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Abstract

The conclusions of randomized controlled trials may be biased when the outcome
of one unit depends on the treatment status of other units, a problem known as
interference. In this work, we study interference in the setting of one-sided bipartite
experiments in which the experimental units—where treatments are randomized
and outcomes are measured—do not interact directly. Instead, their interactions are
mediated through their connections to interference units on the other side of the
graph. Examples of this type of interference are common in marketplaces and two-
sided platforms. The cluster-randomized design is a popular method to mitigate
interference when the graph is known, but it has not been well-studied in the
one-sided bipartite experiment setting. In this work, we formalize a natural model
for interference in one-sided bipartite experiments using the exposure mapping
framework. We first exhibit settings under which existing cluster-randomized
designs fail to properly mitigate interference under this model. We then show
that minimizing the bias of the difference-in-means estimator under our model
results in a balanced partitioning clustering objective with a natural interpretation.
We further prove that our design is minimax optimal over the class of linear
potential outcomes models with bounded interference. We conclude by providing
theoretical and experimental evidence of the robustness of our design to a variety
of interference graphs and potential outcomes models.

1 Introduction

Interference is a well-studied phenomenon in causal inference, whereby the treatment status of one
unit can affect the outcome of another. Formally a violation of the Stable Unit Treatment Value
Assumption [1], interference has been studied in many settings, including agricultural studies [2],
clinical trials [3], social networks [chap. 16 of 4, 5, 6, 7], and marketplaces [8, 9, 10, 11, 12].
Marketplaces exhibit unique forms of interference because they involve two types of units: buyers
and sellers. Units of the same type do not interact directly, but rather their interactions are mediated
through their interactions with units of the opposite type. For example, when buyers compete to
buy limited goods, an increase in the price one buyer is willing to pay for a good will affect the
market-clearing rate for that good, thus increasing the price for all other buyers.

Marketplace experiments can be conceptualized as running an experiment on a bipartite graph
between buyers and sellers, with edges representing buyer-seller interactions. Other settings beyond
marketplaces can also be formalized as bipartite graphs, such as content platforms (matching viewers
to creators) or ride-sharing apps (matching riders to drivers) [13]. We consider perhaps the most
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straightforward way of running an experiment on a bipartite graph: by treating and measuring a single
side of the graph, a setting we call the one-sided bipartite experiment framework. We refer to the
units on this side of the graph as experimental units since they receive treatment and their outcomes
appear in our estimators. We refer to the units on the other side of the graph as interference units:
while they do not explicitly receive treatment, they mediate the interactions between experimental
units.

The presence of interference units distinguishes one-sided bipartite experiments from other settings of
network interference because the interactions between experimental units are known in the latter case,
but must be inferred from the interactions with interference units in the former. In this work, we show
that a popular class of experimental designs for network interference, cluster-randomized designs,
does not extend immediately to this setting. Instead, we propose a variant of the cluster-randomized
design, with a clustering objective that accounts for the way in which interference units mediate the
interference between experimental units. We motivate the use of the difference-in-means estimator in
this setting and show that clustering according to our objective minimizes the bias of that estimator
in a minimax sense over the class of linear potential outcomes models with bounded interference.
We further illustrate the failure of existing clustering designs when applied to one-sided bipartite
experiments, and conclude by illustrating the robustness of our design to a variety of potential
outcomes models and bipartite graphs both theoretically and empirically.

1.1 Related work

Accurate estimation of the treatment effect requires some knowledge of the mechanism of interference
[14]; otherwise, having even a single treated (resp. control) unit in a graph of control (resp. treated)
units could change the outcome of every unit arbitrarily. Existing work varies in the strength and
nature of the assumptions on the interference model, but in general these assumptions take one
of two types. The exposure mapping approach [3, 15], formalized by Aronow and Samii [16],
defines a notion of when a unit is “completely treated” or “completely controlled,” then uses the
inverse propensity score (IPS, also known as Horvitz-Thompson) estimator to construct an unbiased
estimate of the average treatment effect. By contrast, an alternate approach is to propose a model
for the effect of interference on the potential outcomes, and then rely on this model to estimate
the average treatment effect using data from all units (even the ones experiencing a great deal of
interference) [6, 17, 18, 19]. Since the quality of the estimate depends on the accuracy of the
modeling assumptions, several methods have been developed to estimate the magnitude and form
of interference [5, 20, 21, 22, 23, 24]. Chin [25] lessens the reliance on the form of the interference
model by developing a model-agnostic regression estimator that reduces average treatment effect
estimation to a problem of feature engineering; however, it assumes that each unit’s response follows
a shared (but unknown) model, which is more restrictive than the potential outcomes model we use in
this work.

Even in cases when the model is only approximate, so that including data from units experiencing
interference may bias the estimator, Eckles et al. [17] use realistic graph models to argue that the
bias incurred is more than offset by the reduction in variance achieved by avoiding an IPS estimator.
Our work assumes this same regime, in which the graphs are sufficiently dense that an IPS estimator
will be too high-variance to be practical, so we accept an estimator with some bias. We assume a
linear model of the potential outcome on the measured exposure, as done in [6, 19]. To avoid strong
dependence on the linear assumption, we use the difference-in-means estimator which does not rely
on the model of interference, and we choose our experimental design to be minimax optimal over the
class of linear potential outcomes models.

Given some model of interference and a choice of estimator, the next question is how to design an
experiment (an assignment of units to treatment or control). The most popular experimental design
in the case of network interference is the cluster-randomized design, studied by [26, 17, 27] in the
case of non-bipartite graphs. This design first clusters units according to the provided graph, and then
assigns each cluster to either treatment or control. In the specific case of bipartite graphs, other works
propose modifications to unit-level randomization by choosing which side of the graph to randomize
[28, 10, 29]. The authors of [18, 19] look directly at clustered designs on bipartite graphs, but they
study a two-sided experimental framework in which one side of the graph is randomized while the
other is measured. Perhaps closest to our work is that of Rolnick et al. [9], which suggests a balanced
partitioning of geographical regions using a clustering objective that is similar to ours. Their work
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considers a more restrictive form of the potential outcomes model, and uses clustering heuristics that
are specific to the geographical setting. By contrast, our work considers the robustness of the design
to a broader class of potential outcomes models and extends beyond geographical regions to general
interference graphs.

2 Models and estimators

We now formalize the interference model using the potential outcomes framework [30]. Let Z ∈
{−1, 1}N be an assignment of each of the N experimental units to treatment (Z = 1) or control
(Z = −1). The potential outcome of the ith experimental unit is denoted Yi, and in the most general
setting could be a function Yi(Z) of the entire treatment assignment vector. We further assume
the existence of a (known) bipartite graph between experimental units and interference units, with
nonnegative weights wis ≥ 0 encoding the relationship between experimental unit i and interference
unit s. Such a graph may be obtained from historical data on interactions between units i and s, or on
similarity between i and s measured by geography or other features [9, 31].

While there are many possible estimands of interest, our primary goal is to estimate the average total
treatment effect τ = 1

N

∑
i∈[N ] Yi(Z = 1) − Yi(Z = −1), sometimes referred to as the average

treatment effect or total treatment effect. Since we assign some units to treatment and others to control,
it is impossible to observe any potential outcome under a fully treated (Z = 1) or fully controlled
(Z = −1) condition. If the underlying interference graph among units were composed of multiple
connected components, so that only the assignments Z in a unit’s connected component affected
its potential outcome, then it would be possible to assign treatment at the level of the connected
component and observe fully treated or control outcomes. However, in realistic marketplaces, such a
perfect separation almost never occurs. As a result, we require some modeling assumptions on the
potential outcomes to infer the behavior of unit i under the fully treated or controlled condition.

2.1 The potential outcome model

A popular approach to modeling potential outcomes with network interference is the exposure
mapping paradigm [3, 15, 16]. An exposure mapping is a function ei : {−1, 1}N → R such that
Yi(Zi, ei(Z)) = Yi(Z). In other words, the indirect effect of Zj ̸=i on unit i is captured completely
by the exposure ei(Z). When it is clear from context, we will write ei instead of ei(Z) to denote
the exposure of unit i. Given an exposure mapping, we can further posit a model for the effect of
assignment Zi and exposure ei on the outcome Yi. We principally consider the linear model

Yi(Z) = αi + βiZi + γiei, (1)

which is commonly used in the interference literature [6, 19], although other models are discussed in
Section 4. Following the tradition of the finite population model, first defined by Neyman [2], we treat
the coefficients αi, βi and γi as fixed but unknown so that the only randomness in the observation
model is due to the choice of treatment assignment Z. This contrasts with alternatives such as a model
in which coefficients are drawn from some super-population or a model in which the coefficients
are common across i with some additive error term ε in the linear model [25]. The finite population
model avoids making assumptions about a population from which experimental units are drawn, and
for this reason is often preferred in the causal inference literature [32, 33].

2.2 The exposure model

The literature on network interference typically defines the exposure ei as a function of the treatments
of the neighbors of i [3, 15, 16]. For example, the exposure mapping might be the (weighted) fraction
of neighbors that are treated [17], or the count of neighbors that are treated [26]. In the bipartite
setting, experimental units are never immediate neighbors. Instead, experimental units interact
through their relationships with interference units. Defining an exposure mapping that is analogous
to those used in the network setting requires an analogous definition of the “neighborhood” of an
experimental unit, as well as the weight of the connections from a unit to each of its neighbors.

We propose a bipartite analogue to the neighborhood-based exposure mapping, composed of two
parts: the dose ds ∈ [−1, 1] of each interference unit s ∈ [M ] represents the weighted average of
the treatment assignment Zi of each experimental unit in the neighborhood of s, while the exposure
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Figure 1: Overview of our cluster-randomized experimental design. Left Panel: We are given a
bipartite graph connecting experimental units (left) with interference units (right) with edges of
known weight w. Assigning treatments Zi ∈ {−1, 1} to each experimental unit induces a dose ds on
each interference unit, and an exposure ei on each experimental unit. Middle Panel: The exposure of
experimental unit i depends on the assignment of other experimental units j, which induces a graph
on the experimental units. Right Panel: Clustering the experimental units based on the induced graph
creates clusters of units which heavily influence each others’ outcomes. Randomizing the treatment
assignment at the level of the cluster provides exposures ei that are much closer to the treatment Zi

than would be achieved with a unit-randomized design.

ei ∈ [−1, 1] of each experimental unit i ∈ [N ] represents the weighted average of doses among the
interference units in the neighborhood of i:

ds =
1∑

i∈[N ] wis

∑
i∈[N ]

wisZi, ei =
1∑

s∈[M ] wis

∑
s∈[M ]

wisds. (2)

See Figure 1 for an illustration of the exposure mapping. Because the exposure thus defined can be
written as a linear combination of the treatment assignments of the two-hop neighbors of unit i, our
definition of exposure can be viewed as an exposure mapping where ei depends on two-hop neighbors,
in which we must impute the effective “assignment” of interference units s from the assignments of
their neighbors. Depending on the problem instance, it may be more appropriate to write one or both
of these terms as an unnormalized linear combination instead of a convex combination; we show in
Appendix A that all of our results apply to the unnormalized setting as well.

2.3 Estimators

Estimators for the average total treatment effect τ under network interference typically fall into one of
two categories: difference-in-means (DIM) estimators and inverse propensity score (IPS) estimators.
The former reports the difference between the mean of NT treated units and the mean of NC control
units, where we treat NT and NC as fixed quantities chosen before treatment randomization occurs.
The latter requires a notion of which units are “fully exposed” to treatment or to control, perhaps
defined by ei, and reweighs fully exposed observations by the inverse probability of achieving that
state.

τ̂DIM =
∑
Zi=1

Yi

NT
−
∑

Zi=−1

Yi

NC
, τ̂IPS =

1

N

∑
i∈[N ]

Yi1{i fully treated}
P(i fully treated)

− Yi1{i fully controlled}
P(i fully controlled)

The difference in means estimator can suffer from bias in the presence of interference, because both
the treated and control means may be biased estimates for their population quantities n−1

∑
i Yi(1)

and n−1
∑

i Yi(−1), respectively. The IPS estimator is unbiased as long as a “fully treated” unit
does in fact behave like a unit in which Z = 1 (and likewise for control), however, this comes at
a cost of high variance if the propensity scores are small. In our linear model, full exposure only
occurs when ei = Zi, which requires all experimental units in the two-hop neighborhood of i to
have the same assignment as i. In many realistic bipartite graphs the chance of full exposure for a
given unit is very low, increasing the bias in the IPS estimator to unacceptable levels. Appendix B
illustrates the high variance of the IPS estimator for a selection of simulated bipartite graphs and a
variety of definitions of “full treatment.” The difference-in-means estimator also has the advantage
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that it outperforms the IPS estimator in the setting of no interference, Yi(Z) = Yi(Zi), since in this
setting τ̂DIM is unbiased and has the same or lower variance than τ̂IPS for any definition of full
exposure. As a result, the difference in means estimator can be seen as an “optimistic” choice of
estimator, which makes better use of the data in the case of no interference while incurring bias in
the presence of interference. For the reasons described above, we focus on the difference in means
estimator in this work.

3 Experimental design

Having chosen the linear potential outcomes model of Equation (1) with the exposure mapping
of Equation (2) and the difference-in-means estimator τ̂DIM , we seek a mechanism for randomly
assigning experimental units to treatment or control that achieves low mean squared error (MSE)
in recovering the average total treatment effect τ . The MSE can be decomposed into the bias and
the variance, where the former is caused by interference and the latter is primarily a function of the
number of units randomized to treatment and control. Following previous works [26, 17, 27], we
consider the class of balanced cluster-randomized designs, formalized in Definition 3.1.

Definition 3.1 (Balanced K-cluster randomized design). Let C = {Cℓ}Kℓ=1 be a partition of the N
experimental units into K equally sized clusters. A balanced K-cluster randomized design D(C) is a
distribution over vectors Z ∈ {−1, 1}N generated by assigning Zi = 1 for all experimental units i
belonging to a set of KT ∈ (0,K) clusters chosen uniformly at random among all K clusters.

If the clustering faithfully captures patterns of interference, cluster randomization can increase the
chance that a treated (resp. control) unit is highly exposed to treatment (resp. control), thereby
reducing the bias in τ̂DIM .

We control the variance of the estimator by enforcing a balanced clustering, so that assigning a fixed
fraction of clusters to treatment results in a consistent fraction of units assigned to treatment. Since
cluster randomization can change the effective number of experimental units [9, Section 4.2], the
variance of τ̂DIM will depend on the number of clusters chosen. In practice, the variance under a
given clustering can typically be estimated using historical data, often called an A/A test. Practitioners
can use these estimates to control the variance in light of the anticipated effect sizes. The bias due to
interference, however, is not estimable with historical data when all such data is observed under the
control condition. Balanced clustering also has practical implementation benefits, which we discuss
further in Appendix E.

Since the variance can be estimated from historical data and controlled by the number of balanced
clusters, we choose to focus on identifying a clustering that minimizes the bias of τ̂DIM given a fixed
number of balanced clusters. Choosing the correct number of clusters to trade off bias and variance
remains an important direction for future work.

3.1 Existing designs do not work in the one-sided bipartite setting

A natural question is whether existing approaches to cluster-randomized designs are adequate for
our setting of one-sided experiments on bipartite graphs. In this section, we consider the natural
extensions of two clustering algorithms from the literature to our setting and describe failure modes
for each of them.

Direct clustering of the bipartite graph. Cluster-randomized designs have primarily been studied
in the context of graphs in which all units are experimental units, such as social networks [26, 17].
Within the class of cluster-randomized designs, balanced partitioning has been suggested as a means
to minimize bias [17]. The natural analog in the bipartite setting is to create a balanced partitioning
of the bipartite graph according to the provided edge weights wis; this extension was considered as
a baseline in a different bipartite setting by Pouget-Abadie et al. [18]. Clusters may contain both
experimental units and interference units, but only experimental units count toward the balancedness
constraint.

Unfortunately, this naive approach fails to take into account the two-hop structure of interference
in a bipartite graph. Consider for example two experimental units i and j that must be assigned
to a different cluster than that of their common neighbor, interference unit s, perhaps to satisfy
a balancedness or cluster cardinality constraint. There is no benefit for the balanced partitioning
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algorithm on the bipartite graph to assign these two experimental units to the same cluster as each
other, despite them sharing a common neighbor. This mode of failure is illustrated with an example
in Appendix C.1.

Maximizing the variance of the doses. Cluster-randomized designs have also been considered in the
setting of two-sided bipartite experiments, in which treatment is assigned to the experimental units
but outcomes are measured on the interference units. When the potential outcome of an interference
unit is a linear function of the dose ds, Pouget-Abadie et al. [18] and Harshaw et al. [19] recommend
assigning treatments Z in a way that maximizes the empirical variance of the realized doses. In
the one-sided bipartite setting it is important to enforce balancedness of the clusters to control the
variance of τ̂DIM , so an extension of their objective to this setting would be to maximize Tr(Var(d))
over a balanced cluster-randomized assignment.

Unfortunately, this clustering objective fails in the one-sided bipartite setting. It is possible that the
doses ds of the interference units are primarily controlled by a small number of experimental units
with especially large weights. In this case, ensuring that the doses are close to −1 or 1 only translates
into guarantees about those highly-weighted experimental units, and not necessarily about the typical
experimental unit. This idea is illustrated with an example in Appendix C.2.

3.2 The bias-minimizing clustering objective H(C)

Having shown that these two natural extensions fail to identify the bias-minimizing cluster-randomized
designs, we turn our attention to a clustering objective H(C) that directly minimizes the bias in τ̂DIM .
Lemma 3.2. Suppose the difference in means estimator τ̂DIM is computed on a balanced K-cluster
design D(C). Let the potential outcomes follow the linear model (1). Then the bias is given by:

τ − EZ∼D(C)[τ̂DIM ] =
2

N
· K

K − 1

∑
i∈[N ]

∑
j ̸∈C(i)

γi
∑

s∈[M ]

wis∑
s wis

wjs∑
k wks

.

Suppose further that all interference terms are bounded in magnitude by a constant, so that γi = O(1).
Then the minimax bias is bounded:

argmin
C

max
γ: γi=O(1)

∣∣τ − EZ∼D(C)[τ̂DIM ]
∣∣ = argmin

C

∑
i∈[N ]

∑
j ̸∈C(i)

∑
s∈[M ]

wis∑
s wis

wjs∑
k wks

=: argmin
C

H(C).

To interpret Lemma 3.2, we can consider the cases in which the clustering C can achieve zero bias
for τ̂DIM . One way this can occur is when there is no interference, so that γi = 0 for all i. Even in
the presence of interference, the bias of τ̂DIM can be zero if the cut edges wis : j ̸∈ C(i) are all
of zero weight. In such a well-clustered graph, the outcome of unit i depends only on the treatment
assignments of other units within its own cluster. Since the same treatment is applied to each element
of a given cluster, a perfectly clustered graph has ei = Zi and experiences no bias due to interference.

Our objective H(C) has two interpretations: as a clustering objective on an induced graph on
experimental units, and as a statistical objective on the covariance between assignments and exposures.

A graphical interpretation of H(C). Interference occurs when the treatment assignment of unit j
affects the exposure of unit i. The influence of Zj on ei under the linear interference model (1) is

ei(Zj+)− ei(Zj−) = 2
∑

s∈[M ]

wis∑
s wis

wjs∑
k wks

. (3)

where Zj+ (resp. Zj−) is the vector Z with entry Zj set to 1 (resp. −1). Now consider a directed
graph on experimental units where the edge from i to j is weighted according to ei(Zj+)− ei(Zj−);
clustering according to this graph minimizes the objective H(C). This is in fact a similar approach
that was adopted in [9], which also looked at a similar folding of the graph and showed it to minimize
the bias under a linear potential outcome model motivated by geographical migrations.

A statistical interpretation of H(C). A natural goal of a cluster-randomized design is to ensure that
the exposure ei is close to the treatment Zi. Lemma 3.3 shows that our clustering objective H(C)
maximizes the covariance between the exposures and assignments.
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Lemma 3.3. Let D(C) be a balanced K-cluster randomized design. Then we have:
argmaxC Tr

(
CovZ∼D(C)(Z, e)

)
= argminC H(C).

Finally, we observe that our cluster-randomized design is an instance of the well-known balanced
partitioning problem [34] on the graph over experimental units, with edges given by the explicit
formula (3). Balanced partitioning is NP-hard, even in its relaxed form which enforces only partial
balancedness, but many tools exist to compute it approximately [34, 35, 36].

4 Robustness

So far we have shown that a cluster-randomized design with objective H(C) minimizes the bias of
τ̂DIM under the normalized exposure mapping in by Equation (2) and the linear potential outcomes
model in Equation (1). A natural question is: how robust is this design to deviations from this model?
In this section we analyze the robustness of the design under alternative potential outcomes models,
showing that the design remains minimax optimal for Lipschitz potential outcomes and minimizes an
upper bound on the bias for a class of potential outcomes models motivated by the exposure mapping
literature. Additionally, there may exist experimental settings where the exposure ei is better modeled
without the normalization constant

∑
s wis, such as when the outcome Yi is proportional to the edge

weight incident to unit i. In this case, or in the case that the dose ds is unnormalized, all of our
results remain valid for a generalization of the clustering objective which removes the corresponding
normalization constant(s) from H(C). This idea is formalized in Appendix A.

4.1 Lipschitz potential outcomes

Let Yi(Z, e) ∈ LipL(e) be a Lipschitz function in the exposure e, with Lipschitz constant L. Then
we can bound the bias in τ̂DIM by a multiple of H(C), and this bound is tight in a minimax sense.
Lemma 4.1. Let observations Yi be observed from a K-cluster design, with potential outcomes
given by Yi(Z, e) ∈ LipL(e). Then the bias of the difference-in-means estimator τ̂DIM is bounded
above by

|E[τ̂DIM ]− τ∗| ≤ 2

N

K

K − 1
L · H(C).

Furthermore, this bound is tight over the class of Lipshitz functions, so that balanced clustering
according to the objective H(C) is tight in a minimax sense among all balanced clusterings:

argmin
C

max
f∈LipL(e)

|E[τ̂DIM ]− τ∗| = argmin
C

H(C).

We note that the objective H(C) is minimax optimal over the class of L-Lipschitz functions regardless
of the Lipschitz constant L. As a result, the practitioner need not know this constant in order to find
the minimax optimal clustering.

4.2 Functions constant in neighborhoods of {−1, 1}

A common assumption in the exposure mapping literature is that units with exposure ei close enough
to their treatment assignment Zi behave as if their entire neighborhood were assigned to Zi. This
assumption motivates the use of IPS estimators, which are unbiased in that setting. If we let ∆ denote
the neighborhood of Zi in which an exposure is considered fully treated or controlled, then we have
the following constraint on the potential outcome function.

|Yi(Z, e)− Yi(Z,Z)|
{
= 0 if |Z − e| < ∆

≤ B otherwise
∀Z ∈ {−1, 1}, ∀e ∈ [−1, 1] (4)

Under this assumption on the behavior of Yi, we can upper bound the bias of the difference-in-means
estimator by a quantity that will turn out to be minimized by minimizing H(C).
Lemma 4.2. Let observations Yi be observed from a K-cluster design, with potential outcomes
satisfying Equation (4). Then the bias of the difference-in-means estimate τ̂DIM is bounded above by

|E[τ̂DIM ]− τ∗| ≤ 2B

N∆

K

K − 1
H(C).

7



Table 1: Relative bias of τ̂DIM as the bipartite stochastic block model changes (see 5.1)

p = 0.0 p = 0.005 p = 0.05 p = 0.5

H(C) 0.02(±0.06) 3.90(±0.06) 11.54(±0.05) 12.98(±0.08)
Tr(Var(d)) objective 0.01(±0.06) 3.84(±0.05) 11.49(±0.06) 12.91(±0.07)

Direct clustering 0.01(±0.05) 9.10(±0.13) 12.68(±0.07) 12.95(±0.07)
EXPOSURE-DESIGN 0.33(±0.06) 4.06(±0.06) 11.90(±0.07) 13.00(±0.08)

Unit-level randomization 12.44(±0.08) 12.55(±0.08) 12.76(±0.08) 12.95(±0.08)

True clusters 0.01(±0.06) 3.88(±0.06) 11.58(±0.06) 12.96(±0.06)

Lemma 4.2 presents only an upper bound on the bias, and in general this bound is not tight. However,
we provide simulations in Section 5.2 showing that the objective H(C) is a reasonable heuristic for
functions that satisfy Equation (4).

5 Experiments

We explore the performance of our cluster-based randomized design in several settings using simulated
graphs. We compare to the baseline of unit-level randomization as well as cluster-level randomization
according to several clustering schemes: the true clustering, direct clustering on the original bipartite
graph (Section 3.1), maximizing the Tr(Var(d)) objective (Section 3.1), and maximizing the expected
empirical variance of the doses as motivated by [18, 19]. We use code provided by the authors of
[35] to identify a minimum-cost balanced partitioning of the graphs induced by the objectives H(C),
Tr(Var(d)), and the direct clustering. For the last objective, which is not a balanced partitioning, we
use code provided by the authors of [19] to minimize the EXPOSURE-DESIGN objective, reporting
results with the hyperparameter ϕ tuned to minimize mean squared error. See Appendix H for an
overview of the algorithms.

5.1 Robustness to clusterability in the stochastic block model

We begin by studying the performance of our design as the amount of interference varies. We
construct a synthetic graph according to the bipartite stochastic block model with N = 1, 000
experimental units and M = 2, 000 interference units. Both sides of the graph are partitioned into 20
equally sized groups with label i ∈ [20]. Experimental and interference units with the same label
have an edge of weight 1 with probability 0.5, while units with different labels have an edge of weight
1 with probability p. We experiment with values from p = 0 (no interference between clusters) to
p = 0.5 (the absence of an underlying clustering structure). Potential outcomes were drawn according
to the linear model (1), with coefficients drawn αi ∼ N (0, 1), βi ∼ N (1, 1), and γi ∼ N (−1, 1).
All clustering designs used K = 20 clusters, with KT = 10 clusters assigned to treatment. Table
1 shows the relative bias (defined as |E[τ̂ ]− τ |/τ ) of τ̂DIM under each cluster-randomized design;
variance is inconsequential in this setting, so the variance and MSE are reported in the supplementary
materials. Uncertainty represents the 95% confidence interval as determined by bootstrapping over
100 random draws of treatment assignment Z, over a single draw of the graph and potential outcomes.

As anticipated, all designs incur lower bias when there is less interference in the graph (i.e., when p
is smaller). Our clustering objective H(C) and the Tr(Var(d)) objective perform on par with the true
clustering for all values of p. The low bias of the H(C) objective is unsurprising given the minimax
optimality result in Lemma 3.2. The equivalent performance of the Tr(Var(d)) objective is due to
the symmetry inherent in the bipartite stochastic block model, in which each interference unit has
the same incoming edge weight

∑
i wis in expectation, and the same is true of the experimental

units’ edge weights
∑

s wis. In such a symmetric setting the objectives H(C) and Tr(Var(d)) are
equivalent, as can be seen by comparing their representations in Lemma 3.2 and Equation (5).

5.2 Robustness to nonlinearity

Next we explore the robustness of our design to nonlinearity in the potential outcomes model Yi by
simulating outcomes according to Equation (4), in which the potential outcome is constant for ei in
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Table 2: Relative bias of τ̂DIM as the neighborhood of pure exposure, ∆, widens (see 5.2)

∆ = 0.1 ∆ = 0.3 ∆ = 0.5

H(C) 1.000(±0.004) 0.457(±0.005) 0.001(±0.000)
Tr(Var(d)) objective 1.002(±0.004) 0.460(±0.004) 0.000(±0.000)

Direct clustering 0.997(±0.005) 0.950(±0.008) 0.600(±0.020)
EXPOSURE-DESIGN 1.001(±0.004) 0.509(±0.005) 0.009(±0.001)

Unit-level randomization 0.998(±0.004) 1.000(±0.004) 0.998(±0.003)

True clusters 1.001(±0.004) 0.458(±0.004) 0.001(±0.000)

a ∆ neighborhood of Zi. We simulate Yi = −Zi if |ei − Zi| < ∆ and Yi ∼ U(−1, 1) otherwise,
encoding a setting in which no knowledge can be gained about τ when e is ∆-far from Z. The graph
is given by the bipartite stochastic block model described in Section 5.1 with 20 groups, with p = 0.5
chance of an edge between units belonging to the same group and p = 0.005 for units belonging to
different groups. All clustering designs used K = 20 clusters, with KT = 10 clusters assigned to
treatment. Table 2 shows the results of these experiments. Uncertainty represents the 95% confidence
interval as determined by bootstrapping over 100 random draws of treatment assignment Z, over a
single draw of the graph and potential outcomes.

We see that all designs have lower bias when ∆ is large, reflecting the fact that observations with
exposure ei ∆-far from Zi are useless in determining τ , and it is easier to get ∆-pure observations
for large ∆. The results in Table 2 support our claim that H(C) is a reasonable design heuristic for
this setting (motivated by the bias upper bound in Lemma 4.2). We observe again that the Tr(Var(d))
objective does as well as the H(C) objective; as described in Section 5.1, this is due to the fact that
these objectives are nearly equivalent under the symmetry of our simulated graphs.

5.3 Performance on power-law graphs

To contrast with the bipartite stochastic block models studied above, we experiment on a bipartite
graph model with a power-law distribution of the vertices. Our graph model combines the bipartite
preferential attachment model of [37] with the affinity model of [38]. In this model, each experimental
unit is assigned to one of K latent classes. For each experimental unit i, a degree di is drawn from
the power-law distribution di = 2X : X ∼ Zipf(3). For each edge j ∈ [di], it is either attached
to an existing interference unit with probability 1 − λ, or to a newly drawn interference unit with
probability λ. If attached an existing unit, unit s is chosen with probability proportional to (ds + p)
if s is of the same latent class as i, or ds + q if s is of a different class. If a new unit is drawn, then
it is of the same class as unit i with probability p(p + (K − 1)q)−1, and of each other class with
probability q(p+(K−1)q)−1. We chose N = 100, K = 10, λ = 0.5, q = 0.02p. We experimented
with both p = 0.1 (weak latent structure) and p = 100 (strong latent structure).

Table 3 shows the relative bias of four estimators when the potential outcomes are drawn from the
linear model given in Section 1. Interestingly, in this setting we see that the cluster-randomized
designs outperform the true latent clusters; this is possible because the interference occurs with
respect to a single draw of the random graph, which the clustering algorithm gets to see. We speculate
that factors specific to the power-law graphs, notably the existence of vertices with very high degree,
might cause the optimal clustering for a given draw of the graph to be very different from the optimal
clustering for the graph on average. This could have negative consequences for experimental design
when only a random draw of the edges is observed, but the interference occurs according to the
underlying latent structure.

5.4 Robustness to exposure mapping: an Airbnb case study

So far we have only considered potential outcomes models where the outcome Yi is a function of the
assignment Zi and the exposure ei as defined in Equation (2). However, in many real-life settings, an
exposure model is only an approximation to the true mechanism of interference.

We test the robustness of our experimental design to misspecification of the exposure mapping by
simulating outcomes according to a model developed for vacation rentals by Li et al. [10], in which
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Table 3: Relative bias of τ̂DIM under an affinity model with a power-law distribution (see 5.3)

Strong latent structure Weak latent structure

H(C) 1.9(±0.1) 3.5(±0.1)
Tr(Var(d)) objective 2.0(±0.1) 3.7(±0.1)

Direct clustering 1.8(±0.2) 3.3(±0.2)
Unit-level randomization 4.9(±0.1) 5.4(±0.1)

True clusters 2.9(±0.1) 5.2(±0.1)
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Figure 2: Performance of various clustering algorithms as the treatment effect α increases. Uncertainty
represents 95% empirical confidence intervals over 500 draws of the treatment assignment Z. Direct
balanced partitioning had error 4-8 times the second-worst algorithm, and is not shown.

there is no explicit exposure mapping defined. We call the experimental units customers and the
interference units listings. In the first phase of the model, each customer i applies to each listing s
with probability ϕis. In the second phase, listings with applications randomly select an application to
accept. The measured outcome Yi is 1 if customer i successfully booked a listing, and 0 otherwise.
In alignment with previous work in this literature [10, 28] we create a natural clustering structure
on the network by assigning each customer and each listing to one of 20 types. Our simulation
takes N = 500 customers and M = 1000 listings, with application probability under the control
assignment of ϕis = 0.016 if i and s are of the same type, and ϕis = 0.0001 otherwise. Treating
customer i increases these application probabilities by a factor of α.

When running this marketplace experiment, an experimenter would typically have access to historical
data about the rate of successful applications of customer i to listing s, but would not know the
consideration probabilities ϕis. To be faithful to this observation model, we constructed the bipartite
graph using twelve rounds of interaction in this marketplace under the control condition. This graph
was sampled once and fixed for all experiments. All clustering designs used K = 20 clusters, with
KT = 10 assigned to treatment. Simulations were performed by extending code provided by the
authors of Li et al. [10] to the cluster-randomized setting. The relative bias, standard deviation, and
root mean squared error (RMSE) of τ̂DIM of various clustering algorithms are shown in Figure 2.

We observe that all clustering algorithms had similar variance but that the bias of H(C) and Tr(Var(d))
were closest to that of the true clustering, giving those two methods the lowest RMSE. Notably, the
unit-randomized design is suggested by [10] in this setting (N < M ), but our cluster-randomized
design outperforms it. We conclude that our clustering method still outperforms other baselines, even
in a setting where the potential outcome does not obey the exposure mapping model we hypothesized.

Acknowledgments

The authors would like to thank Christopher Harshaw, Khashayar Khosravi, Kay Brodersen, Vahan
Nanumyan, and Kevin Jamieson for helpful discussions; Hannah Li and Geng Zhao for sharing their
code for the Airbnb simulator; David Eisenstat for assistance with the clustering code; and Robbie
Weber for feedback on the paper organization.

10



References
[1] Donald Rubin. Discussion of "randomization analysis of experimental data in the fisher

randomization test" by d. basu. Journal of the American statistical association, 75:591–593,
1980.

[2] Jerzy Neyman. On the application of probability theory to agricultural experiments. essay on
principles. section 9 (translated). reprinted ed. Statistical Science, 5:465–472, 1923.

[3] Michael G Hudgens and M Elizabeth Halloran. Toward causal inference with interference.
Journal of the American Statistical Association, 103(482):832–842, 2008.

[4] Peter M Aronow, Dean Eckles, Cyrus Samii, and Stephanie Zonszein. Spillover effects in
experimental data. Advances in Experimental Political Science, 289:319, 2021.

[5] Sinan Aral and Dylan Walker. Creating social contagion through viral product design: A
randomized trial of peer influence in networks. Management science, 57(9):1623–1639, 2011.

[6] Huan Gui, Ya Xu, Anmol Bhasin, and Jiawei Han. Network a/b testing: From sampling to
estimation. In Proceedings of the 24th International Conference on World Wide Web, pages
399–409, 2015.

[7] Dean Eckles, René F Kizilcec, and Eytan Bakshy. Estimating peer effects in networks with peer
encouragement designs. Proceedings of the National Academy of Sciences, 113(27):7316–7322,
2016.

[8] Thomas Blake and Dominic Coey. Why marketplace experimentation is harder than it seems:
The role of test-control interference. In Proceedings of the fifteenth ACM conference on
Economics and computation, pages 567–582, 2014.

[9] David Rolnick, Kevin Aydin, Jean Pouget-Abadie, Shahab Kamali, Vahab Mirrokni, and Amir
Najmi. Randomized experimental design via geographic clustering. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
2745–2753, 2019.

[10] Hannah Li, Geng Zhao, Ramesh Johari, and Gabriel Y Weintraub. Interference, bias, and
variance in two-sided marketplace experimentation: Guidance for platforms. In Proceedings of
the ACM Web Conference 2022, pages 182–192, 2022.

[11] Stefan Wager and Kuang Xu. Experimenting in equilibrium. Management Science, 67(11):
6694–6715, 2021.

[12] Evan Munro, Stefan Wager, and Kuang Xu. Treatment effects in market equilibrium. arXiv
preprint arXiv:2109.11647, 2021.

[13] N Chamandy. Experimentation in a ridesharing marketplace lyft engineering. URL: https://eng.
lyft. com/experimentation-in-a-ridesharing-marketplace-b39db027a66e, 2016.

[14] Guillaume W Basse and Edoardo M Airoldi. Limitations of design-based causal inference and
a/b testing under arbitrary and network interference. Sociological Methodology, 48(1):136–151,
2018.

[15] Charles F Manski. Identification of treatment response with social interactions. The Economet-
rics Journal, 16(1):S1–S23, 2013.

[16] Peter M Aronow and Cyrus Samii. Estimating average causal effects under general interference,
with application to a social network experiment. The Annals of Applied Statistics, 11(4):
1912–1947, 2017.

[17] Dean Eckles, Brian Karrer, and Johan Ugander. Design and analysis of experiments in networks:
Reducing bias from interference. Journal of Causal Inference, 5(1), 2017.

[18] Jean Pouget-Abadie, Kevin Aydin, Warren Schudy, Kay Brodersen, and Vahab Mirrokni.
Variance reduction in bipartite experiments through correlation clustering. Advances in Neural
Information Processing Systems, 32:13309–13319, 2019.

11



[19] Christopher Harshaw, Fredrik Sävje, David Eisenstat, Vahab Mirrokni, and Jean Pouget-Abadie.
Design and analysis of bipartite experiments under a linear exposure-response model. EC’,
2022.

[20] Martin Saveski, Jean Pouget-Abadie, Guillaume Saint-Jacques, Weitao Duan, Souvik Ghosh,
Ya Xu, and Edoardo M Airoldi. Detecting network effects: Randomizing over randomized
experiments. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining, pages 1027–1035, 2017.

[21] Peter M Aronow. A general method for detecting interference between units in randomized
experiments. Sociological Methods & Research, 41(1):3–16, 2012.

[22] Susan Athey, Dean Eckles, and Guido W Imbens. Exact p-values for network interference.
Journal of the American Statistical Association, 113(521):230–240, 2018.

[23] Panos Toulis and Edward Kao. Estimation of causal peer influence effects. In International
conference on machine learning, pages 1489–1497. PMLR, 2013.

[24] Fredrik Sävje, Peter M Aronow, and Michael G Hudgens. Average treatment effects in the
presence of unknown interference. The Annals of Statistics, 49(2):673–701, 2021.

[25] Alex Chin. Regression adjustments for estimating the global treatment effect in experiments
with interference. Journal of Causal Inference, 7(2), 2019.

[26] Johan Ugander, Brian Karrer, Lars Backstrom, and Jon Kleinberg. Graph cluster randomization:
Network exposure to multiple universes. In Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 329–337, 2013.

[27] Ozan Candogan, Chen Chen, and Rad Niazadeh. Near-optimal experimental design for networks:
Independent block randomization. Available at SSRN, 2021.

[28] Ramesh Johari, Hannah Li, Inessa Liskovich, and Gabriel Y Weintraub. Experimental design in
two-sided platforms: An analysis of bias. Management Science, 2022.

[29] Patrick Bajari, Brian Burdick, Guido W Imbens, Lorenzo Masoero, James McQueen,
Thomas Richardson, and Ido M Rosen. Multiple randomization designs. arXiv preprint
arXiv:2112.13495, 2021.

[30] Guido W Imbens and Donald B Rubin. Causal inference in statistics, social, and biomedical
sciences. Cambridge University Press, 2015.

[31] Corwin M Zigler and Georgia Papadogeorgou. Bipartite causal inference with interference.
Statistical science: a review journal of the Institute of Mathematical Statistics, 36(1):109, 2021.

[32] Donald B Rubin. Comment: Neyman (1923) and causal inference in experiments and observa-
tional studies. Statistical Science, 5(4):472–480, 1990.

[33] Peng Ding, Xinran Li, and Luke W Miratrix. Bridging finite and super population causal
inference. Journal of Causal Inference, 5(2), 2017.

[34] Konstantin Andreev and Harald Racke. Balanced graph partitioning. Theory of Computing
Systems, 39(6):929–939, 2006.

[35] Kevin Aydin, MohammadHossein Bateni, and Vahab Mirrokni. Distributed balanced partitioning
via linear embedding. Algorithms, 12(8):162, 2019.

[36] Joel Nishimura and Johan Ugander. Restreaming graph partitioning: simple versatile algorithms
for advanced balancing. In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1106–1114, 2013.

[37] Jean-Loup Guillaume and Matthieu Latapy. Bipartite graphs as models of complex networks.
Physica A: Statistical Mechanics and its Applications, 371(2):795–813, 2006.

[38] Jay Lee, Manzil Zaheer, Stephan Günnemann, and Alex Smola. Preferential attachment in
graphs with affinities. In Artificial Intelligence and Statistics, pages 571–580. PMLR, 2015.

12



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] These are discussed in Appendix

E
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] Proofs are provided in

Append F
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [No] The balanced
partitioning code was shared with us by the authors of Aydin et al. [35], and code to
optimize the EXPOSURE-DESIGN objective was shared by the authors of Harshaw
et al. [19], but neither is publicly available.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cited the creators

of code we used: [35, 19, 10]
(b) Did you mention the license of the assets? [N/A] No new assets are being released
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

No new assets are being released
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] All data was simulated.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] All data was simulated.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13



A Discussion of alternative normalizations of the exposure and dose models

Recall that, under the definition of exposure given in Equation (2), both the dose ds and the exposure
ei are normalized by the sum of adjacent edges so that they lie in the range [−1, 1]. Depending on
the nature of the experiment, it may instead be appropriate to define an exposure mapping in which
either or both of these quantities are unnormalized, so that d̃s =

∑
i wisZi and/or ẽi =

∑
s wisds.

For example, suppose that the edge weights wis measure the value of goods purchased by buyer
i from seller s and that the treatment results in a multiplicative increase in the cost per unit good.
In this setting, a more appropriate model might be one with unnormalized exposure, for example
Yi = γi

∑
s wisds where γi represents the multiplicative increase in the cost per unit good for

customer i under treatment (the individual treatment effect). This is the approach to normalization
taken by Rolnick et al. [9], who study the bipartite model in the context of search queries issued by
users (experimental units) across various geographical regions (interference units). Their potential
outcomes model assumes a normalized dose but unnormalized exposure.

We note that we could also write this unnormalized exposure model in terms of the original linear
model (1) by absorbing the exposure normalization term (

∑
s wis)

−1 into γi. However, if the
normalization terms varied significantly between buyers i while the individual treatment effects were
approximately equal, then the minimax guarantee in Lemma 3.2 would be less meaningful when
applied to the normalized model than the unnormalized exposure model. In general, the normalization
of the dose and exposure should be chosen so that the magnitude of γi in the linear model (1) has the
least variance between experimental units i as possible, as this is the setting in which the minimax
result of Lemma 3.2 is the tightest.

We can define the generalized objective parameterized by the definitions of dose and exposure
(normalized or unnormalized) using the notation of Equation (3):

He,d(C) =
∑
i∈[N ]

∑
j ̸∈C(i)

γi
∑
s

1
2 (ei(ds+)− ei(ds−)) · 1

2

(
ds(Zj+)− ds(Zj−)

)
where ds+ (resp. ds− ) is the vector d with entry ds set to 1 (resp. −1), and analogously for Zj+ and
Zj− . In the setting of normalized dose and response, this simplifies to the original objective H(C).
Choosing the unnormalized dose d̃ yields the difference d̃s(Zj+)− d̃s(Zj−) = 2wis, and choosing
the unnormalized exposure ẽ yields ẽi(ds+)− ẽi(ds−) = 2wjs.

Under the linear potential outcomes model, the generalized objective satisfies the same properties
as the original objective function: in particular, it is bias-minimizing in a minimax sense over
all γi ∈ [Γ0,Γ1], it minimizes Tr(Cov(Z, e)) for the given definition of e, and it has a graphical
interpretation as minimizing the cut edges among an induced graph on experimental units. The
first two properties can be verified via straightforward modifications of the proofs of Lemmas 3.2
and 3.3, respectively, while the last property can be seen from the analogue of Equation (3) in the
unnormalized setting.

We conclude by discussing the relationship between the Tr(Cov(Z, e)) objective (ours) and the
Tr(Var(d)) objective (of [18, 19], discussed in Section 3.1), which turn out to differ only in the
normalization terms. We first observe that the Tr(Var(d)) objective can be written in a form similar
to that of H(C), but with a different normalization on wis:

argmax
C

Tr
(
VarZ∼D(C)(d)

)
= argmin

C

∑
i∈[N ]

∑
j ̸∈C(i)

∑
s∈[M ]

wis∑
k wks

wjs∑
k wks

. (5)

In the special case that the exposure normalization term
∑

s wis is equal to the dose normalization
term

∑
k wks for all i and s, these constants drop out of the argmin and the Tr(Var(d)) objective

becomes equivalent to the H(C) objective. This is approximately the setting of our synthetic
experiments, in which all experimental units had the same expected number of connections (and the
same for the interference units), which helps to explain why the Tr(Var(d)) was so competitive in
our experiments.

B High variance of the IPS estimator

In this section we substantiate the claim from Section 2.3 that the inverse propensity score (IPS)
estimator is too high-variance to be practical in the settings we consider. The core idea is that, when
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we run one-sided bipartite experiments, the definition of “complete exposure” to treatment or control
is defined based on a unit’s two-hop neighborhood. In a graph with even moderate connectivity, these
neighborhoods are so large that units have a very low chance of being fully exposed to treatment or
control. These small probabilities of full exposure in turn lead to high variance of the IPS estimator.

We begin by observing that, using cluster-randomized designs as we have defined them in 3.1, there
is essentially zero chance of each unit being connected completely to treatment or control under
even moderate connectivity. To see this, we will compute the chance of a given experimental unit i
being a two-hop neighbor of unit j under the bipartite stochastic block model discussed in Section
5.1. Recall that in this model, N experimental units and M interference units are each partitioned
into K equal-sized clusters labeled 1, . . . ,K. Units with the same label have an edge between them
with probability q = 0.5, while units with different labels have an edge with probability p. We can
compute the chance of experimental unit i not having a two-hop neighbor in C(j) if C(i) ̸= C(j) is
given by

P(i has no 2-hop neighbor in C(j)|C(i) ̸= C(j))

=
∏

k∈C(j)

∏
s∈C(j)

P(k not connected to s OR i not connected to s)·

∏
k∈C(j)

∏
s∈C(i)

P(k not connected to s OR i not connected to s)

=
∏

k∈C(j)

∏
s∈C(j)

(1− pq) ·
∏

k∈C(j)

∏
s∈C(i)

(1− pq)

= (1− pq)2MN/K2

The number of clusters to which unit i is connected, besides C(i), is the binomial random variable
Binom

(
K − 1, 1− (1− pq)2MN/K2

)
. Observe that the probability of connection grows very

quickly. In the setting of our experiments in Section 5.1, we have M = 2000, N = 1000, q = 0.5
and K = 20, so that when p = 0.005 we have P(i has a two-hop neighbor in C(j)|C(i) ̸= C(j)) =
1− 1 · 10−11, i.e. each unit is almost certain to have a two-hop neighbor in every other cluster. We
conclude that, in the graph settings we study, experimental units are likely to be connected to units of
all clusters, making pure exposure to treatment or control an exceedingly rare occurrence.

To further illustrate this point, we compute the variance of the IPS estimator on our simulated graphs
for various definitions of “pure exposure”. Under Bernoulli cluster randomization (which is slightly
different from the design studied in the rest of the paper, but which is standard for the IPS estimator)
we have:

Var(τ̂IPS) =
1

N2

∑
i∈[N ]

1

P(unit i is treated)
Y 2
i,T +

1

P(unit i is controlled)
Y 2
i,C (6)

where Yi,T is the value of Yi under full treatment, and Yi,C is the value of Yi under full control. We
compute the probabilities of full treatment and control via Monte Carlo simulation over draws of Z
from a Bernoulli randomized design.

We compute the variance of the IPS estimator in two settings studied in Section 5.

Table 4 compares the bias of τ̂DIM to the standard deviation of τ̂IPS in the setting of Section 5.2,
in which units behave as if they were fully exposed whenever |Zi − ei| < ∆. This is precisely the
setting in which the τ̂IPS estimator works best, and it is unbiased in this case. We see from the table
that the IPS estimator has less error than τ̂DIM for small values of ∆, but that when ∆ = 0.5, the bias
of τ̂DIM has decreased to be lower than the IPS variance. We note that these figures were generated
for the graph with p = 0.005; increasing the connectivity (say, to p = 0.05) further increases the
error of τ̂IPS relative to τ̂DIM .

Table 5 compares τ̂IPS and τ̂DIM in the linear setting of Section 5.1. In this setting, the IPS estimator
relies on the incorrect assumption that units in a ∆ neighborhood of pure exposure act as if they were
purely exposed to treatment or control; this is untrue in the linear model, where even slight exposure
to the opposite treatment results in a change in Yi. As a result, the standard deviation reported in
Table 5 provides a lower bound on the RMSE of τ̂IPS , with the remainder of the error due to bias.
We see that the IPS estimator with ∆ = 0.1 and ∆ = 0.3 has relative error that is much higher than
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Table 4: RMSE (relative to τ ) of τ̂DIM and τ̂IPS as the neighborhood of pure exposure, ∆, widens
(see 5.2)

∆ = 0.1 ∆ = 0.3 ∆ = 0.5

τ̂DIM 1.001 0.459 0.001
τ̂IPS 0.429 0.043 0.032

Table 5: Bias (relative to τ ) of τ̂DIM and standard deviation (relative to τ ) of τ̂IPS as the bipartite
stochastic block model changes (see 5.1)

p = 0.0 p = 0.005 p = 0.05 p = 0.5

τ̂DIM 0.01 3.88 11.58 12.96
τ̂IPS(∆ = 0.1) 0.70 9.88 390.63 508.78
τ̂IPS(∆ = 0.3) 0.70 9.5 13.90 16.54
τ̂IPS(∆ = 0.5) 0.70 0.71 3.70 4.31

τ̂DIM , even before including the bias of τ̂IPS . When ∆ = 0.5, we expect the bias of τ̂IPS to be
substantial.

We conclude that, even though τ̂IPS provides an unbiased estimate of τ when the exposure mapping
is correctly specified, the variance in this estimator can be significant enough to justify using the
biased estimator τ̂DIM .

C Counterexamples for alternative clustering methods

In this section, we further expand upon the claims of section 3.1 with explicit examples illustrating
failures of direct balanced partitioning and of maximizing the variance among doses. Figure 3
illustrates the two counterexamples.

C.1 Direct clustering of the bipartite graph

At a high level, the direct clustering approach fails to enforce clustering of the neighbors of interfer-
ence unit s that fall outside of cluster C(s). This mode of failure is illustrated in Figure 3a, where a
direct clustering of the bipartite graph assigns the same objective function score to the two clusterings,
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(a) Failure of the direct balanced partitioning.
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(b) Failure of maximizing the dose variance.

Figure 3: These counterexamples illustrate the inadequacy of existing cluster-randomized designs in
the one-sided bipartite setting. In each case, Clustering 1 is the bias-minimizing clustering under our
exposure model (2) and linear potential outcomes model (1).
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even though the first is bias-optimal under our linear model while the second is not. Both clusterings
have cost 4 according to direct partitioning (red dashed lines). We can use the linearity of τ̂DIM to
express the bias as a sum of bias contributions of each experimental unit (see Lemma F.1). The bias
contributed by the circular units is the same in both clusterings, since the expected exposure impurity
|ei − Zi| is the same in both clusterings and our interference model is linear in ei and Zi. However,
the exposure of the pentagonal units in Clustering 1 stochastically dominates that of Clustering 2 in
the sense of being closer to the true treatment assignment Zi, which means that Clustering 1 incurs
less bias. Therefore, Clustering 1 is superior under our potential outcomes model.

C.2 Maximizing the variance of the doses

Figure 3b exhibits a bipartite graph in which the doses ds are primarily controlled by a small number
of experimental units with highly weighted edges, so that maximizing Tr(Var(d)) actually reduces
the average covariance of Zi and ei. Clustering 1 ensures that the majority of experimental units (the
2n pentagons) have ei = Zi w.p. ≈ 1

2 , and ei =
3
4Zi otherwise, while sacrificing the exposure of the

two middle circular units, which have ei = 0 w.p. ≈ 1
2 . By contrast, Clustering 2 obtains a high dose

variance by prioritizing the assignment of the middle circular units to the same cluster, at the expense
of making ei = 0 w.p. 1

2 for all 2n pentagonal units. If we think of the interference among all units
as being on the same order of magnitude then Clustering 1, which incurs less interference in the 2n
pentagonal units, is the correct choice as n → ∞. If, on the other hand, the potential outcomes scale
in magnitude with the sum of an experimental unit’s edge weights, then there are settings in which
Clustering 2 is bias-optimal. This can be addressed by choosing the appropriate normalization of the
dose and exposure for the problem at hand and modifying H(C) to reflect the choice of normalization;
see Appendix A for further discussion.

D Comparison to two-sided designs

A recent development in the bipartite design literature is the two-sided randomization designs of Bajari
et al. [29] and Johari et al. [28], in which experimental and interference units are each randomized to
treatment and control, but treatment is only applied when a treated unit interacts with another treated
unit. The major benefit of this design is that it allows for the quantification of spillover effects by
comparing the fully controlled interactions (in which both sides of the interaction were controlled) to
the interactions that experience interference (in which only one side of the interaction was assigned
to control). In the absence of interference, these interaction types should have the same average
response; any deviation from equality indicates interference that can be quantified.

The idea of measuring and correcting for interference is very appealing, especially when interference
can be quantified using the same experiment that measures the global treatment effect. We think that
this line of work is an important part of mitigating interference, and that the two-sided randomization
design is a particularly clever way of approaching the problem. One challenge with TSR designs,
as discussed by Bajari et al. [29, Section 6], is that without further assumptions on the interference
model, TSR with treatment fraction p is only able to estimate the global effect of treating p-fraction
of the units as compared with treating no units, instead of the global effect of treating all units as
compared with treating no units. Bajari et al. [29, Section 8.1] suggests randomizing at the interaction
level to allow estimation of the spillover effect at multiple levels of interaction, which could then
be extrapolated to estimate the global treatment effect - this of course relies on some model for the
extrapolation. Ultimately, then, one difference between the TSR design and the cluster-randomized
design is that the latter tries to get as many units in “pure treatment” and “pure control” as possible,
to estimate the global treatment effect while limiting the need for such extrapolation. As Johari et al.
[28, Section 8] suggests, cluster-randomization is likely to outperform TSR when the underlying
graph is well-clusterable, but TSR is likely to do better when no cluster-based method can achieve
near-complete treatment or control of units.

It would be interesting to think about combinations of TSR and cluster-based designs, particularly in
the context of the extrapolation ideas proposed in Bajari et al. [29, Section 8.1]. One option would
be to cluster-randomize the buyers and sellers individually, in a way that maximizes the variance of
the unit-level exposures to treatment under a TSR design (echoing the objective of Pouget-Abadie
et al. [18] and Harshaw et al. [19]). The TSR design would allow for the estimation of spillover
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effects at various levels of interference, while maximizing the variance among the realized levels of
interference would improve the accuracy of the extrapolation.

E Considerations for balanced clustering

In this appendix, we discuss potential benefits and detriments of cluster-randomized designs, expand-
ing upon discussion in Section 3.

E.1 Implementation benefits of balanced clusters

Practitioners may appreciate two benefits of balanced designs beyond the variance reduction men-
tioned in Section 3. First, when exactly KT of K clusters are treated, balancing the clusters ensures
control over the fraction of units that are treated. Controlling this fraction is important when we
want to balance the scientific value of experimentation with potential negative effects on the treated
units (i.e. staying within the experimental budget). Secondly, it has been our experience that many
clustering algorithms that do not control for balancedness and cardinality sometimes produce many
singletons clusters, when clustering incentives are not strong enough to group these units with other
units. This is what we observed with the Exposure-Design objective of Harshaw et al. [19] when its
hyperparameters are not tuned properly. When datasets are quite large, the large number of singleton
clusters produced by these algorithms can slow down certain data analysis pipelines that work better
in low cardinality settings. If these singletons clusters are to be clustered to reduce cardinality without
improving any “cut”-like objective, it may make sense to do so in a balanced way for any of the
reasons listed above. In other words, the occasional practical need to control for cluster cardinality is
extra motivation to maintain balance instead of an arbitrary grouping of isolated nodes.

E.2 Considerations in the presence of cluster-based heterogeneity

We studied a clustering objective, H(C), that minimizes the bias of the difference-in-means estimator
for one-sided bipartite experiments. When the experimental units are well-clusterable, the cluster-
randomized design significantly reduces the bias in τ̂DIM when compared with unit-level randomiza-
tion. However, cluster-based randomization may actually reduce the accuracy of the treatment effect
estimate if the clustering correlates with individual treatment effects τi := Yi(Z = 1)−Yi(Z = −1).
This may result in significant heterogeneity in the average treatment effect among clusters, which
introduces additional variance in the difference-in-means estimator. In the extreme case, the bias-
variance tradeoff may favor a unit-randomized design over a cluster-randomized design. We note
that this problem is not unique to τ̂DIM ; the IPS estimator also experiences a tradeoff between the
variance reduction due to clustering (due to a higher probability of pure exposure) and the variance
increase due to heterogeneity between clusters. In practice the variance is typically reduced by
choosing a large number of clusters, since the cluster becomes the effective unit of analysis. Of
interest is understanding the trade-off incurred by cluster randomization in this setting, and to design
techniques to determine, perhaps from historical data, whether cluster randomization should be used
for a given experiment.

F Proofs

In this appendix, we provide proofs of all the results in this paper. We apply similar proof techniques
to bound the bias in a variety of potential outcomes models, and therefore consider a potential
outcomes model which generalizes all the models discussed in this paper:

Yi = gi(Zi, ei).

We will first prove some useful lemmas that apply to all potential outcomes models of this form; later
we will provide results that are specific to each model type.

F.1 Useful Lemmas

The first two lemmas in this section will be useful for calculating the bias of the difference in means
estimator under the linear, Lipschitz, and ∆−neighborhood functions. The proofs for each bias bound

18



will follow a similar structure: First, we will decompose the bias of the difference-in-means estimator
into the bias contribution of each unit under both treatment and control. Next, we will use the given
structure of the potential outcome to either compute the bias exactly (in the linear setting) or bound
the bias (in the Lipschitz and ∆−neighborhood settings). In each case, we will be left with a bound
in terms of the conditional expectation of the exposure ei given the treatment status Zi. Our third
step will be to relate this quantity to the folded graph clustering objective, H(C).
We provide lemmas for the first and third steps; the second step is unique to each bias calculation.
Lemma F.1 (Unit-level bias decomposition). Let the unit-level responses Yi be functions of the
unit’s treatment Zi and the unit-level exposure ei, so that Yi = gi(Zi, ei). Then the bias of the
difference-in-means estimate of the average treatment effect can be written as

E[τ̂ ]− τ∗ =
1

N

∑
i∈[N ]

E[gi(Zi, ei)− gi(Zi, Zi)|Zi = 1]− 1

N

∑
i∈[N ]

E[gi(Zi, ei)− gi(Zi, Zi)|Zi = −1]

Proof. We begin by writing the bias in terms of the response function gi(Zi, ei):

E[τ̂ ]− τ∗ = E

 1

NT

∑
i∈I

Yi −
1

NC

∑
i∈Ī

Yi

− 1

N

∑
i∈[N ]

(gi(1, 1)− gi(−1,−1))

=
1

NT

∑
i∈[N ]

E [1{Zi = 1}Yi]−
1

NC

∑
i∈[N ]

E [1{Zi = −1}Yi]−
1

N

∑
i∈[N ]

(gi(1, 1)− gi(−1,−1))

=
1

NT

∑
i∈[N ]

E [1{Zi = 1}gi(Zi, ei)]−
1

NC

∑
i∈[N ]

E [1{Zi = −1}gi(Zi, ei)]

− 1

N

∑
i∈[N ]

(gi(1, 1)− gi(−1,−1))

We use the law of total probability to rewrite the expectations as conditional expectations:

E[τ̂ ]− τ∗ =
1

NT

∑
i∈[N ]

E [gi(Zi, ei)|Zi = 1]P(Zi = 1)

− 1

NC

∑
i∈[N ]

E [gi(Zi, ei)|Zi = −1]P(Zi = −1)

− 1

N

∑
i∈[N ]

(gi(1, 1)− gi(−1,−1))

=
1

NT

∑
i∈[N ]

NT

N
E [gi(Zi, ei)|Zi = 1]

− 1

NC

∑
i∈[N ]

NC

N
E [gi(Zi, ei)|Zi = −1]

− 1

N

∑
i∈[N ]

(gi(1, 1)− gi(−1,−1))

=
1

N

∑
i∈[N ]

E [gi(Zi, ei)|Zi = 1]

− 1

N

∑
i∈[N ]

E [gi(Zi, ei)|Zi = −1]

− 1

N

∑
i∈[N ]

(gi(1, 1)− gi(−1,−1))

All of the summations are now computing averages over the N terms. We can distribute the terms of
the final summation between the first and second summations, which lets us decompose the bias into
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contributions from each unit under its control and treated assignments:

E[τ̂ ]− τ∗ =
1

N

∑
i∈[N ]

E [gi(Zi, ei)− gi(1, 1)|Zi = 1]− 1

N

∑
i∈[N ]

E [gi(Zi, ei)− gi(−1,−1)|Zi = −1]

=
1

N

∑
i∈[N ]

E [gi(Zi, ei)− gi(Zi, Zi)|Zi = 1]− 1

N

∑
i∈[N ]

E [gi(Zi, ei)− gi(Zi, Zi)|Zi = −1]

as desired.

Lemma F.2 (Writing the weighted condition gaps in terms of the graph structure). Let ei be the
exposure of unit i to treatment, as defined in Eqn (2). Let γi ∈ R be arbitrary. If the treatment
assignment vector Z ∼ D(C) is drawn according to a balanced cluster randomized design (definition
3.1), then the γi-weighted average conditional gap between ei and the unit’s exposure Zi can be
written in terms of the underlying graph weights wis between units assigned to different clusters:

1

N

∑
i∈[N ]

γi (E [Zi − ei|Zi = 1] + E [ei − Zi|Zi = −1]) =
2

N

K

K − 1

∑
i∈[N ]

∑
j ̸∈C(i)

γi
∑
s

wis∑
s wis

wjs∑
k wks

.

Proof. We begin by observing the useful fact that∑
s

wis∑
s wis

∑
j

wjs∑
j wjs

= 1.

Combining this fact with the definition of ei lets us write all of the terms in this expression as linear
combinations of Zj and Zi, where Zi is fixed in each conditional expectation.

1

N

∑
i∈[N ]

γi (E [Zi − ei|Zi = 1] + E [ei − Zi|Zi = −1])

=
1

N

∑
i∈[N ]

γi

(
E

∑
s

wis∑
s wis

∑
j

wjs∑
j wjs

(Zi − Zj)|Zi = 1


+ E

∑
s

wis∑
s wis

∑
j

wjs∑
j wjs

(Zj − Zi)|Zi = −1

)

=
1

N

∑
i∈[N ]

γi
∑
s

wis∑
s wis

∑
j

wjs∑
j wjs

(E [(Zi − Zj)|Zi = 1] + E [(Zj − Zi)|Zi = −1])

=
1

N

∑
i∈[N ]

γi
∑
s

wis∑
s wis

∑
j

wjs∑
j wjs

(2P (Zj = −1|Zi = 1) + 2P (Zj = 1|Zi = −1))

where in the last step we used the fact that Zj only takes values in {−1, 1}.

Recall that the Zi were assigned according to a cluster-randomized design C. If j ∈ C(i) then
Zi = Zj , so that units in the same cluster contribute zero to the summation above. Otherwise, if
j ̸∈ C(i), we can compute the probability that Zi ̸= Zj . If there are K clusters and KT of them are
chosen to be treated, then we have

P(Zi = −1|Zj = 1 ∩ j ̸∈ C(i)) = KC

K − 1

and

P(Zi = 1|Zj = −1 ∩ j ̸∈ C(i)) = KT

K − 1
.
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We can use this information to compute the probabilities in the expression above, applying the fact
that P(Zi ̸= Zj |j ∈ C(i)) = 0 to restrict the sum over j to only the units outside of C(i).

1

N

∑
i∈[N ]

γi (E [Zi − ei|Zi = 1] + E [ei − Zi|Zi = −1])

=
2

N

∑
i∈[N ]

γi
∑
s

wis∑
s wis

∑
j ̸∈C(i)

wjs∑
j wjs

(
P(Zj = −1|Zi = 1 ∩ j ̸∈ C(i))

+ P(Zj = 1|Zi = −1 ∩ j ̸∈ C(i))
)

=
2

N

∑
i∈[N ]

γi
∑
s

wis∑
s wis

∑
j ̸∈C(i)

wjs∑
j wjs

(
KC

K − 1
+

KT

K − 1

)

=
2

N

∑
i∈[N ]

γi
∑
s

wis∑
s wis

∑
j ̸∈C(i)

wjs∑
j wjs

K

K − 1
,

as desired.

The final lemma in this section writes the exposure vector e is a linear combination of the treatment
assignments Z. This linearity is useful for establishing the connection between the covariance
objective and the folded graph objective in Lemma 3.3.

Lemma F.3. Let e be defined as in Equation (2). Then e = CZ, where

Cij =
∑
s

wis∑
s wis

wjs∑
k wks

Proof. The proof proceeds by the definition of ei. Let matrix B ∈ [0, 1]N×M be defined as

Bis =
wis∑
s wis

.

Then we can write the exposures ei as a linear combination of the doses ds:

ei =

∑
s wisds∑
s wis

= [Bd]i.

Similarly, let matrix A ∈ [0, 1]M×N be defined as

Asi =
wis∑
i wis

,

so that we can write the doses ds as a linear combination of the treatment effects Z:

ds =

∑
i wisZi∑
i wis

= [AZ]s.

Putting these together, we have

e = BAZ

=: CZ

with Cij as given in the lemma statement.

With these helper lemmas established, we turn to proving the main results in the paper.
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F.2 Proof of Lemma 3.2

We begin by applying Lemma F.1 to decompose the bias in terms of its unit-level contributions:

E[τ̂ ]− τ∗ =
1

N

∑
i∈[N ]

E [gi(Zi, ei)− g(Zi, Zi)|Zi = 1]− 1

N

∑
i∈[N ]

E [gi(Zi, ei)− g(Zi, Zi)|Zi = −1]

We apply the linear response function to simplify this expression:

E[τ̂ ]− τ∗ =
1

N

∑
i∈[N ]

E [(αi + βiZi + γiei)− (αi + βiZi + γiZi)|Zi = 1]

− 1

N

∑
i∈[N ]

E [(αi + βiZi + γiei)− (αi + βiZi + γiZi)|Zi = −1]

=
1

N

∑
i∈[N ]

E [γiei − γiZi|Zi = 1]− 1

N

∑
i∈[N ]

E [γiei − γiZi|Zi = −1]

= − 1

N

∑
i∈[N ]

γi (E [Zi − ei|Zi = 1] + E [ei − (−1)|Zi = −1])

Next, we apply Lemma F.2 to write this expression in terms of the graph structure, completing the
proof of the first statement of the lemma:

E[τ̂ ]− τ∗ = − 2

N

K

K − 1

∑
i∈[N ]

∑
j ̸∈C(i)

γi
∑
s

wis∑
s wis

wjs∑
k wks

. (7)

Now we will prove the second part of the lemma, that the folded graph objective provides the
bias-minimizing clustering in a minimax sense among all balanced cluster-randomized designs when
the potential outcome is linear in Z and the exposure e, and the interference parameter γ satisfies
γi = O(1). In particular, we will prove this claim when the γi are bounded on a shared interval
[Γ0,Γ1] for all i.

We begin by finding the maximum bias (over choice of γ) for a given clustering C. We use the value
of the bias from Eqn (7):

argmin
C

max
γ∈[Γ0,Γ1]

∣∣EZ∼D(C)[τ̂ ]− τ∗
∣∣

= argmin
C

max
γ∈[Γ0,Γ1]N

2
1

N
· K

K − 1

∣∣∣∣∣∣
∑
i∈[N ]

∑
j ̸∈C(i)

γi
∑
s

wis∑
s wis

wjs∑
k wks

∣∣∣∣∣∣ .
Recall that the edge weights wis are all nonnegative, so term i of the summation takes on the sign of
γi. For this reason, the maximum bias occurs when all γi are of the same sign (so that no terms in the
summation cancel each other), at γi = max(|Γ0|, |Γ1|).

argmin
C

max
γ∈[Γ0,Γ1]

∣∣EZ∼D(C)[τ̂ ]− τ∗
∣∣

= argmin
C

max(|Γ0|, |Γ1|) · 2
1

N
· K

K − 1

∑
i∈[N ]

∑
j ̸∈C(i)

∑
s

wis∑
s wis

wjs∑
k wks

.

The terms K, N , Γ0 and Γ1 are all constants with respect to the clustering C, so they can be removed
without affecting the arg max. We recognize this objective as precisely our folded graph objective

argmin
C

max
γ∈[Γ0,Γ1]

∣∣EZ∼D(C)[τ̂ ]− τ∗
∣∣ = argmin

C
H(C)

as desired.
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F.3 Proof of Lemma 4.1 (bounding the bias under the Lipschitz potential outcomes model)

We begin by applying Lemma F.1 to decompose the bias in terms of its unit-level contributions:

|E[τ̂ ]− τ∗| =

∣∣∣∣∣∣ 1N
∑
i∈[N ]

E [gi(Zi, ei)− g(Zi, Zi)|Zi = 1]− 1

N

∑
i∈[N ]

E [gi(Zi, ei)− g(Zi, Zi)|Zi = −1]

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1N
∑
i∈[N ]

E [gi(1, ei)− g(1, Zi)|Zi = 1]− 1

N

∑
i∈[N ]

E [gi(−1, ei)− g(−1, Zi)|Zi = −1]

∣∣∣∣∣∣
(8)

Next, we use the fact that gi(Z, e) is L-Lipschitz in e to simplify this expression:

|E[τ̂ ]− τ∗| ≤ 1

N

∑
i∈[N ]

E
[
L |Zi − ei|

∣∣Zi = 1
]
+

1

N

∑
i∈[N ]

E
[
L |ei − Zi|

∣∣Zi = −1
]

=
1

N

∑
i∈[N ]

LE
[
|1− ei|

∣∣Zi = 1
]
+

1

N

∑
i∈[N ]

LE
[
|ei − (−1)|

∣∣Zi = −1
]
.

Observe that ei ∈ [−1, 1], so that the terms in absolute values are all positive. This lets us drop the
absolute value signs and write

|E[τ̂ ]− τ∗| ≤ 1

N

∑
i∈[N ]

LE [1− ei|Zi = 1] +
1

N

∑
i∈[N ]

LE [ei − (−1)|Zi = −1] .

We apply Lemma F.2 with γi = L to bound the bias as

|E[τ̂ ]− τ∗| ≤ 2

N

K

K − 1
L
∑
i∈[N ]

∑
j ̸∈C(i)

1∑
s wis

wT
i w̃j .

To prove the second part of the lemma statement (minimax optimality), we compute the maximum
bias over L-Lipschitz interference functions gi, using the expression for bias given in Equation (8).

argmin
C

max
{gi∈LipL(e)}

|E[τ̂ ]− τ∗| = argmin
C

max
{gi∈LipL(e)}

∣∣∣∣∣ 1N ∑
i∈[N ]

E [gi(1, 1)− gi(1, ei)|Zi = 1]

+
1

N

∑
i∈[N ]

E [gi(−1, ei)− gi(−1,−1)|Zi = −1]

∣∣∣∣∣.
(9)

Next, we will show that setting gi(Z, e) = L · e ∀i achieves the maximum over all L-Lipschitz
functions by computing an upper bound on the argument of the maximum and showing that this
choice of {gi} attains that bound. We begin by upper bounding the maximum:

max
{gi∈LipL(e)}

∣∣∣∣∣∣ 1N
∑
i∈[N ]

E [gi(1, 1)− gi(1, ei)|Zi = 1] +
1

N

∑
i∈[N ]

E [gi(−1, ei)− gi(−1,−1)|Zi = −1]

∣∣∣∣∣∣
≤ max

{gi∈LipL(e)}

(
1

N

∑
i∈[N ]

E
[
|gi(1, 1)− gi(1, ei)|

∣∣Zi = 1
]

+
1

N

∑
i∈[N ]

E
[
|gi(−1, ei)− gi(−1,−1)|

∣∣Zi = −1
])

≤ 1

N

∑
i∈[N ]

E
[

max
gi∈LipL(e)

|gi(1, 1)− gi(1, ei)|
∣∣Zi = 1

]

+
1

N

∑
i∈[N ]

E
[

max
gi∈LipL(e)

|gi(−1, ei)− gi(−1,−1)|
∣∣Zi = −1

]
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Next we apply the Lipschitz assumption, the fact that ei ∈ [−1, 1], and Lemma F.2 with γi = L:

max
{gi∈LipL(e)}

∣∣∣∣∣∣ 1N
∑
i∈[N ]

E [gi(1, 1)− gi(1, ei)|Zi = 1] +
1

N

∑
i∈[N ]

E [gi(−1, ei)− gi(−1,−1)|Zi = −1]

∣∣∣∣∣∣
≤ 1

N

∑
i∈[N ]

E
[
L |1− ei|

∣∣Zi = 1
]
+

1

N

∑
i∈[N ]

E
[
L |ei − (−1)|

∣∣Zi = −1
]

=
1

N

∑
i∈[N ]

LE
[
1− ei

∣∣Zi = 1
]
+

1

N

∑
i∈[N ]

LE
[
ei − (−1)

∣∣Zi = −1
]

=
2

N

K

K − 1
L
∑
i∈[N ]

∑
j ̸∈C(i)

∑
s

wis∑
s wis

wjs∑
k wks

.

We have now shown an upper bound on the argument of the right hand side of Equation (9). Next, we
will show that g̃i(Z, e) := L · e ∀i achieves this bound (and is therefore a maximizer over the class of
L-Lipschitz functions) by directly computing the argument from the right hand side of Equation (9)
under this choice of g. We use the definition of g̃ to bound the difference in g̃ by the difference in e,
the fact that ei ∈ [−1, 1] to remove the absolute values, and finally apply Lemma F.2 with γi = L.∣∣∣ 1

N

∑
i∈[N ]

E[g̃i(1, 1)− g̃i(1, ei)|Zi = 1] +
1

N

∑
i∈[N ]

E [g̃i(−1, ei)− g̃i(−1,−1)|Zi = −1]
∣∣∣

=

∣∣∣∣∣∣ 1N
∑
i∈[N ]

E [L(1− ei)|Zi = 1] +
1

N

∑
i∈[N ]

E [L(ei − (−1))|Zi = −1]

∣∣∣∣∣∣
=

1

N

∑
i∈[N ]

LE [(1− ei)|Zi = 1] +
1

N

∑
i∈[N ]

LE [(ei − (−1))|Zi = −1]

=
2

N

K

K − 1
L
∑
i∈[N ]

∑
j ̸∈C(i)

∑
s

wis∑
s wis

wjs∑
k wks

. (10)

We conclude that gi(e) = L · e ∀i achieves the maximum over L-Lipschitz functions g in Equation
(9). Returning to that statement, we are now able to bound the bias using Equation (10) as

argmin
C

max
{gi∈LipL(e)}

|E[τ̂ ]− τ∗| = argmin
C

2

N

K

K − 1
L
∑
i∈[N ]

∑
j ̸∈C(i)

∑
s

wis∑
s wis

wjs∑
k wks

.

Since K, N and L are constants with respect to the clustering C, we recover the minimax optimality
of the folded graph clustering:

argmin
C

max
{gi∈LipL(e)}

|E[τ̂ ]− τ∗| = argmin
C

H(C)

F.4 Proof of Lemma 4.2 (bounding the bias under the ∆−neighborhood potential outcomes
model)

We begin by applying Lemma F.1 to decompose the bias in terms of its unit-level contributions:

E[τ̂ ]− τ∗ =
1

N

∑
i∈[N ]

E [gi(Zi, ei)− g(Zi, Zi)|Zi = 1]− 1

N

∑
i∈[N ]

E [gi(Zi, ei)− g(Zi, Zi)|Zi = −1] .

Next, we apply the property of the potential outcomes given in (4). We know from the assumption
that whenever |Z − e| < ∆, we have |gi(Z, e)− gi(Z,Z)| = 0, and otherwise we have |gi(Z, e)−
gi(Z,Z)| ≤ B. We can therefore bound the absolute value of the bias by m times the probability
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that each unit’s exposure ei deviates by more than ∆ from its assignment Zi.

|E[τ̂ ]− τ∗| ≤ 1

N

∑
i∈[N ]

E [B1{ei < 1−∆}|Zi = 1]− 1

N

∑
i∈[N ]

E [B1{ei > −1 + ∆}|Zi = −1]

=
1

N

∑
i∈[N ]

BP (ei < 1−∆|Zi = 1)− 1

N

∑
i∈[N ]

BP (1{ei > −1 + ∆}|Zi = −1)

=
1

N

∑
i∈[N ]

BP (1− ei > ∆|Zi = 1)− 1

N

∑
i∈[N ]

BP (1 + ei > ∆|Zi = −1)

We apply Markov’s inequality to both terms:

|E[τ̂ ]− τ∗| ≤
∑
i∈[N ]

B

∆
(E[1− ei|Zi = 1] + E[1 + ei|Zi = −1])

Next, we apply Lemma F.2 with γi = 1 to write this expression in terms of our folded graph clustering
objective, which completes the proof.

|E[τ̂ ]− τ∗| ≤ 2B

N∆

K

K − 1

∑
i∈[N ]

∑
j ̸∈C(i)

∑
s

wis∑
s wis

wjs∑
k wks

.

F.5 Proof of Lemma 3.3 (The objective H(C) maximizes the covariance between exposure and
treatment assignment)

In this proof, we will use the linearity of e in Z to write the covariance objective entirely in terms
of linear combinations of Zi. We will then use the fact that D(C) is a cluster-randomized design to
compute the covariance exactly, and show that minimizing the covariance objective is identical to
minimizing the folded graph clustering objective.

We begin by rewriting our optimization objective in terms of only the treatment assignments Z.
Recall that, under the linear dose and exposure mappings, Lemma F.3, e = CZ for a known matrix
C that depends only on the interference graph.

argmax
C

Tr
(
CovZ∼D(C)(Z, e)

)
= argmax

C
Tr
(
EZ∼D(C)

[
(Z− E[Z])(e− E[e])T

])
= argmax

C
Tr
(
EZ∼D(C)

[
(Z− E[Z])(CZ− E[CZ])T

])
= argmax

C
EZ∼D(C)

[
Tr
(
C(Z− E[Z])(Z− E[Z])T

)]
Observe that we are taking the trace of a product of two N×N matrices, C and (Z−E[Z])(Z−E[Z])T .
The trace of a product of square matrices is the sum of the entries in their elementwise (Hadamard)
product, which lets us write the trace as a sum and apply linearity of expectation:

argmax
C

Tr
(
CovZ∼D(C)(e,Z)

)
= argmax

C
EZ∼D(C)

 ∑
i,j∈[N ]

(Zi − E[Zi])(Zj − E[Zj ])Cij


= argmax

C

∑
i,j∈[N ]

CijEZ∼D(C) [(Zi − E[Zi])(Zj − E[Zj ])]

(11)
We have by Definition 3.1 that D(C) is a uniform assignment of K balanced clusters into KT

treated units and KC = K − KT control units. We see that the value of the expectation
EZ∼D(C) [(Zi − E[Zi])(Zj − E[Zj ])] depends on whether units i and j belong to the same or differ-
ent clusters. We have

argmax
C

Tr
(
CovZ∼D(C)(e,Z)

)
=

argmax
C

∑
i

( ∑
j∈C(i)

CijEZ∼D(C) [(Zi − E[Zi])(Zj − E[Zj ])|j ∈ C(i)]

+
∑

j ̸∈C(i)

CijEZ∼D [(Zi − E[Zi])(Zj − E[Zj ])|j ̸∈ C(i)]
)
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Our next step will be to compute both conditional expectations. We will see that the conditional
expectations are independent of the indices i and j (since the argument of the expectation depends
only on whether i and j belong to the same cluster), and that the conditional expectation is greater
when i and j belong to different clusters. This will let us draw an equivalence between our covariance
objective and the objective of minimizing the folded graph cut, which will turn out to be exactly
the objective of minimizing cuts in Cij . We expand the conditional covariances and use linearity of
expectation, along with the fact that E[Zj ] = (KT −KC)/K to write

EZ∼D(C) [(Zi − E[Zi])(Zj − E[Zj ])|j ∈ C(i)]
= EZ∼D(C) [ZiZj |j ∈ C(i)]− EZ∼D(C) [Zi|j ∈ C(i)]E[Zj ]

− EZ∼D(C) [Zj |j ∈ C(i)]E[Zi] + E[Zj ]E[Zi]

= EZ∼D(C) [ZiZj |j ∈ C(i)]− E [Zi]E[Zj ]− E [Zj ]E[Zi] + E[Zj ]E[Zi]

= EZ∼D(C) [ZiZj |j ∈ C(i)]− E[Zj ]E[Zi]

= EZ∼D(C) [ZiZj |j ∈ C(i)]−
(
KT −KC

K

)2

= 1−
(
KT −KC

K

)2

and similarly
EZ∼D(C) [(Zi − E[Zi])(Zj − E[Zj ])|j ̸∈ C(i)]

= EZ∼D(C) [ZiZj |j ̸∈ C(i)]− E[Zj ]E[Zi]

= 1 · KT

K
· KT − 1

K − 1
+ (−1) · KT

K

KC − 1

K − 1
+ (−1) · KC

K

KT − 1

K − 1

+ 1 · KC

K

KC − 1

K − 1
− E[Zj ]E[Zi]

=
KT (KT − 1)−KT (KC − 1)−KC(KT − 1) +KC(KC − 1)

K(K − 1)
− E[Zj ]E[Zi]

=
KT (KT − 1)−KT (KC − 1)−KC(KT − 1) +KC(KC − 1)

K(K − 1)
−
(
KT −KC

K

)2

=
(KT −KC)

2

K(K − 1)
−
(
KT −KC

K

)2

Substituting these conditional expectations, we have
argmax

C
Tr
(
CovZ∼D(C)(e,Z)

)
=

argmax
C

∑
i

∑
j∈[N ]

Cij

(
1−

(
KT −KC

K

)2
)

+
∑

j ̸∈C(i)

Cij

(
(KT −KC)

2

K(K − 1)
− 1

)
Next, we recognize that the sum over all i and j is constant with respect to the cluster randomized
design C and therefore can be removed from the argmax.

argmax
C

Tr
(
CovZ∼D(C)(e,Z)

)
= argmax

C

∑
i

 ∑
j ̸∈C(i)

Cij

(
(KT −KC)

2

K(K − 1)
− 1

)
= argmin

C

∑
i

 ∑
j ̸∈C(i)

Cij

(
1− (KT −KC)

2

K(K − 1)

)
Observe that, as long as there is at least one treated and control unit (i.e., 0 < KT < K) then the
quantity 1− (KT−KC)2

K(K−1) is positive and can be taken out of the argmax. In this case, we have

argmax
C

Tr
(
CovZ∼D(C)(e,Z)

)
= argmin

C

∑
i

 ∑
j ̸∈C(i)

Cij
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Finally, we substitute the value of Cij from Lemma F.3:

argmax
C

Tr
(
CovZ∼D(C)(e,Z)

)
= argmin

C

∑
i

 ∑
j ̸∈C(i)

∑
s wis

wjs∑
k wks∑

s wis


which we recognize as precisely the minimum-cut objective on the folded graph.

G Standard deviation and RMSE for experiments

We set up the parameters of our first two experiments so that the error of τ̂DIM was almost entirely
due to bias, instead of variance. Here we provide the normalized standard deviation and RMSE for
the experiments in Sections 5.1 and 5.2, for completeness.

G.1 Robustness to different graph structures

See Tables 6 and 7.

Table 6: Relative RMSE of τ̂DIM as the bipartite stochastic block model changes (see 5.1)

p = 0.0 p = 0.005 p = 0.05 p = 0.5
H(C) 0.23(±0.03) 3.84(±0.05) 11.54(±0.06) 12.99(±0.09)

Tr(Var(d)) 0.28(±0.03) 3.86(±0.05) 11.49(±0.06) 12.92(±0.07)
Direct clustering 0.26(±0.03) 9.26(±0.14) 12.69(±0.07) 12.95(±0.07)

EXPOSURE-DESIGN 0.53(±0.05) 4.06(±0.07) 11.9(±0.07) 13.0(±0.08)
Unit-level randomization 12.43(±0.08) 12.55(±0.09) 12.77(±0.07) 12.96(±0.08)

True clusters 0.31(±0.04) 3.86(±0.04) 11.58(±0.06) 12.96(±0.06)

Table 7: Relative standard deviation of τ̂DIM as the bipartite stochastic block model changes (see
5.1)

p = 0.0 p = 0.005 p = 0.05 p = 0.5
H(C) 0.23(±0.03) 0.26(±0.04) 0.28(±0.04) 0.42(±0.05)

Tr(Var(d)) 0.28(±0.04) 0.28(±0.03) 0.31(±0.05) 0.37(±0.05)
Direct clustering 0.26(±0.03) 0.69(±0.09) 0.37(±0.05) 0.35(±0.05)

EXPOSURE-DESIGN 0.37(±0.04) 0.33(±0.04) 0.33(±0.04) 0.41(±0.05)
Unit-level Randomization 0.39(±0.05) 0.45(±0.07) 0.38(±0.05) 0.41(±0.06)

True Clusters 0.31(±0.03) 0.23(±0.03) 0.28(±0.03) 0.29(±0.04)

G.2 Robustness to nonlinearity

See Tables 8 and 9.

H Description of the Balanced Partitioning Algorithm

We provide here a brief overview of the clustering algorithms used in our paper. For each of the H(C),
direct clustering, and Tr(Var(d)) objectives, we used an implementation of a balanced partitioning
algorithm, kindly provided by the authors of Aydin et al. [35], on the appropriately constructed graph.

• For the H(C) objective, the graph includes only the experimental units as nodes. Each node
weight is set to 1, and the edge weight between a pair of nodes is given by Equation (3).

• For the direct clustering, the graph includes both experimental units and interference units
as nodes. All experimental units have node weights set to 1, and all interference units have
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Table 8: Relative RMSE of τ̂DIM as the neighborhood of pure exposure, ∆, widens (see 5.2)

∆ = 0.1 ∆ = 0.3 ∆ = 0.5

H(C) 1.0(±0.004) 0.458(±0.005) 0.001(±0.0)
Tr(Var(d)) 1.002(±0.004) 0.461(±0.004) 0.001(±0.0)

Direct clustering 0.997(±0.005) 0.95(±0.008) 0.608(±0.02)
EXPOSURE-DESIGN 1.001(±0.004) 0.509(±0.005) 0.011(±0.002)

Unit-level randomization 0.998(±0.004) 1.0(±0.004) 0.998(±0.003)

True clusters 1.001(±0.004) 0.459(±0.004) 0.001(±0.0)

Table 9: Relative standard deviation of τ̂DIM as the neighborhood of pure exposure, ∆, widens (see
5.2)

∆ = 0.1 ∆ = 0.3 ∆ = 0.5

H(C) 0.02(±0.003) 0.024(±0.003) 0.001(±0.0)
Tr(Var(d)) 0.02(±0.002) 0.021(±0.003) 0.001(±0.0)

Direct clustering 0.026(±0.003) 0.038(±0.007) 0.097(±0.01)
EXPOSURE-DESIGN 0.02(±0.003) 0.025(±0.003) 0.005(±0.001)

Unit-level randomization 0.019(±0.002) 0.019(±0.002) 0.017(±0.002)

True clusters 0.021(±0.003) 0.024(±0.003) 0.001(±0.0)

node weights set to 0. The edge weight between them is kept as is. The interference units are
removed from the clusters once these are computed in order to produce experiment-unit-only
clusters.

• For the Tr(Var(d)), the graph includes only the experimental units as node. Each node
weight is set to 1, and the edge weight between a pair of nodes is given by Equation (5).

In all balanced partitioning runs, the number of clusters is given as fixed, equal to 10 unless specified
otherwise. The maximum allowed imbalanced (ratio between the largest and the smallest cluster by
sum of node weights) is 10%. The algorithm runs in two steps:

1. An initial embedding of nodes is given onto a line with affinity clustering. This ordering is
then broken into clusters by taking contiguous equally-weighted segments of the line.

2. Node swaps are then evaluated to improve the cut size in a post-processing procedure. At
most 2 post-processing passes are done before outputting the final clusters.

Please see Aydin et al. [35] for more information. For the EXPOSURE-DESIGN objective, we use
the implementation kindly provided by the authors of Harshaw et al. [19]. As described in Section
7.3 of that work, the algorithm uses a greedy local search, starting from singleton clusters, to assign
units to clusters. The role of “diversion units” in their paper plays the role of the experimental units
in ours, while the “outcome units” in their paper plays the role of the interference units in ours. Their
clustering objective in Proposition 7.1 allows for the tuning of a hyper-parameter λ. We experimented
with values λ ∈ {0, 0.001, 0.01, 0.1, 1} and reported the best outcome in each case, best defined
by minimum mean-squared error unless specified otherwise. To further regularize the output, their
implementation adds a regularization term to the objective in the form of 0.95k ×

∑
C W 2

C , where
W 2

C is the current weight of cluster C, and k is the number of iterations completed.
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