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Abstract
In real-world photography, local motion blur often arises from
the interplay between moving objects and stationary backgrounds
during exposure. Existing deblurring methods face challenges in
addressing local motion deblurring due to (i) the presence of ar-
bitrary localized blurs and uncertain blur extents; (ii) the limited
ability to accurately identify specific blurs resulting from ambigu-
ous motion boundaries. These limitations often lead to suboptimal
solutions when estimating blur maps and generating final deblurred
images. To that end, we propose a novel method named Motion-
Uncertainty-Guided Network (MUGNet), which harnesses a proba-
bilistic representational model to explicitly address the intricacies
stemming from motion uncertainties. Specifically, MUGNet con-
sists of two key components, i.e., motion-uncertainty quantification
(MUQ) module and motion-masked separable attention (M2SA)
module, serving for complementary purposes. Concretely, MUQ
aims to learn a conditional distribution for accurate and reliable
blur map estimation, while the M2SA module is to enhance the
representation of regions influenced by local motion blur and static
background, which is achieved by promoting the establishment
of extensive global interactions. We demonstrate the superiority
of our MUGNet with extensive experiments. The code is publicly
available at: https://github.com/zeyuxiao1997/MUGNet.
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1 Introduction
Image deblurring is a critical task in the fields of image process-
ing, aiming to recover clear and detailed images from blurry ones
caused by various factors, such as camera shake [29, 34], object
motion [30, 43, 56], and being out-of-focus [1, 2, 20]. Motion blur re-
moval presents a significant challenge in image deblurring, primar-
ily due to arbitrary localized blurs and uncertain blur extents, spark-
ing considerable interest in the research community. This problem
can be broadly categorized into two main types: global motion de-
blurring and local motion deblurring. Global motion blur uniformly
affects the entire image, while local motion blur is constrained to
specific regions within the image, appearing selectively in certain
parts of the scene. Advances in image deblurring techniques have
the potential to benefit numerous fields, including photography,
multimedia, medical imaging, remote sensing, surveillance, and
computer vision, by enabling clearer image representations and
facilitating more accurate image-based tasks and analyses.

A straightforward strategy is to apply global deblurring tech-
niques to local blurred images to achieve effective local motion
deblurring. However, this approach may not yield optimal results
(see Figure 1), as local motion blur often presents distinct charac-
teristics compared to global motion blur. Specifically, local motion
blur is characterized by abrupt changes at object boundaries, while
the background remains clear. This discrepancy poses challenges
for global deblurring methods and may result in undesired artifacts
in originally sharp regions. Therefore, specialized methods that
explicitly address the unique problems of local motion blur are
essential to ensure accurate and artifact-free deblurring in such
scenarios, which has yet to gain limited attention.
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(a) (b) (c) (d) (e) (f)

Figure 1: Examples of local motion deblurring. (a) Locally
blurred image, (b) blurred patches, (c) results of MIMO-
UNet [6], (d) results of LBAG [21], (e) results of our proposed
MUGNet, and (f) ground-truth images. MUGNet achieves su-
perior results, showcasing its effectiveness in local motion
deblurring. Please zoom in for better visualization.

Thanks to [21], the first paired real, local motion blur dataset
– ReLoBlur, and an end-to-end framework called LBAG for local
motion deblurring have been proposed. Specifically, LBAG incor-
porates a gated structure to alleviate the deblurring impact on
non-blurred regions, preventing unwanted distortion in the back-
ground and static objects. While LBAG represents a significant step
forward in this direction, it still lacks local blur detection. This is
because LBAG employs a gated structure to directly multiply esti-
mated blur masks with blurry images, often resulting in sub-optimal
results, as shown in Figure 1. There are several core challenges for
identifying local motion blur: (i) addressing abrupt changes at ob-
ject boundaries, where blur intensity can vary significantly within
a confined spatial area; (ii) capturing the intricate and irregular
patterns often exhibited by local motion blur, posing challenges for
modeling and prediction; (iii) dealing with occlusions and object
movements, which introduce additional complexity to accurately
identifying local motion blur.

In this paper, we introduce a novel method known as the Motion-
Uncertainty-Guided Network (MUGNet) to address the intricate
challenges of local motion deblurring. Given the complexities posed
by random blur localization, elusive extents, and indistinct motion
boundaries, our MUGNet involves estimating motion uncertainty
maps by applying the motion-uncertainty quantification (MUQ)
module. To achieve this, we draw inspiration from the Bayesian
probability theory [3, 12, 14, 15, 23, 25, 51, 59], and structure our
MUQ module as a probabilistic representational model, steering
clear of pixel-level blur mask estimations and instead learning prob-
ability distributions. Concretely, by drawing 𝐾 samples from these
acquired distributions, we are able to generate initial estimates
and quantify the degrees of motion uncertainties. Incorporating the
MUQmodule significantly enhances the capability to estimate more
precise blur masks, which is crucial for local motion deblurring.
Furthermore, we introduce the motion-masked separable atten-
tion (M2SA) module, which uses the Multi-Dconv Head Trans-
posed Attention (TA) to handle both blurry objects and stationary
backgrounds. Instead of performing the same operations in each
head, our M2SA separates the attention heads into two groups: the
masked-TA (MTA) enhances the representation of blurry areas, and
the global-TA (GTA) can build global interactions for generating
high-quality clear images.

Utilizing our proposed Motion-Uncertainty-Guided Network
(MUGNet) with the newly introduced Motion-Uncertainty Quan-
tification (MUQ) module and Motion-Masked Separable Attention
(M2SA) module, we adopt a multi-scale architecture to generate
blur-free images. This integration allows MUGNet to produce re-
markably enhanced results with finer details, surpassing state-of-
the-art methods. To validate the efficacy of our approach, extensive
experiments are conducted on the ReLoBlur testing dataset [21],
demonstrating superior performance across various local motion
deblurring scenarios.

The contributions of this work are summarized as follows:
• We introduce the Bayesian learning into blur mask estima-
tion and propose the MUQ module. By explicitly quantifying
motion uncertainty, the MUQ module enables accurate blur
mask estimation for local motion deblurring.

• We further present the M2SA module, which divides the
attention heads into two groups and enhances the represen-
tations of the blurry areas and background static regions by
separately computing their attention scores via the estimated
blur masks for accurate local motion deblurring.

• The MUQ module and the M2SA module together constitute
our MUGNet. Extensive experiments demonstrate that the
proposed MUGNet achieves superior performance.

2 Related Work
Global motion deblurring. Image deblurring poses a challenging
ill-posed problem [24, 40, 44–48], seeking to recover clear images
from their blurry counterparts. A range of regularization priors, in-
cluding heavy-tailed gradient, sparse kernel, 𝑙0 gradient, normalized
sparsity, and dark channels, have been developed to guide the solu-
tion space towards sharp latent images [9, 17, 28, 33, 49]. In recent
times, the advancement of deep learning has brought transforma-
tive progress to image deblurring, notably within the domain of
global deblurring [31, 36, 50, 54, 57, 58, 61]. Pioneering deep global
motion deblurring efforts have embraced Convolutional Neural
Networks (CNNs) as foundational components, yielding substantial
improvements in image quality. Among these, DeepDeblur [27]
stands out, employing a multi-scale CNN architecture with residual
blocks to expedite convergence. Innovations like DeblurGAN [18]
and DeblurGAN-v2 [19] have harnessed Generative Adversarial
Networks (GANs) and perceptual loss to enhance subjective image
quality. HINet [5]h leverages Instance Normalization for perfor-
mance gains. Harnessing the potential of vision Transformers [8] to
capture long-range dependencies, their application in global deblur-
ring tasks has ignited substantial interest. For instance, Uformer
[41] employs window-based self-attention coupled with a learnable
multi-scale restoration modulator, effectively capturing local and
global dependencies. Concurrently, Restormer [52] exploits TA and
a feed-forward network, enabling intricate long-range pixel inter-
actions. Unlike these methods, in this paper, the proposed MUGNet
aims to deblur locally blurred images.
Local motion deblurring. Local motion deblurring, less explored,
tackles blurs in specific areas caused by object movements with
stationary cameras[21, 22]. A notable stride in this direction has
been taken by [21], who have undertaken a noteworthy endeavor in
curating the pioneering ReLoBlur dataset, a foundational resource
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Figure 2: An overview of the proposed MUGNet. MUGNet is built on a multi-scale encoder-decoder structure.

pivotal for propelling the frontiers of local motion deblurring re-
search. Within this context, they have introduced LBAG, an end-
to-end framework meticulously tailored to tackle the intricacies of
local motion deblurring. Very recently, Li et al. [22] propose LMD-
ViT. LMD-ViT is a sparse vision Transformer for restoring images
affected by local motion blurs. LMD-ViT is built upon the adaptive
window pruning Transformer blocks, which employ blur-aware
confidence predictors to estimate the level of blur confidence in
the feature domain. Building upon this, we present MUGNet, a
novel method specifically designed to achieve accurate blur map
estimation and enhance local motion deblurring capabilities. Our
method harnesses the power of the MUQ and M2SA modules to
address the challenges posed by local motion deblurring.

3 Method
Given a blurry image 𝐵 ∈R𝐻×𝑊 ×3, the proposed MUGNet aims to
reconstruct a high-quality clear image 𝐼 ∈R𝐻×𝑊 ×3, which should
be close to the ground truth image 𝐼𝐺𝑇 ∈R𝐻×𝑊 ×3.𝐻 and𝑊 denote
the height and width.

We utilize a multi-scale encoder to extract the features of the
blurry image since multi-scale structures prove effective in image
deblurring. Specifically, we feed 𝐵 into the encoder to generate
multi-scale feature maps from four stages based on ResNet, which
are denoted as {𝐹𝑖 }4𝑖=1. Consequently, 𝐹1 is with spatial size 𝐻

4 ×
𝑊
4 and 𝐹4 is with spatial size 𝐻

32 × 𝑊
32 . To achieve a better trade-

off between efficiency and performance, we first connect a 1 × 1
convolution with 32 channels to the feature maps at each level and
obtain {𝐹𝑐

𝑖
}4
𝑖=1. At levels 2, 3, and 4, we separately input {𝐹

𝑐
𝑖
}4
𝑖=2 into

the MUQ module to generate corresponding motion uncertainty
maps {𝑈𝑖 }4𝑖=2. Subsequently, the estimated {𝑈𝑖 }4𝑖=2, rescaled blurry
images {𝐵𝑖 }4𝑖=2, and the upscaled feature are concatenated and fed
to SE-Residual Blocks (SERBs), followed by mask generators to
estimate blur masks {𝑀𝑖 }4𝑖=2. The mask generator consists of a
3 × 3 convolution, followed by the sigmoid operation. Note that we

do not binarize the blur maps but keep them as continuous maps
ranging from 0 to 1. Then, the M2SA module is applied at each
feature level to enhance the distinction between blur regions and
static background regions, generating {𝐹 ′

𝑖
}4
𝑖=2. At levels 1 and 0,

{𝐹 ′
𝑖
}𝑖=0,1 and blurry inputs 𝐵1 and 𝐵 are concatenated and fed to

SERBs, followed by mask generators to generate {𝑀𝑖 }𝑖=0,1. The
M2SA module is applied to generate {𝐹 ′

𝑖
}𝑖=0,1. To obtain the final

clear result, 𝐹
′
0 is fed to a 3 × 3 convolution. It is then added in a

residual manner with the product of𝑀0 and 𝐵, resulting in 𝐼

𝐼 = Conv(𝐹
′
0) +𝑀0𝐵 + 𝐵, (1)

where Conv(·) denotes the 3 × 3 convolution.

3.1 Motion Uncertainty Quantification Module
Accurately estimating blur masks is crucial for achieving precise
deblurring results. In practice, however, the task of identifying and
estimating blur masks for local motion blur is notably challenging,
primarily due to its distinctive and unpredictable characteristics.
Therefore, simply feeding features into the following convolution
layers to estimate blur masks is not optimal. Inspired by Bayesian
probability theory [3, 12, 14, 15, 23, 60], we propose to estimate the
motion uncertainty maps using the MUQmodule and then generate
more accurate blur masks. We employ uncertainty estimation to
derive blur masks, aligning with local blurry artifacts’ distinctive
characteristics.

As shown in Figure 3, we design the MUQ module as a prob-
abilistic representational model to measure motion uncertainty.
Therefore, what the MUQ module delivers for each pixel (e.g., the
pixel 𝑝) is a distribution parameterized by mean 𝝁𝑝 and variance
𝝈𝑝 instead of a scalar (e.g., a score). Following [12], we model the
distribution of outputs at each pixel as Gaussian, and therefore, the
prediction of the MUQ module is a random variable. We expect
that the blur score at the position 𝑝 can be drawn from the learned
distribution: 𝑢𝑝 ∼ N(𝝁𝑝 ,𝝈𝑝 ), where 𝝁𝑝 and 𝝈𝑝 are learned by a
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Figure 3: Illustration of the MUQ module. The MUQ module
works as a probabilistic model for motion uncertainty quan-
tification, which is composed of a feature encoder.

two-branch encoder consists of a 1 × 1 convolution

𝝁 = Enc𝜇 (𝐹 ),𝝈 = Enc𝜎 (𝐹 ), (2)

where 𝝁 ∈ Rℎ×𝑤×1 and 𝜹 ∈ Rℎ×𝑤×1 denote the mean map and
variance map, respectively. ℎ and𝑤 denote the height and width of
𝐹 , and we omit the subscript 𝑖 . As observed in existing studies [10,
12, 13], using random samples to train the MUQ module can lead to
the lack of error propagation from the output. To address this issue,
taking inspiration from [15], we decompose the direct sampling
operation into two components: trainable and random parts. In
particular, we start by randomly drawing a sample 𝜖𝑝 from the
standard Gaussian distribution N(0, 𝑰 ), i.e., 𝜖𝑝 ∼ N(0, 𝑰 ), and then
compute the sample as 𝝁 + 𝜎𝜖𝑝 . This approach allows gradients to
propagate backward, enabling the optimization of the MUQmodule.

We sample 𝐾 initial blur masks from the learned distribution
to measure pixel-wise motion uncertainty, denoted as 𝑀𝑖𝑛𝑖𝑡 =

{𝑚1, · · · ,𝑚𝐾 }. According to Bayesian probability theory [3, 12, 14],
we can treat𝑀𝑖𝑛𝑖𝑡 as empirical samples from an approximate pre-
dictive distribution and measure how confident the model is in its
prediction by computing the variance

𝑈 = Norm(Var(𝑀𝑖𝑛𝑖𝑡 )), (3)

where𝑈 ∈ Rℎ×𝑤×1 means the motion uncertainty map, Norm(·)
is the mean-max normalization operation and Var(·) denotes the
operation of computing variance.

The estimated motion uncertainty map effectively guides the
generation of blur maps within our proposed MUQNet framework,
resulting in improved precision and quality.

3.2 Motion-Masked Separable Attention
Blurred regions exhibit diverse scales and frequently share visual
characteristics with the background, presenting inherent challenges
for local motion deblurring. Using estimated blur masks offers a
valuable tool to explicitly differentiate and process the blurry ob-
jects and the static background. This approach not only enhances
the feature representations but also contributes to a more effec-
tive deblurring process, ultimately leading to improved results. We
therefore propose the M2SA module to utilize a subset of attention
heads to independently compute attention scores for the predicted
blurry areas and static background regions, enhancing the feature
representation.

OurM2SAmodule is based on amodified version of self-attention
to save computations, namely TA [52]. Given an input 𝑋 ∈ Rℎ𝑤×𝑐

where ℎ and𝑤 are respectively the height and width while 𝑐 is the
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Figure 4: Diagrammatic details of the proposed MTA in our
M2SA. For simplicity, we omit the subscript 𝑖 indicating the
𝑖-th level.

channel number, TA can be formulated as:

TA(𝑄,𝐾,𝑉 ) = 𝑉 · Softmax(𝑄
⊤𝐾
𝛼

), (4)

where 𝑄 , 𝐾 , 𝑉 are the query, key, value matrices that can be gen-
erated by using three separate 1 × 1 convolutions followed by a
3× 3 depthwise convolution, and 𝛼 is a learnable scaling parameter.
Eq. 4 can also be extended to a multi-head version, as done in the
original self-attention [39], to enhance the feature representations.

The attention heads in the above TA are equally utilized for
encoding spatial information, and we term these heads as global
TA (GTA). In our M2SA, we propose introducing the estimated blur
maps at each feature level into TA to better distinguish between
blurry objects and static backgrounds and enhance the network’s
representation. To achieve this, we divide all attention heads into
mask-head TA (MTA) and the regular GTA. The detail of MTA is
shown in Figure 4.

To be specific, given a predicted blur map𝑀 , the formulation of
MTA can be written as

𝑀𝑇𝐴(𝑄𝐹 , 𝐾𝐹 ,𝑉𝐹 ) = 𝑉𝐹 · Softmax(
𝑄⊤
𝐹
𝐾𝐹

𝛼𝐹
), (5)

where 𝑄𝐹 , 𝐾𝐹 are the masked query and key matrices that can be
produced by multiplying them with𝑀 and 𝑉𝐹 is the value matrix
without masking. In this way, the features can be refined by build-
ing pairwise relationships within blurry objects in the foreground,
avoiding the influence of the background, which may contain con-
taminative information.

Other than the MTA heads, the second group of the heads is kept
unchanged as in Eq. 4, which is used to build relationships between
the foreground and background globally. The outputs of all heads
are then concatenated and sent into a 3 × 3 convolution for feature
aggregation

𝐹
′
= Conv( [𝑀𝑇𝐴,𝐺𝑇𝐴]), (6)

where [·, ·] is the concatenation operation.

3.3 Loss Functions
Following [21], we utilize several loss functions to optimize the
proposed MUGNet.
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Table 1: Quantitative comparison of different methods on the ReLoBlur dataset. “PSNR𝑤”, “SSIM𝑤”, “PSNR𝑎”, “Runtime” and
“Params” denote weighted PSNR, weighted SSIM, aligned PSNR, inference time, and model parameters respectively. The best
and the second best results are highlighted in bold and underline.

Methods ↑PSNR ↑SSIM ↑PSNR𝑤 ↑SSIM𝑤 ↑PSNR𝑎 Runtime #Params FLOPs

DeepDeblur [27] 33.05 0.8946 26.51 0.8152 33.70 0.50s 11.72M 17.133T
DeblurGAN-v2 [19] 33.85 0.9027 27.37 0.8342 34.30 0.07s 5.076M 0.989T
SRN-DeblurNet [36] 34.30 0.9238 27.48 0.8570 34.88 0.31s 88.67M 8.696T
HINet [5] 34.36 0.9151 27.64 0.8510 34.95 0.31s 88.67M 8.696T
MIMO-UNet [6] 34.52 0.9250 27.95 0.8650 35.42 0.51s 16.11M 7.850T
Restormer [52] 34.92 0.9265 29.47 0.8811 - 3.72s 26.13M 6.741T
Uformer-B [41] 35.19 0.9265 30.22 0.8911 - 1.31s 50.88M 4.375T
LBAG [21] 34.66 0.9249 28.25 0.8692 35.39 0.51s 16.11M 7.852T
LBAG+ [21] 34.85 0.9257 28.32 0.8734 35.53 0.51s 16.11M 7.852T
LMD-ViT [22] 35.42 0.9289 30.25 0.8938 - 0.56s 54.50M 1.485T
MUGNet 36.31 0.9323 30.28 0.8898 36.73 0.66s 24.67M 0.627T

Blur mask prediction loss L𝑀 . We utilize the blur mask predic-
tion loss to constrain our estimated blur masks effectively. Specifi-
cally, we employ the Mean Squared Error (MSE) loss to compute
the loss across multiple scales, which in turn contributes to the
effective regularization and refinement of our blur mask estimation.
L𝑀 can be denoted as

L𝑀 =

4∑︁
𝑖=1

MSE(𝑀𝑖 , 𝑀𝐺𝑇𝑖 ) +MSE(𝑀0, 𝑀
𝐺𝑇 ), (7)

where𝑀𝐺𝑇 denotes the ground-truth local blur mask, and 𝑖 denotes
the 𝑖-th level in MUGNet.
Reconstrction loss L𝑟𝑒𝑐 . L𝑟𝑒𝑐 is proposed to regularize the de-
blurred results at the pixel level via

L𝑟𝑒𝑐 =
4∑︁
𝑖=1

MSE(𝐼𝑖 , 𝐼𝐺𝑇𝑖 ) +MSE(𝐼 , 𝐼𝐺𝑇 ), (8)

where 𝐼𝑖 = 𝑀𝑖𝐵𝑖 + 𝐵𝑖 denotes the multi-scale latent clear result at
the 𝑖-th level.
SSIM loss L𝑠𝑠𝑖𝑚 . The SSIM loss is also proposed to regularize the
deblurred results at the pixel level via

L𝑠𝑠𝑖𝑚 = (1 −
4∑︁
𝑖=1

SSIM(𝐼𝑖 , 𝐼𝐺𝑇𝑖 )) + (1 − SSIM(𝐼 , 𝐼𝐺𝑇 )), (9)

where SSIM(·, ·) denotes the SSIM value.
Multi-scale frequency reconstruction (MSFR) loss L𝑚𝑓 . The
MSFR loss measures the 𝐿1 distance between multi-scale ground-
truth and deblurred images in the frequency domain as follows

L𝑚𝑓 =

4∑︁
𝑖=1

1
4
MSE(𝑓 (𝐼𝑖 ), 𝑓 (𝐼𝐺𝑇𝑖 )), (10)

where 𝑓 (·) denotes the fast Fourier transform that transfers the
image signal to the frequency domain.

The final loss function for training our MUGNet is determined
as follows

L = L𝑀 + 𝜆1L𝑟𝑒𝑐 + 𝜆2L𝑠𝑠𝑖𝑚 + 𝜆3L𝑚𝑓 , (11)

where 𝜆1, 𝜆2, 𝜆3 are weighting factors.

4 Experiments
4.1 Experimantal Setting
Datasets.We follow the method in [21] and utilize the ReLoBlur
dataset [21], for training and validation. We split the ReLoBlur
dataset into 2,010 pairs for training and 395 pairs for testing, without
repeated scenes occurring in each split set.
Test setting.We evaluate our MUGNet and baseline methods on
ReLoBlur testing data with the full image size of 2152 × 1436.
To quantitatively evaluate the reconstructed results, we use the
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
(SSIM) metrics. We follow [21] and calculate the weighted PSNR,
the weighted SSIM [32], and the aligned PSNR [11] specifically for
the blurred regions.
Implementation details. We employ the Adam optimizer with
parameters 𝛽1 = 0.9 and 𝛽2 = 0.999 to train MUGNet. The hyperpa-
rameters are set empirically as follows: 𝐾 = 50, 𝜆1 = 100, 𝜆2 = 100,
and 𝜆3 = 10. The batch size is configured as 12, and the initial
learning rate is set to 1 × 10−4, which is halved every 100k steps
until reaching 300k steps. All training experiments are conducted
using PyTorch on an NVIDIA 3090 GPU. During the data sampling
process, we employ a blur-aware patch crop strategy [21]. This
strategy involves sampling 50% of the training data as blur regions
and the remaining 50% as random regions from the 256 × 256 train-
ing samples, with the assistance of blur mask annotations. It is
worth noting that the model configuration for the baseline methods
adheres to their respective original specifications.

4.2 Quantitative and Qualitative Comparisons
We conduct a comprehensive evaluation of the proposed MUGNet
using the ReLoBlur dataset, benchmarking it against the following
existing methods: (1) CNN-based global motion deblurring meth-
ods: DeepDeblur [27], DeblurGAN-v2 [19], SRN-DeblurNet [36],
MIMO-UNet [6] andHINet [5]. (2) Transformer-based globalmotion
deblurring methods: Restormer [52] and Uformer [41]. (3) State-of-
the-art local motion deblurring method LBAG [21] and its variant
LBAG+ pretrained with MIMO-Unet.
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Figure 5: Visual comparisons of state-of-the-art methods on the ReLoBlur dataset. (a) DeepDeblur [27]; (b) DeblurGAN-v2 [19];
(c) HINet [5]; (d) MIMO-UNet [6]; (e) LBAG [21]; (f) Restormer [52]; (g) Uformer [41]; (h) MUGNet (ours). Please zoom in for
better visualization and best viewed on screen.

As depicted in Table 1, MUGNet significantly excels in both PSNR
and SSIM metrics. With a PSNR of 36.31 dB, it notably surpasses
its nearest competitor, Uformer, by 1.12 dB. Moreover, MUGNet
achieves a substantial PSNR improvement of 1.46 dB over the lead-
ing state-of-the-art local motion deblurring method, LBAG. In terms
of SSIM, MUGNet outperforms Transformer-based methods by
0.0058 and surpasses LBAG+ by 0.0066, underlining its remarkable
prowess in local motion deblurring. Similarly, in terms of both
PSNR𝑤 and PSNR𝑎 metrics, MUGNet achieves the most superior
results. Despite MUGNet exhibiting a slight reduction of 0.0013
in SSIM𝑤 compared to Uformer, it is noteworthy that our model
employs only approximately half of the parameters and incurs a
lower computational load. This efficient utilization of resources
underscores the practical viability and computational advantage of
MUGNet.

As demonstrated in Figure 5, MUGNet exhibits a remarkable
superiority over its contemporary counterparts, yielding images
characterized by enhanced clarity and intricate details. Notably,
there is a substantial reduction in blur, resulting in the faithful
preservation of intricate patterns, such as the pristine white stripes
on the suit and the intricate nuances of the zipper. These restored
details closely resemble the ground truth; notably, no discernible
artifacts are introduced. These significant enhancements in visual

Table 2: The ablation results of the MUQ module and the
M2SA module in MUGNet.

ID MUQ M2SA ↑PSNR ↑SSIM ↑PSNR𝑤 ↑SSIM𝑤 ↑PSNR𝑎
(a) % % 34.75 0.9267 28.05 0.8661 35.35
(b) % ! 35.52 0.9294 28.83 0.8752 35.94
(c) ! % 35.67 0.9299 29.19 0.8804 36.14
(d) ! ! 36.31 0.9323 30.28 0.8898 36.73

effects are strong evidence of MUGNet’s efficiency in local motion
deblurring.

4.3 Ablation Studies
Effectiveness of each module.We conduct experiments to show-
case the contributions of the two core modules in our proposed
MUGNet. We design the following ablations: (a) We remove both
the MUQ and M2SA modules from MUGNet and replace them with
residual blocks of the same parameters. (b) We remove the MUQ
modules from MUGNet and replace them with residual blocks. (c)
We remove M2SA modules from MUGNet and replace them with
residual blocks. The ablation results are presented in Table 2, accom-
panied by a representative visual comparison shown in Figure 2.
Comparing the results of case (d) with both components to case (a),
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Figure 6: Analysis of the MUQ module and the proposed
M2SA. (a) MUGNet w/o both components, (b) MUGNet w/o
M2SA, (c) MUGNet w/o MUQ, and (d) MUGNet.

we observe substantial improvements across all evaluation metrics.
This performance gain underscores the significant contributions
of both components to the overall enhancement. From the visual
evidence in Figure 6, it becomes evident that removing the MUQ
module results in noticeable artifacts along the edges of moving
objects, while the absence of the M2SA module leads to a loss of
fine details in the output. This visual observation harmonizes per-
fectly with our analysis and the results presented in the tables. It
underscores the importance of incorporating motion uncertainty
for effective local motion deblurring and further highlights the sig-
nificance of the M2SA module in enhancing feature representation.
This underlines the utility of the M2SA module in improving local
motion deblurring results.
A close look at the MUQ module. To understand how the MUQ
module works, we visualize the motion uncertainty maps estimated
by this module in Figure 7. Our motion uncertainty maps consis-
tently highlight object boundaries, motion boundaries, and regions
with indistinguishable textures. By zooming in, one can see that
these boundaries indeed mark the moving objects. As the scale
increases, imprecise edges are gradually reduced, resulting in a
more accurate blur mask at the largest scale. This coarse-to-fine
design enhances precision in blur mask estimation. This phenom-
enon suggests that these particular regions tend to confuse the
deblurring model. The uncertainty quantification process serves
meaningful purposes: i) it enhances the interpretability of local
motion deblurring models, and ii) it exposes the limitations of con-
ventional solutions. The mask generator is trained to focus on these
uncertain regions, resulting in significant improvements in accu-
racy when estimating clear and precise blur masks, as demonstrated
in Figure 7. Additionally, we have conducted experiments to assess
the influence of varying 𝐾 on the final results. Results are shown
in Table 3. Higher values of 𝐾 tend to yield improved outcomes.
However, taking computational costs into account, we set 𝐾 = 50.
A close look at the M2SA module. Table 4 provides an anal-
ysis of the two constituents of the M2SA module, namely MTA
and GTA. Within the proposed M2SA module, we employ motion-
masked separable attention to enhance the feature representations

Table 3: Ablation results of the number of samples in the
MUQ.

𝐾 ↑PSNR ↑SSIM ↑PSNR𝑤 ↑SSIM𝑤 ↑PSNR𝑎
10 35.96 0.9313 29.53 0.8840 36.38
25 36.14 0.9311 29.82 0.8842 36.61
50 36.31 0.9323 30.28 0.8898 36.73
100 36.33 0.9326 30.26 0.8901 36.63
200 36.39 0.9328 30.29 0.8881 36.77

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x) (y)

Figure 7: (a) 𝑀0, (b) 𝑀1, (c) 𝑀2, (d) 𝑀3, (e) 𝑀4, (f)-(j) five es-
timates sampled from 𝑀2

𝑖𝑛𝑖𝑡
, (k)-(o) five estimates sampled

from 𝑀3
𝑖𝑛𝑖𝑡

, (p)-(t) five estimates sampled from 𝑀4
𝑖𝑛𝑖𝑡

, (u) 𝑈2,
(v)𝑈3, (w)𝑈4, (x) 𝐼 and (y) ground-truth blur mask.

Table 4: The ablation results of the proposed M2SA.

ID MTA GTA ↑PSNR ↑SSIM ↑PSNR𝑤 ↑SSIM𝑤 ↑PSNR𝑎
(a) % % 35.67 0.9299 29.19 0.8804 36.14
(b) ! % 36.20 0.9323 30.10 0.8884 36.61
(c) % ! 36.23 0.9315 29.96 0.8868 36.63
(d) ! ! 36.31 0.9323 30.28 0.8898 36.70

within the regions affected by local motion blur. In contrast, global
attention is employed to refine feature representations in static
background areas. This segregation allows MUGNet to more ef-
fectively discern and address intricate patterns and specific details
unique to each region. This refined modeling of local and global
contexts significantly contributes to clear deblurred results.

Our M2SA module is based on Restormer. We replace the M2SA
with a Transformer block from SwinIR, and the results are presented
in Table 5. It can be observed that ourM2SA outperforms the SwinIR
Transformer block.
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Table 5: The ablation results of the M2SA and the Swin Trans-
former.

Methods ↑PSNR ↑SSIM ↑PSNR𝑤 ↑SSIM𝑤 ↑PSNR𝑎
Swin-Former 36.24 0.9317 29.99 0.8870 36.65
M2SA 36.31 0.9323 30.28 0.8898 36.70

4.4 Extending MUGNet to Global Motion
Deblurring

Global motion deblurring is a critical task, and despite MUGNet’s
initial design for local motion deblurring, it proves to be effective
in global motion deblurring. We retrain MUGNet and compare its
performance with advanced methods. Table 6 presents quantitative
evaluations on the GoPro dataset, comparing various deblurring
methods in terms of PSNR, SSIM, and the number of parameters. No-
tably, our proposed method, labeled as "Ours" in the table, achieves
competitive results compared to state-of-the-art methods. Despite
performing slightly lower than FFTformer in terms of PSNR and
SSIM, our method still demonstrates promising performance with a
PSNR of 34.01 and SSIM of 0.9628. Additionally, our method main-
tains a reasonable number of parameters (24.7 million), indicating
its efficiency in terms of computational complexity. Overall, these
results suggest that our approach holds considerable potential for
addressing deblurring tasks on the GoPro dataset, showcasing its
effectiveness alongside existing state-of-the-art methods.

4.5 Limitations and Discussions
While our proposed MUGNet demonstrates promising performance
across various experiments, it does exhibit certain limitations in
challenging scenarios. For instance, when dealing with objects in
low light conditions, MUGNet might struggle to produce satisfac-
tory results. As depicted in Figure 8 (left), under normal lighting
conditions, ourmethod yields satisfactory results. However, it might
not perform as well under weaker lighting conditions, failing to
generate clear results in darker areas. These limitations highlight
the need for further exploration and refinement, especially in chal-
lenging scenarios such as low-light conditions. Another challenging
scenario is the presence of extensive motion within the scene. Due
to the inherent limitations of CNNs, capturing larger receptive
fields and more global information, as achievable by Transformers,
becomes challenging. Consequently, reconstructing scenes such
as those depicted in Figure 8 (right) proves to be difficult. A feasi-
ble solution lies in exploring the temporal information provided
by consecutive frames for local motion deblurring. This approach
could enhance the network’s ability to handle scenes with sub-
stantial motion and improve the overall deblurring performance.
Like other local motion deblurring methods, our proposed MUGNet
currently does not offer real-time local motion deblurring capabili-
ties. Nonetheless, we are committed to refining our architecture to
achieve real-time performance, which will enable its application in
time-sensitive scenarios.

Table 6: Quantitative evaluations on the GoPro dataset.

Methods PSNR SSIM #Params (M)

DeblurGAN-v2 [19] 29.55 0.9340 60.9
SRN [37] 30.26 0.9342 6.8
DMPHN [55] 31.20 0.9453 21.7
SAPHN [35] 31.85 0.9480 23.0
MIMO-Unet+ [7] 32.45 0.9567 16.1
MPRNet [54] 32.66 0.9589 20.1
DeepRFT+ [26] 33.23 0.9632 23.0
Restormer [53] 32.92 0.9611 26.1
Uformer-B [42] 33.06 0.9670 50.9
Stripformer [38] 33.08 0.9624 19.7
NAFNet [4] 33.71 0.9668 67.9
FFTformer [16] 34.21 0.9692 16.6
Ours 34.01 0.9628 24.7
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Figure 8: Failure cases. Left: reconstruction results under
normal lighting conditions and low-light scenarios. Right:
the consecutive results across three frames.

5 Conclusion
In this paper, we propose MUGNet to address the intricate chal-
lenges posed by motion uncertainties in the context of local motion
deblurring. This is achieved through the establishment of a proba-
bilistic representational model explicitly designed to compute these
uncertainties and provide guidance to facilitate the subsequent pro-
cesses. Specifically, our MUGNet comprises two key components:
the MUQ module and the M2SA module. MUQ facilitates the learn-
ing of a conditional distribution that enhances the accuracy and
reliability of blur map estimation, while M2SA focuses on improv-
ing the representation of regions impacted by local motion blur
and the static background. We conduct extensive experiments to
demonstrate the superior performance of our MUGNet.
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