outperforms
the partial return preference model. The most pronounced differences are at 20 and 5 partitions, where the

39

Under review as submission to TMLR

partial return preference model fails to reach near-optimal performance approximately twice as often as the
regret preference model.

For each training set size, we conduct the same Wilcoxon paired signed-rank test as in Section and
Appendix[F.3.1] except that for each of the 100 MDPs, we calculate the normalized mean return, and the mean
of normalized mean returns across all 100 MDPs represents a single sample for the statistical test. Across all 7
training set sizes, no statistical significance is found (p > 0.2). Unlike most other analyses in this paper, we
cannot here conclude superior performance from assuming the regret preference model.

40

	Introduction
	Preference models for learning reward functions
	Reward learning from pairwise preferences
	Choice of preference model: partial return and regret

	Theoretical comparison
	The regret preference model is identifiable.
	The partial return preference model is not generally identifiable.
	Partial return is not identifiable when preferences are noiseless.
	Partial return is not identifiable in variable-horizon tasks.
	Partial return is not identifiable for segment lengths of 1.

	Creating a human-labeled preference dataset
	The general delivery domain
	The delivery task

	The subject interface and survey
	Selection of segment pairs for labeling

	Descriptive results
	Correlations between preferences and segment statistics
	Likelihood of human preferences under different preference models

	Results from learning reward functions
	An algorithm to learn reward functions with ₂
	Results from synthetic preferences
	Results from human preferences

	Conclusion
	Limitations and ethics
	Limitations
	Ethical statement
	On the challenge of using regret preference models in practice

	Preference models for learning reward functions
	Derivation of the logistic expression of the Boltzmann distribution
	Learning reward functions from preferences, with discounting
	Logistic-linear preference model
	Adding a constant probability of uniformly distributed preference
	Expected return preference model
	Relationship to inverse reinforcement learning

	Theoretical comparisons
	Additional information for creating a human-labeled preference dataset
	The preference elicitation interface and study overview
	Filtering subject data
	The two stages of data collection
	The study design pattern

	Descriptive results
	Derivation of ₂
	Losses of an expanded set of preference models on the human preferences dataset

	Results from learning reward functions
	An algorithm to learn reward functions with ₂
	For Algorithm 1, choosing an input set of policies for learning successor feature functions
	Instantiating Algorithm 1 for reward functions that may be non-linear

	Results from synthetic preferences
	Learning reward functions from 100 randomly generated MDPs
	The effect of including transitions from absorbing state
	Varying segment length
	Reward learning in stochastic MDPs
	Generating preferences and learning reward functions with different preference models

	Results from human preferences
	Wilcoxon paired signed-rank test
	Expanded plots, with the expected return and logistic linear preference models included
	Performance on only human preferences from the first stage of data collection
	Performance without early-terminating segments
	Generalization of learned reward functions to other MDPs with the same ground-truth reward function

