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Abstract

Formally verifying deep reinforcement learning (DRL) systems suffers from both1

inaccurate verification results and limited scalability. The major obstacle lies in the2

large overestimation introduced inherently during training and then transforming3

the inexplicable decision-making models i.e., deep neural networks (DNNs), into4

easy-to-verify models. In this paper, we propose an inverse transform-then-train5

approach, which first encodes a DNN into an equivalent set of efficiently and6

tightly verifiable linear control policies and then optimizes them via reinforcement7

learning. We accompany our inverse approach with a novel neural network model8

called piece-wise linear decision neural networks (PLDNNs), which are compatible9

with most existing DRL training algorithms with comparable performance against10

conventional DNNs. Our extensive experiments show that, compared to DNN-11

based DRL systems, PLDNN-based systems can be more efficiently and tightly12

verified with up to 438 times speedup and a significant reduction in overestimation.13

In particular, even a complex 12-dimensional DRL system is efficiently verified14

with up to 7 times deeper computation steps.15

1 Introduction16

Deep neural networks (DNNs) have been exhibiting appealing advantages in decision-making and17

control for deep reinforcement learning (DRL) systems [1–4]. Nonetheless, the complexity and18

inexplicability [5, 6] of DNNs render the formal verification of their hosting systems, quite often19

even themselves, inaccurate and unscalable. Most existing approaches [7–10] over-approximate both20

embedded DNNs and non-linear environment dynamics to build verifiable models, which inevitably21

introduces dual overestimation. In particular, DNN-specific overestimation is extremely unpredictable22

due to many factors such as the dimension of system states, the complexity of environment dynamics,23

and the size, weight, and activation function of a neural network. For example, the verification results24

may deviate significantly even if the DNNs of the same DRL system differ only in their weights (as25

we also observed; see Appendix A.4 ). Unsurprisingly, verifying high-dimensional DRL systems26

would only exacerbate the problems of large overestimation and limited scalability.27

Common practice for formally verifying DRL systems is to train and then transform the embedded28

DNNs into easy-to-verify models where, for any input set, output ranges can enclose the outputs of29

the over-approximated DNNs [7–10]. Taylor models [11] are widely adopted due to their preservation30

of input-output dependencies and less overestimation (accumulated in multiple steps) than the range31

analysis approaches such as interval over-approximation [12, 13]. However, they are still prone to32

intractable overestimation as the accuracy of verification depends heavily on the weights of DNNs33

whose effects are difficult to quantify. Several other approaches attempt to extract approximated34

state-action policies, e.g., decision trees [14, 15], from DNNs via model compression [16] and35

distillation [17] techniques. However, no equivalence guarantee is established between DNNs and36

the extracted policies. Consequently, verification results are just probably approximately correct [18].37
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Inspired by recent advances [19–21] in training near-optimal policies even with reduced training38

state space imposed by aggregated adjacent states, we propose a novel, inverse transform-then-train39

approach: encoding a DNN into an equivalent set of easy-to-verify linear control policies and then40

optimizing them by training the DNN using reinforcement learning. We accompany our inverse41

approach by devising a novel neural network model called piece-wise linear decision neural networks42

(PLDNNs), which make linear decisions on each abstract state. Unlike conventional DNNs which43

build a state-action relation for each actual state, a PLDNN defines a linear relationship, called Linear44

Control Unit (LCU), between actions and actual states associated with the same abstract state. To this45

end, a PLDNN is essentially a set of LCUs for all abstract states. In contrast to DNNs, LCUs are46

more explainable and verifiable without any over-approximation. Moreover, PLDNNs are compatible47

with most existing DRL training algorithms as both share the same input and output layers for the48

same control task.49

We extensively assess PLDNN, along with the state-of-the-art tools, with respect to both performance50

(in terms of cumulative rewards and system robustness) and verifiability (in terms of overestimation51

and time cost for the reachability analysis of trained systems) on a collection of benchmarks, including52

a 12-dimensional control task. Our experimental results show that, compared to the DNN-based sys-53

tems, the PLDNN-based systems can be verified more precisely, with significantly less overestimation,54

and more efficiently, with up to 438 times speedup, while achieving comparable performance. More-55

over, compared to the state-of-the-art tools, the complex 12-dimensional control task can be trained56

and verified with up to 7 times deeper computation steps, along with notable tightness improvement.57

Main Contributions. Overall, we provide58

1. a novel inverse approach for boosting the formal verification of DRL systems by learning59

efficiently and directly (without over-approximation) verifiable piece-wise linear policies60

with comparable performance;61

2. a novel neural network model to realize the learned piece-wise linear policies, which is62

compatible with most existing DRL algorithms; and63

3. a prototype called LinCon, along with an extensive assessment which demonstrates its64

tightness in verification results, outperformance over the state-of-the-art tools (up to 43865

times speedup), and scalability (up to a 12-dimensional control task).66

2 Problem Formulation and Motivation67

Definition 1 (Hybrid Automata [9]). A hybrid automaton
is an 8-tuple H = ⟨L,Var, Inv, F,T,G,R, I0⟩ where

• L is a finite set of discrete locations;
• Var is a finite set of n real-valued variables with state

space Vc ⊆ Rn;
• Inv : L→ 2Vc is a function assigning to each location

an invariant condition;
• F : L → (Vc → Rn) is a function associating each

location l to a continuous dynamics v̇ = fl(v);
• T ⊆ L × L is a set of transitions between locations;
• G : T → 2Vc is a function assigning each transition

(l1, l2) ∈ T a guard condition G(l1, l2) ⊆ Inv(l1);
• R : T → 2Vc is a function assigning each transition

(l1, l2) ∈ T a reset R(l1, l2) ⊆ Inv(l2); and
• I0 ⊆ L × Vc is an initial state set.

A DRL system is driven by a DNN-68

implemented controller π, which is69

trained for decision-making, and a phys-70

ical model defined by the ordinary dif-71

ferential equations (ODEs) ṡ = f (s, a),72

with s the state variables and a a con-73

trol action. We have a = π(s) at state74

s and assume ȧ = 0 during a small75

time step e.g., δ. At the time point76

kδ, k ∈ N, the decision network re-77

ceives the current state sk and outputs78

an action a(k) = π(sk). The state vari-79

ables then evolve according to the physi-80

cal model during the time interval [0, δ].81

The reachable state sk+1 at δ from sk is82

sk+1 = sk +

∫ δ
0

f (s, a(k))dt (1)

which is called the successor state of sk. Note that the system evolves continuously from sk to sk+1.83

The intermediate states can be computed by substituting the time elapses for δ in the above formula.84

A DRL system is essentially a DNN-controlled hybrid system. Definition 1 gives a formal definition85

of regular hybrid systems. The state space of a hybrid system is the Cartesian product of a set L86

of discrete locations and state space of n real-valued variables Vc. At each location l ∈ L, the n87
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continuous variables evolve continuously according to a dynamical law v̇ = fl(v). When the guard88

condition on the transition between locations (l1, l2) ∈ T is triggered, the system moves to l2, and the89

continuous variables are reset by R. There are two steps involved in the state transition from (li, vi)90

to its successor state (li+1, vi+1): first, from (li, vi) to its time successor (li, φ fli (vi, ti)), and then, to91

(li+1, vi+1) that is the transition successor of (li, φ fli (vi, ti)), where φ fli is the solution of fli with initial92

condition v(0) = vi, mapping the initial state vi to the state φ fli (vi, t) (i.e., the reachable state at time t93

from vi). Accordingly, the state of a hybrid system can be changed in two ways [22]: (i) by a time94

delay that changes only the value of continuous variables according to the dynamics of the current95

location defined in F; and (ii) by a discrete and instantaneous transition that changes both location96

and continuous variables according to the rules in T .97

Theorem 1 (Modeling DRL Systems as Hybrid Automata). A DRL system with an environment98

dynamics f , decision network π, time step size δ, and initial state set S 0, can be modeled as the99

following hybrid automaton:100

• Var: state variable s, action a, and clock variable tc • I0: {(l0, (s ∈ S 0, a = 0, tc = δ))}101

• L: {l0} • Inv: Inv(l0) = {s ∈ S , tc ≤ δ} • F: F(l0) = {ṡ = f (s, a), ȧ = 0, ṫc = 1}102

• T : {(l0, l0)} • G: G(l0, l0) = {tc = δ} • R: R(l0, l0) = {tc = 0, a = π(s)}103

l0, s
ṡ = f (s, a)
ȧ = 0
ṫc = 1

G

Inv F

R

s ∈ S
tc ≤ δ

a := π(s)
tc := 0

tc = δ

Figure 1: Hybrid automaton
for a DRL system.

Figure 1 depicts the hybrid automaton defined in Theorem 1. There104

exists only one location l0. The invariants in Inv claim that any state105

belongs to the state space S and the clock variable tc is less than or106

equal to the time step size δ. The flow in F defines the dynamics of107

the system. The only transition is triggered when tc = δ, updating108

the action a and resetting tc as defined in R. The continuous change109

happens during the time interval [iδ, (i + 1)δ],withi ∈ N, and the110

discrete change of actions occurs at each δ.111

Unfortunately, the hybrid automaton of a DRL system cannot be112

verified by using existing hybrid automata model checkers such as113

Flow* [23], Ariadne [24], and CORA [25]. The reason is that the114

action a in R depends on the uninterpretable DNN π by a := π(s), and ṡ = f (s, a) can not be115

expressed in a known closed-form which is required by regular hybrid automata supported by these116

tools [26]. Hence, almost all reachability-based verification methods for DRL systems such as117

Polar [10], Sherlock [7], and ReachNN [27] inevitably over-approximate π using a Taylor model, at118

the cost of large overestimation and time overhead.119

3 Piece-Wise Linear Control Policies120

To bypass the crux of over-approximating DNNs, we devise a novel, alternative neural network121

model which essentially realizes a set of linear control policies. Our approach bases on the common122

assumption that there exists a near-optimal linear control policy for every small region of the entire123

state space [28, 29, 21, 30]. Our objective is then to discretize the state space S of a DRL system and124

to train a linear control policy for each discretized region. Specifically, given an n-dimensional DRL125

system with m-dimensional control input, we train a DNN which implements a linear control function126

a j = b j + c j
1x1 + c j

2x2 + · · · + c j
nxn for each control dimension 1 ≤ j ≤ m and each discretized region.127

3.1 Abstracting State Space via Abstract Interpretation128

Abstract Interpretation [31] is an effective technique for scaling up formal verification of complex129

systems or programs by reducing the system space while preserving the soundness of verification130

results. For instance, an infinite state space [−2, 0] × [0, 2] can be abstracted to be an abstract state131

represented as (−2, 0, 0, 2), when all the states in [−2, 0] × [0, 2] share a same property. In general,132

given a system state space S , we denote S ϕ as a finite set of abstract states (each abstract state133

represents a possibly infinite set of actual system states in S ). Let ϕ : S → S ϕ be an abstraction134

function that maps each actual state s in S to the corresponding abstract state in S ϕ, and ϕ−1 : S ϕ → 2S
135

be the inverse concretization function such that ϕ−1(sϕ) = {s|s ∈ S , ϕ(s) = sϕ}.136

For state space abstraction, we choose the very primitive but effective abstraction approach which137

abstracts actual system states as intervals. It is known as interval abstract domain and has been138
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well studied for system [32] and program verification [33] and even the approximation of neural139

networks [34]. Specifically, let Li and Ui be the lower and upper bounds for the i-th dimension value140

of S . We first define the abstraction granularity as an n-dimensional vector γ = (d1, d2, . . . , dn). Then141

the i-th dimension will be divided evenly into (Ui − Li)/di intervals which means each abstract state142

can be represented as a 2n-dimensional vector (l1, u1, . . . , ln, un).143

Definition 2 (Interval-Based Abstraction Function). Given an n-dimensional continuous state space144

S and an abstract state space S ϕ which discretizes S based on abstraction granularity γ, ϕ : S → S ϕ145

is called an interval-based abstraction function such that, for every actual state s = (x1, . . . , xn) ∈ S146

and abstract state sϕ = (l1, u1, . . . , ln, un) ∈ S ϕ, we have ϕ(s) = sϕ if and only if li ≤ xi < ui holds for147

each dimension 1 ≤ i ≤ n.148

Example 1 (Running Example). Consider a 2-dimensional system in [35] with state space [−2, 2) ×149

[−2, 2). The dynamics f is defined by following ordinary differential equations (ODE) i.e., ẋ1 = x2−x3
1150

and ẋ2 = a. The sign a means the control action. The objective is to train a DNN for determining151

action a based on (x1, x2) so that the agent can move from the initial region x1 ∈ [0.7, 0.9] and152

x2 ∈ [0.7, 0.9] to the goal region x1 ∈ [−0.3, 0.1] and x2 ∈ [−0.35, 0.05] as soon as possible.153

Suppose that the abstraction granularity is γ = (2, 2). The continuous state space [−2, 2) × [−2, 2)154

is then partitioned into four regions, corresponding to four abstract states represented by S ϕ =155

{(−2, 0,−2, 0), (−2, 0, 0, 2), (0, 2,−2, 0), (0, 2, 0, 2)}, respectively.156

3.2 Piece-Wise Linear Decision Neural Networks157

We devise an alternative DNN model called piece-wise linear decision neural networks (PLDNNs).158

Unlike conventional DNNs, a PLDNN contains an abstraction layer between the input layer and the159

first hidden layer. The abstraction layer is used to convert an actual system state into its corresponding160

abstract state. Then the output of a PLDNN is the control action that is the dot product result of state161

variables of the actual state and the linear coefficients determined by the corresponding abstract state.162

1

x1

x2

•
a

b

c1

c2

πc(s)

x1

x2

w=1
w=1 w=0

Abstraction Layer

a = π(x1, x2) = πc(x1, x2) · (1, x1, x2)

Figure 2: The arch. of the PLDNN for Example 1.

Figure 2 exemplifies the architecture of the163

PLDNN π for a two-dimensional DRL system.164

The decision-making of π is based on a coeffi-165

cient network πc that outputs the linear coeffi-166

cients. The second layer of πc is the inserted167

abstraction layer which consists of the blue neu-168

rons and the red neurons. The output layer of πc169

contains n+1 neurons that output the n+1 linear170

coefficients depicted as purple neurons. As for171

the weights setting between the input layer and172

the abstraction layer, the weights of the connec-173

tions between the i-th neuron in the input layer174

and the (2i − 1)-th and 2i-th neurons in the ab-175

straction layer are set to 1 which are represented176

by blue lines and red lines, respectively. While the weights of other connections denoted by the black177

dashed lines are set to 0. Under this setting of weights, the inputs to both (2i− 1)-th and 2i-th neurons178

in the abstraction layer are xi. Moreover, the activation function of the (2i − 1)-th neuron in the179

abstraction layer is set to ϕu with the responsibility of computing the upper bound ui, and that of the180

2i-th neuron is set to ϕl for calculating the lower bound li. Specifically, for a continuous state space181

partitioned by the abstraction granularity γ = (d1, . . . , dn), the activation functions for the (2i − 1)-th182

and 2i-th neurons in the abstraction layer can be formulated as follows:183

ϕi
l(xi) = Li + ⌊

(xi − Li)
di

⌋di ϕi
u(xi) = Li + ⌊

(xi − Li)
di

⌋di + di

With the above activation functions, the abstraction layer can output the same abstract state sϕ =184

(l1, u1, . . . , ln, un) for ∀s ∈ ϕ−1(sϕ). The abstract state sϕ is then propagated to the fully connected185

layers of πc to generate the linear control coefficients (b, c1, c2) denoted by πc(s).186

To obtain the final output of action a, an additional dot product operation between πc(s) and [1, s]187

is performed with the result of the operation as the control action a where [·, ·] is the concatenation188

operation. For multiple dimensional control action a = (a1, · · · am), we only need to modify the189
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Algorithm 1: The Training Procedure based on the DDPG algorithm
1 Input: State space S , abstraction granularity γ. Output: A PLDNN π
2 ϕ← discretize S according to γ; // obtain abstraction function, Sec3.1
3 Initialize actor network π as a PLDNN by encoding ϕ into the coefficient network πc; // Sec3.2
4 Initialize critic network Q, target networks π′ ← π,Q′ ← Q;
5 DDPG(π,Q, π′,Q′) ; // train π based on DDPG algorithm
6 return π

output dimension of πc to m(n + 1), such that each n + 1 neurons output the linear coefficients of one190

dimension of a. More specifically, we can obtain a j as follows:191

a j = π(s) j = πc(s)[(n + 1)( j − 1) : (n + 1) j] · [1, s], 1 ≤ j ≤ m.

where vector[start : end] denotes the slicing operation that extracts the elements of vertor from192

index start up to but not including index end.193

With the additional abstraction layer that can output an identical vector into the fully connected layers194

of πc for ∀s ∈ ϕ−1(sϕ), we can ensure that πc always produces the same coefficients for all actual195

states located in the same abstract state. Consequently, we can extract a piecewise linear decision196

function with this structure of π on each abstract state.197

3.3 The Training Procedure198

Figure 3: The LCUs extracted from a
trained PLDNN for Example 1.

Training a PLDNN can be achieved by extending exist-199

ing deterministic policy gradient algorithms such as Deep200

Deterministic Policy Gradient (DDPG) [36] and Twin De-201

layed Deep Deterministic Policy Gradient [37] since the202

modifications made stay inside neural networks and are203

invisible to the DRL algorithms. The pseudo code of204

the training procedure is given in Algorithm 1, where we205

take the DDPG algorithm as an example. The training206

procedure starts with defining the abstraction function ϕ207

according to γ (Line 2), initializing PLDNN with an ab-208

straction layer based on ϕ (Line 3), and, following [36],209

initializing the critic network and the two target networks210

(Line 4). The procedure then invokes the DDPG algorithm with the networks as arguments (Line211

5) since the PLDNN has the same input and output as the actor network implemented by DNN.212

During this procedure, we freeze the parameters between the input and the abstraction layers of π.213

The parameters in the fully connected layers are trained based on backpropagation [38] and gradient214

descent optimization [39].215

4 Equivalent Policy Extraction and Verification216

After training, we can extract |S ϕ| LCUs based on the learned coefficients of linear control policies217

for the abstract states in S ϕ. Specifically, we choose an actual state for each abstract state and feed it218

to a PLDNN to obtain the coefficients for the abstract state. For instance, we can feed (−1,−1) to219

the PLDNN in Example 1 and obtain the coefficients (−0.16610657,−1.7437580,−1.8227874) of220

the linear control policy for the region [−2, 0) × [−2, 0). Figure 3 shows the LCUs extracted from a221

trained PLDNN in Example 1. They are depicted by planes with different colors in Figure 3. These222

four planes denote the following linear control functions:223

π(x1, x2) = −0.16610657 − 1.7437580x1 − 1.8227874x2, x1 ∈ [−2, 0), x2 ∈ [−2, 0) (LCU1)
π(x1, x2) = −0.20400035 − 1.8006037x1 − 1.8679885x2, x1 ∈ [−2, 0), x2 ∈ [0, 2) (LCU2)
π(x1, x2) = −0.27547930 − 1.8884722x1 − 1.9342268x2, x1 ∈ [0, 2), x2 ∈ [−2, 0) (LCU3)
π(x1, x2) = −0.29549897 − 1.9022338x1 − 1.9436346x2, x1 ∈ [0, 2), x2 ∈ [0, 2) (LCU4)

The underlying x1 × x2 plane in Figure 3 is the projection of the four LCUs. Under the control of224

these four LCUs, the agent can reach the goal region (orange box). The two sequences of purple225

boxes represent the range of reachable states from corresponding initial regions to the goal region.226
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With exacted LCUs from a PLDNN, we can build a verifiable hybrid automaton for the system by227

substituting equivalently the neural networks using corresponding LCUs. Theorem 2 formulates228

the hybrid automaton after a decision network π is substituted by LCUs. The differences from229

Theorem 1 include the definitions of transitions T , guard condition G and reset formula R. For the230

pldnn controlled systems, We use |S ϕ| transitions each of which contains a guard condition and a231

reset formula to update the action a to πc(s) · [1, s] at each δ. Notice that, πc(s) is a determined vector232

since ∀s ∈ ϕ−1(si
ϕ), the outputs of πc are the same according to the dedicated structure of πc. Thus,233

the reset formula for a is simplified to an affine mapping.234

Theorem 2. Given a DRL system with environment dynamics f , PLDNN π, time step size δ and235

initial state set S 0, it can be equivalently modeled as a hybrid automaton as follows:236

• Var: state variable s, action a, clock variable tc • I0: {(l0, (s ∈ S 0, a = 0, tc = δ))}237

• L: {l0} • Inv: Inv(l0) = {s ∈ S , tc ≤ δ} • F: F(l0) = {ṡ = f (s, a), ȧ = 0, ṫc = 1}238

• T : {(l0, l0), · · · , (l0, l0)} where |T | = |S ϕ|239

• G: G(T [i]) = {tc = δ, s ∈ ϕ−1(si
ϕ)} where 0 ≤ i < |T | ∧ si

ϕ ∈ S ϕ240

• R: R(T [i]) = {tc = 0, a = πc(s) · [1, s]} where 0 ≤ i < |T | ∧ s ∈ ϕ−1(si
ϕ)241

Our soundness proofs of both Theorem 1 and Theorem 2 are given in Appendix A.5 . Based on242

Theorem 2, we can build a hybrid automaton for the DRL system in Example 1. Assuming the trained243

system has four linear control units as shown in Formulas (LCU1-LCU4) and δ = 0.2, we construct244

the corresponding hybrid automaton as depicted in Figure 4. The four transitions in the automaton245

correspond to the four LCUs, respectively. The guard of each transition represents the condition of246

triggering the corresponding policy.247

l0, x1, x2

a := LCU2
tc := 0

G2
I

F

R2

a := LCU3
tc := 0

a := LCU4
tc := 0

a := LCU1
tc := 0

G4

G3

G1

R1

R3

R4

tc = 0.2
x1 ∈ [−2, 0]
x2 ∈ [−2, 0]

tc = 0.2, x1 ∈ [−2, 0], x2 ∈ [0, 2]

tc = 0.2, x1 ∈ [0, 2], x2 ∈ [0, 2]

tc = 0.2
x1 ∈ [0, 2]
x2 ∈ [0, 2]

ẋ1 = x2 − x3
1

ȧ = 0 ṫc = 1
ẋ2 = a

x1 ∈ [−2, 2]

tc ≤ 0.2
x2 ∈ [−2, 2]

Figure 4: The hybrid automaton of the DRL system with
the trained piece-wise linear controllers in Figure 3.

Thanks to the linearity of control policies in248

R, a hybrid automaton built for a PLDNN-249

controlled system can be efficiently veri-250

fied by state-of-the-art tools. For instance,251

Flow* [23] is a representative tool for the252

reachability analysis of hybrid systems. In253

this paper we are focused on the verifica-254

tion of both goal-reach and reach-avoid255

properties. The former means that given256

a set of initial states, a system must even-257

tually reach the goal region from any ini-258

tial state. The latter means that the system259

never enters unsafe regions within a spe-260

cific time horizon. Both properties can be261

verified via reachability analysis.262

5 Experiments263

We prototype our approach into a tool called LinCon, with DDPG as the backend DRL algorithm264

and Flow* as the verification engine. We extensively assess it, along with the state-of-the-art tools.265

Our goal is to show, for the PLDNN-based training, (i) the reduction in the number of partitions with266

comparable cumulative rewards, robustness, and time overhead with respect to conventional DNN-267

based training; (ii) its high verification performance including the tightness of over-approximation268

sets and the efficiency of verification; and (iii) its scalability for large-sized neural networks and269

systems with complex dynamics and high-dimensional state space.270

Experimental Setup. All experiments were conducted on a workstation equipped with a 32-core271

AMD Ryzen Threadripper CPU @ 3.6GHz and 256GB RAM, running Ubuntu 22.04.272

Benchmarks. We choose eight benchmarks, including six regular benchmarks from Verisig 2.0 [9]273

(B1-B5 and Tora) and two complex benchmarks (CartPole with extreme complex dynamics from274

OpenAI Gym [40] and quadrotor (QUAD) with 12-dimensional state space and 3-dimensional action275

space from [10]). For fair comparisons, we use the same training configuration and guarantee that all276

trained systems reach the specified reward threshold. See Appendix A.1 for the detailed setting.277
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Figure 5: Performance and robustness comparison between PLDNNs and DNNs. The number in the
parentheses is the base of σ, e.g., when the abscissa is 50 in B1, we have σ = 50 × 0.0004 = 0.02.

5.1 Performance Evaluation278

We assess the performance of PLDNN, together with the conventional DNNs, in terms of cumulative279

reward, robustness, and training time under the same training configuration. We also measure the280

number of abstracted states required for training linear control policies and constant policies [21].281

Due to space limitations, we present the experimental results only for B1, B2, and two complex cases282

(i.e., CartPole and QUAD). The associated conclusions (from Table 1 and Figure 5) also apply to the283

other four cases; see Appendix A.2 for the detailed experimental results.284

Table 1: Training time and number of partitions
Task B1 B2 CartPole QUAD

Training
Time

PLDNN 14.3 7.9 428.2 871.1
DNN 11.0 6.6 403.6 781.5

#partitions LCU 1 4 16 1
Const. 4 100 254 412

Cumulative Reward. Figure 5 plots the285

system cumulative reward (the average of286

five trials) during the training process. The287

solid lines and shadows refer to the aver-288

age reward and 95% confidence interval,289

respectively. Apparently, the trends of ac-290

cumulative rewards by PLDNNs and DNNs291

are comparable. Despite slightly more time required for training with PLDNN due to its additional292

conversion from actual state to abstract state (see Table 1, “Training Time”), we can, however, obtain293

a significant advance in the efficiency and tightness of verification (see Section 5.2).294

Robustness. We also evaluate the robustness of PLDNNs as training the linear controller on each295

partition may lead to discontinuity of control decisions in the boundaries of partitions. For a296

current state s = (x1, . . . , xn), we add a Gaussian noise X1, ...Xn to s and obtain a perturbed state297

s′ = (x1 + X1, . . . , xn + Xn) for calculating the control action, where Xi ∼ N(µi, σ
2
i ) with 1 ≤ i ≤ n298

and µi = 0. For each benchmark, we train 10 different policies and evaluate their robustness under299

100 different perturbation levels to obtain the average and 95% confidence interval of the cumulative300

reward. Figure 5 depicts the reward trend with the increasing perturbation level. As σ increases, the301

decline ratio of the system with PLDNNs is comparable to that with DNNs, which implies that both302

achieve similar robustness.303

Reduction in the Number of Partitions. We measure the effect of reducing the number of partitions304

by utilizing a linear policy, instead of the constant action on each partition. In both cases, we start305

training from a coarse-grained abstraction granularity (with only one partition) and gradually refine306

the abstraction granularity until the preset reward threshold is satisfied. As shown in Table 1, linear307

policies significantly reduce the number of partitions required for reaching the reward threshold,308

which benefits the verification efficiency as we will see next.309

5.2 Verification Efficiency310

We evaluate the verification efficiency and tightness for the PLDNN-based and DNN-based DRL311

systems, respectively. Regarding tightness, we choose two state-of-the-art tools, i.e., Polar [10]312

and Verisig 2.0 [9], for the reachability analysis of DNN-controlled systems. We do not consider313

ReachNN* which both Polar and Verisig 2.0 have been demonstrated to outperform [9, 10]. For314

efficiency, we employ Flow* to perform reachability analysis, which is used by both Polar and Verisig315

2.0 as the backend reachability analysis tool.316
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Table 2: Verification results and time in seconds.

Task Dim Network LinCon Polar Verisig 2.0
1 Core V.R. 1 Core Impr. V.R. 1 Core Impr. 20 Cores Impr. V.R.

B1 2

Tanh2×20 2.31 ✓ 17 7.4× ✓ 45 19.5× 38 16.5× ✓
Tanh3×100 2.28 ✓ 125 54.8× ✓ 413 181.1× 123 53.9× ✓
ReLU2×20 2.11 ✓ 3 1.4× ✓ — — — —

✗c
ReLU3×100 2.59 ✓ — — ✗b — — — —

B2 2

Tanh2×20 0.57 ✓ 5 8.8× ✓ 5 8.8× 4 7.0× ✗a

Tanh3×100 0.56 ✓ — — ✗b — — — — ✗b

ReLU2×20 0.64 ✓ 3 4.7× ✓ — — — —
✗c

ReLU3×100 0.60 ✓ — — ✗b — — — —

B3 2

Tanh2×20 2.69 ✓ 18 6.7× ✓ 36 13.4× 28 10.4× ✓
Tanh3×100 3.57 ✓ 91 25.5× ✓ 357 100.0× 88 24.6× ✓
ReLU2×20 3.05 ✓ 8 2.6× ✓ — — — —

✗c
ReLU3×100 2.92 ✓ 14 4.8× ✓ — — — —

B4 3

Tanh2×20 1.44 ✓ 5 3.5× ✓ 7 4.9× 5 3.5× ✓
Tanh3×100 1.45 ✓ 27 18.6× ✓ 114 78.6× 31 21.4× ✓
ReLU2×20 1.43 ✓ 2 1.4× ✓ — — — —

✗c
ReLU3×100 1.43 ✓ 5 3.5× ✓ — — — —

B5 3

Tanh3×100 3.24 ✓ 38 11.7× ✓ 157 48.5× 44 13.4× ✓
Tanh4×200 3.29 ✓ 157 47.7× ✓ 1443 438.6× 191 58.1× ✓
ReLU3×100 3.28 ✓ 7 2.1× ✓ — — — —

✗c
ReLU4×200 3.29 ✓ 49 14.9× ✓ — — — —

Tora 4

Tanh3×20 1.57 ✓ 45 28.7× ✓ 69 43.9× 46 29.3× ✓
Tanh4×100 1.75 ✓ — — ✗b — — — — ✗b

ReLU3×20 1.58 ✓ 30 19.0× ✓ — — — —
✗c

ReLU4×100 1.62 ✓ 53 32.7× ✓ — — — —
CartPole 4 Tanh3×64 151 ✓ — — ✗b — — — — ✗b

QUAD 12 Tanh3×64 1054 ✓ — — ✗b — — — — ✗b

Remarks. Impr.: time speedup of LinCon compared to Verisig or Polar (Verisig or Polar/LinCon).
Tanh/ReLUn×k: a DNN with the activation function Tanh/ReLU, n hidden layers, and k neurons
per hidden layer. VR: verification result. ✓: the reachability problem is successfully verified.
✗type: the reachability problem cannot be verified due to type: (a) large over-approximation error,
(b) the calculation did not finish, (c) not applicable. —: no data available due to ✗b or ✗c.

Efficiency. Table 2 presents the comparison results for the verification efficiency. For each regular317

case, we choose four different network configurations: two smaller networks (e.g., Tanh2×20) from [10]318

and two larger networks (e.g., Tanh3×100). Our approach LinCon can handle all 26 instances including319

the two complex instances, while Polar succeeds only in 20 cases. Verisig 2.0 is not applicable to320

ReLU networks (marked by ✗c) and succeeds only in 9 instances. Overall, LinCon outperforms both321

Polar (up to 47.7× speedup) and Verisig 2.0 (up to 438.6× speedup). In particular, LinCon achieves322

even up to 58.1× speedup compared to Verisig 2.0 accelerated by 20-core parallelization. For our323

approach LinCon, the only time overhead for encoding networks stems from extracting LCUs from324

PLDNNs, which is negligible (less than 0.05s). Consequently, LinCon can scale up to large-sized325

neural networks.326

Tightness. We compare the tightness of the over-approximation sets computed by different ap-327

proaches. Figure 6 plots the experimental results, along with the corresponding simulation trajecto-328

ries. For B2 and Tora, LinCon has a significant tightness improvement over Polar: the range of the329

over-approximation sets (red boxes) calculated by Polar far outreaches the range of the reachable330

states obtained from the simulation. Verisig 2.0 shares similar tightness results with Polar; see331

Appendix A.3 . We also defer to Appendix A.3 the experimental results for the remaining four cases332

where all three tools obtain similar tightness results.333

Discussion on CartPole and QUAD. We discuss the verification results of the two complex cases,334

namely CartPole and QUAD. Both Polar and Verisig 2.0 fail to verify them. As shown in Figure 6,335

Polar aborts after 20 steps due to the huge over-approximation error in CartPole. In contrast, such336

a complex policy trained with our approach can be efficiently and tightly verified. In particular, the337

trajectories diverge first and finally merge. The computed reachable states tightly over-approximate338

these trajectories, and the computation takes only 151 seconds. Regarding the 12-dimensional QUAD339

case, Polar times out (two hours) after only two steps, while LinCon produces a very tight set of340

reachable states in 1054 seconds even after 15 steps, which is 7 times deeper than Polar. To the341

best of our knowledge, this is the first time that QUAD can be formally verified more than ten steps342

under various decision networks. Note that the trained policies used in the comparison differ due343

to different decision networks, and thus agents may follow different paths to the goal region (see the344
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Figure 6: Tightness comparison with respect to the DRL systems with larger decision networks (red
box: over-approximation sets; green lines: simulation trajectories; blue box: goal region).

simulated trajectories in Figure 6). Hence, for a fair comparison, we conduct more evaluations, from345

which we can draw the same conclusion as from Figure 6. The results are given in Appendix A.3.346

6 Related Work347

Policy Synthesis. Several works adopt programmatic policies (e.g., decision trees and program348

controllers) which are more interpretable and amenable to formal verification than neural policies.349

Bastani et al. [15] construct a decision tree to represent a DNN policy based on imitation learning [41].350

Verma et al. [42, 43] follow a similar routine, distilling neural network policies into predefined351

program templates. Trivedi et al. [44] use a two-stage learning scheme to synthesize programmatic352

policies. Some efforts are dedicated to exploring the combination of training and verification. Zhu et353

al. [29] propose an inductive framework for synthesizing a deterministic policy program from neural354

policies. Wang et al. [30] learn programmatic controllers based on verification feedback to avoid355

safety violations. Our proposed PLDNN is essentially a DNN-based implementation of programmatic356

controllers, which could be integrated with these verification-guided synthesis approaches.357

Reachability Analysis. Our work is also built atop the approaches for reachability analysis of neural-358

network-controlled systems. NNV [45] utilizes star set [46] to perform range analysis of decision359

networks. JuliaReach [47] uses zonotope propagation to cover the output of a decision network.360

Verisig [48, 9] models a decision network with differentiable activation functions (e.g., Tanh) as a361

hybrid system and analyzes its reachability for over-approximating the network. ReachNN* [27, 8]362

abstracts the input-output mapping of a decision network with a Bernstein polynomial, together with363

an error bound on the approximation. Sherlock [7] focuses on ReLU-based networks and computes364

tight Taylor models via rule generation. Polar [10] integrates the Taylor and Bernstein approximation365

techniques for building a Taylor model which over-approximates decision networks. All these efforts366

over-approximate the embedded DNNs, which limit their scalability and verification accuracy.367

7 Conclusion and Future Work368

We have presented PLDNN that seamlessly integrates DNN and programmatic controls via state369

abstraction for boosting the formal verification of DRL systems. Unlike traditional train-then-370

transform approaches, PLDNN accompanies a novel inverse training and verification method, in371

which a DNN is first transformed into an equivalent set of linear control policies and then trained372

to optimize them. Experimental results have shown that PLDNN-controlled systems can be more373

efficiently and tightly verified than DNN-based systems, with up to 438 times speedup and 7 times374

deeper computation steps for a 12-dimensional control task.375

Our work sheds light on a promising direction towards developing dependable DRL systems: learning376

easy-to-verify and high-performance control policies via DRL and abstraction techniques. Given the377

encouraging results of linear control policies, our work would also stimulate a passion for substituting378

them with, e.g., polynomial control policies, for training and verifying more complex DRL systems.379
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“Verification of markov decision processes using learning algorithms,” in 12th International Symposium on426

Automated Technology for Verification and Analysis (ATVA’14). Springer, 2014, pp. 98–114.427

[19] D. Abel, D. E. Hershkowitz, and M. L. Littman, “Near optimal behavior via approximate state abstraction,”428

in International Conference on Machine Learning (ICML’16), vol. 48, 2016, pp. 2915–2923.429

10



[20] D. Abel, “A theory of state abstraction for reinforcement learning,” in AAAI Conference on Artificial430

Intelligence (AAAI’19), vol. 33, no. 01, 2019, pp. 9876–9877.431

[21] P. Jin, J. Tian, D. Zhi, X. Wen, and M. Zhang, “Trainify: A CEGAR-driven training and verification frame-432

work for safe deep reinforcement learning,” in International Conference on Computer Aided Verification433

(CAV’22). Springer, 2022, pp. 193–218.434

[22] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and435

S. Yovine, “The algorithmic analysis of hybrid systems,” Theoretical computer science, vol. 138, no. 1, pp.436

3–34, 1995.437

[23] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer for non-linear hybrid systems,” in438

25th International Conference on Computer Aided Verification (CAV’13). Springer, 2013, pp. 258–263.439

[24] P. Collins, D. Bresolin, L. Geretti, and T. Villa, “Computing the evolution of hybrid systems using rigorous440

function calculus,” IFAC Proceedings Volumes, vol. 45, no. 9, pp. 284–290, 2012.441

[25] M. Althoff, “An introduction to cora 2015.” ARCH@ CPSWeek, vol. 34, pp. 120–151, 2015.442

[26] X. Chen, “Reachability analysis of non-linear hybrid systems using taylor models,” Ph.D. dissertation,443

Fachgruppe Informatik, RWTH Aachen University, 2015.444

[27] C. Huang, J. Fan, W. Li, X. Chen, and Q. Zhu, “Reachnn: Reachability analysis of neural-network445

controlled systems,” ACM Transactions on Embedded Computing Systems, vol. 18, no. 5s, pp. 1–22, 2019.446
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A Appendix498

A.1 Benchmarks Setting499

We present the goal region and unsafe region of each benchmark in Table 3. For B1-B5 and Tora the500

environment dynamics are the same with [9]. The dynamics of QUAD are the same with [10]. In501

CartPole, we use the following ODEs to describe its dynamics in [40]:502

ẋ1 =x2, ẋ3 = x4

ẋ2 =(a + 0.05 ∗ x4 ∗ x4 ∗ sin(x3))/1.1 − (0.05 ∗ ((9.8 ∗ sin(x3) − cos(x3) ∗ ((a + 0.05 ∗ x4 ∗ x4 ∗ sin(x3))/1.1))/
(0.5 ∗ (4.0/3.0 − (0.1 ∗ cos(x3) ∗ cos(x3)/1.1)))) ∗ cos(x3))/1.1

ẋ4 =9.8 ∗ sin(x3) − cos(x3) ∗ ((a + 0.05 ∗ x4 ∗ x4 ∗ sin(x3))/1.1)/0.5 ∗ (4.0/3.0 − (0.1 ∗ cos(x3) ∗ cos(x3)/1.1))

For the 6 regular benchmarks, the target is training a policy to guide the agent to reach the goal region.503

Therefore, we set a negative reward when the agent is not in the goal region. Once the agent reaches504

the goal region, it will be awarded a positive reward. In CartPole, the target of training is to prevent505

the pole from falling over, namely the pole angle −0.2 ≤ x3 ≤ 0.2. We modify the original discrete506

reward function to a continuous reward function −|x3| to try to balance the pole to stay upright. As for507

QUAD, we aim to control the altitude of the quadrotor above 0.6 (x3 ≥ 0.6). Thus we set a continuous508

reward function −|x3 − 0.8| for training a policy that drives the quadrotor to ascend above 0.6.509

Table 3: Benchmarks Setting

Task Initial Region Goal Region Unsafe Region

B1 x1 ∈ [0.8, 0.9]
x2 ∈ [0.5, 0.6]

x1 ∈ [0, 0.2]
x2 ∈ [0.05, 0.3] —

B2 x1 ∈ [0.7, 0.9]
x2 ∈ [0.7, 0.9]

x1 ∈ [−0.3, 0.1]
x2 ∈ [−0.35, 0.5] —

B3 x1 ∈ [0.8, 0.9]
x2 ∈ [0.4, 0.5]

x1 ∈ [0.2, 0.3]
x2 ∈ [−0.3,−0.05] —

B4
x1 ∈ [0.25, 0.27]
x2 ∈ [0.08, 0.1]
x3 ∈ [0.25, 0.27]

x1 ∈ [−0.05, 0.05]
x2 ∈ [−0.05, 0] —

B5
x1 ∈ [0.38, 0.4]
x2 ∈ [0.45, 0.47]
x3 ∈ [0.25, 0.27]

x1 ∈ [−0.4,−0.28]
x2 ∈ [0.05, 0.22] —

Tora x1 ∈ [−0.1, 0.2]
x2 ∈ [−0.9,−0.6]

x1 ∈ [−0.25, 0.10]
x2 ∈ [0.2, 0.7] —

CartPole x1, x2, x4 ∈ [0.02, 0.02]
x3 ∈ [0.02, 0.021] — x2 ∈ [26, 29]

x3 ∈ [−0.2, 0.2]

QUAD x1, . . . , x6 ∈ [0.35, 0.4]
x7, . . . , x12 ∈ [0, 0] x3 > 0.6 —

A.2 Comparison on cumulative reward and robustness510

In this section, we provide the comparison results on cumulative reward and robustness of B3-B5 and511

Tora in Figure 7. The solid lines and shadows refer to the average reward and 95% confidence interval,512

respectively. For these four cases, it is obvious that there are comparable trends in the cumulative513

rewards of PLDNNs and DNNs during training and under perturbation. Therefore, we can conclude514

that using PLDNNs will not affect the training efficiency and the robustness of trained systems.515

A.3 Comparison on the tightness of over-approximation sets516

Tightness results of regular cases. We present the tightness comparison results of B1 and B3-B5 in517

Figure 8. For these four regular cases, both Polar and Verisig 2.0 can produce tight over-approximation518

for decision networks, thus all three methods achieve similar tightness results and successfully verify519

the goal-reach properties.520

Multiple evaluations on CartPole and QUAD. Since the trained policies used in the comparison521

differ due to different decision networks, we conduct more evaluations on these two complex cases.522
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(a) B3 (b) B4 (c) B5 (d) Tora

(e) B3 (f) B4 (g) B5 (h) Tora

Figure 7: Performance (a-d) and robustness comparison (e-h) of the pldnn and DNN under the same
settings. The number in the parentheses is the base of σ. For example, in B3 when the abscissa is
equal to 50, σ = 50 × 0.0005 = 0.025.

The corresponding results are shown in Figure 10. For CartPole, Polar did not finish the calculation523

under three different networks as depicted in Figure 10(d-f). Additionally, on the basis of the result524

of dealing with divergent traces as shown in Figure 10(d), we can see that Polar is not suitable525

for dealing with the DNN-controlled systems with divergent traces. As for QUAD, we record the526

computation results within 12 hours and obtain the results as shown in Figure 10(j-l). We can observe527

that only a few time steps are completed by Polar, while LinCon can accomplish more than 10 steps528

within about 1000 seconds under multiple evaluations.529

(a) B1 by LinCon (b) B3 by LinCon (c) B4 by LinCon (d) B5 by LinCon

(e) B1 by Polar (f) B3 by Polar (g) B4 by Polar (h) B5 by Polar

(i) B1 by Verisig 2.0 (j) B3 by Verisig 2.0 (k) B4 by Verisig 2.0 (l) B5 by Verisig 2.0

Figure 8: Tightness comparison on the DRL systems with larger decision networks (red box: over-
approximation sets; green lines: simulation trajectories; blue box: goal region.)
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(a) B1 (b) B2 (c) B3

(d) B4 (e) B5 (f) Tora

Figure 9: Assessing Verisig 2.0 on the larger networks with big weights. red box: over-approximation
set; green lines: simulation trajectories; blue box: goal region; purple dashed box: unsafe region.

A.4 Evaluation on Verisig 2.0 with Big Weights530

Verisig 2.0 produces large over-approximation error when dealing with neural networks with big531

weights. To demonstrate this, we initialize the weights of the neural network with larger values532

(random numbers wl ∼ N(µ, σ2) with µ = 0, σ = 0.1) and show the experimental results in Figure 9.533

We observe that the calculated over-approximation sets contain large over-approximation error except534

for B4. In Tora, Verisig 2.0 fails to calculate the complete reachable sets due to too large over-535

approximation error. Hence, it is fairly to say that Verisig 2.0 is sensitive to the DNNs with big536

weights.537

A.5 Proofs for Theorem 1 and Theorem 2538

Definition 1 (Path of Hybrid Automaton [22]). For a hybrid automaton H =539

⟨L,Var, Inv, F,T,G,R, I0⟩, a path of H is a finite or infinite state sequence starting from540

(l0, v0) ∈ Init: (l0, v0)
t0
−−→
fl0

(l1, v1)
t1
−−→
fl1

(l2, v2)
t2
−−→
fl2

(l3, v3)
t3
−−→
fl3
· · · such that:541

1. ∀0 ≤ t ≤ ti, φ fli (vi, t) ∈ Inv(li)542

2. (li, li+1) ∈ Trans ∧ φ fli (vi, ti) ∈ Guard(li, li+1) ∧ vi+1 ∈ R(li, li+1)543

Definition 2 (Path of DRL systems). Given a DRL system D with an environment dynamics f ,544

decision network π, time step size δ and initial state set S 0, a path of D is a finite or infinite545

state-action pair sequence:[s0, a0]
δ
−→
f

[s1, a1]
δ
−→
f

[s2, a2]
δ
−→
f

[s3, a3]
δ
−→
f
· · · such that:546

1. s0 ∈ S 0547

2. [si+1, ai] = φ f ([si, ai], δ) ∧ ai = π(si)548

Theorem 1 (Equivalence). A DRL system with an environment dynamics f , decision network π, time549

step size δ and initial state set S 0, can be equivalently modeled as the following hybrid automaton:550

• Var: state variable s, action a, clock variable tc • I0: {(l0, (s ∈ S 0, a = 0, tc = δ))}551

• L: {l0} • Inv: Inv(l0) = {s ∈ S , tc ≤ δ} • F: F(l0) = {ṡ = f (s, a), ȧ = 0, ṫc = 1}552

• T : {(l0, l0)} • G: G(l0, l0) = {tc = δ} • R: R(l0, l0) = {tc = 0, a = π(s)}553

Proof. We first analyze the path of the modeled hybrid automaton H. For an arbitrary initial state554

(l0, [s0, 0, δ]), s0 ∈ S 0, since tc = δ, the only transition with guard condition {tc = δ} will be triggered555

and transition to (l0, [s0, a0, 0]) where a0 = π(s0). Then (l0, [s0, a0, 0]) will move to its time successor556
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(a) CartPole by LinCon (b) CartPole by LinCon (c) CartPole by LinCon

(d) CartPole by Polar (e) CartPole by Polar (f) CartPole by Polar

(g) QUAD by LinCon (h) QUAD by LinCon (i) QUAD by LinCon

(j) QUAD by Polar (k) QUAD by Polar (l) QUAD by Polar

Figure 10: Multiple evaluations on CartPole and QUAD. red box: over-approximation set; green
lines: simulation trajectories;

(l0, [s1, a0, δ]) where [s1, a0] = φ f ([s0, a0], δ). Next, the transition with guard condition {tc = δ}557

will be made and conduct the reset operation tc = 0, a = π(s1) to obtain the transition successor558

(l0, [s1, a1, 0]) in which a1 = π(s1). Repeating the evolution to the time successor and the transition559

successor yields the following sequence:560

(l0, [s0, 0, δ])
0
−→
f

(l0, [s0, a0, 0])
δ
−→
f

(l0, [s1, a1, 0])
δ
−→
f

(l0, [s2, a2, 0])
δ
−→
f
· · ·

where [si+1, ai] = φ f ([si, ai], δ) and ai = π(si). According to Definition 2, given an arbitrary initial561

state s0, at each time point iδ, due to the same transition relation [si+1, ai] = φ f ([si, ai], δ) ∧ ai = π(si)562

in D and the modeled hybrid automaton H, starting from same initial state s0, the value of state563

variables and action ofD and H remain the same at each δ. Then with the same state-action pair and564

dynamics f at each δ,D and H also have the same state-action value during each δ.565

Theorem 2. Given a DRL system with environment dynamics f , PLDNN π, time step size δ and566

initial state set S 0, it can be equivalently modeled as a hybrid automaton as follows:567

• Var: state variable s, action a, clock variable tc • I0: {(l0, (s ∈ S 0, a = 0, tc = δ))}568

• L: {l0} • Inv: Inv(l0) = {s ∈ S , tc ≤ δ} • F: F(l0) = {ṡ = f (s, a), ȧ = 0, ṫc = 1}569

• T : {(l0, l0), · · · , (l0, l0)} where |T | = |S ϕ|570

• G: G(T [i]) = {tc = δ, s ∈ ϕ−1(si
ϕ)} where 0 ≤ i < |T | ∧ si

ϕ ∈ S ϕ571
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• R: R(T [i]) = {tc = 0, a = πc(s) · [1, s]} where 0 ≤ i < |T | ∧ s ∈ ϕ−1(si
ϕ)572

Proof. We prove that the path of hybrid automaton H1 in Theorem 1 is the same as the corresponding573

hybrid automaton H2 in Theorem 2 for an arbitrary initial state (l0, [s0, a0, δ]). The path of H2 can be574

described by the following sequence:575

(l0, [s0, 0, δ])
0
−→
f

(l0, [s0, a0, 0])
δ
−→
f

(l0, [s1, a1, 0])
δ
−→
f

(l0, [s2, a2, 0])
δ
−→
f
· · ·

where [si+1, ai] = φ f ([si, ai], δ) and ai = πc(si) · [1, si]. With the dedicated structure of PLDNN π, we576

have π(s) = πc(s) · [1, s]. Thus, at each δ, the discrete transitions of H1 and H2 change both location577

continuous variables in the same way. We can conclude that the paths of H1 and H2 are exactly the578

same. Then based on Theorem 1, it is obvious thatD, H1 and H2 produce the same state-action value579

for the same initial state.580
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