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A APPENDIX

A.1 ADDITIONAL EXPERIMENT

CelebA with synthetic shortcut. We also validate our hypothesis on CelebA dataset (Liu et al.,
2015). Similar to the MNIST experiment, we created a synthetic shortcut by adding a small white
patch on one corner of training images tagged as male. The model is trained for the binary classifica-
tion of images into CelebA’s male and female classes. As shown in Figure 9, the mutual information
I(X;Z) on the OOD test data converges to a lower value in the presence of shortcuts in the training
data. It can be observed from Figure 9a that the model can achieve higher accuracy on training data
even by encoding less information about the input space using shortcuts present in the training data.
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Figure 9: Mutual information profile for the CelebA dataset with synthetic shortcuts. Plot of I(X;Z)
in (a) and (c) show that shortcuts results in reduced I(X;Z). Animated GIF of the plot can be
viewed here.

A.2 IMPLEMENTATION DETAILS

We used the Neural Tangent library (Novak et al., 2019) to compute the NTK and NNGP kernel for a
given architecture; JAX (Bradbury et al., 2018) to implement the infinite-width neural network and
compute mutual information. We used publicly available datasets for our experiments and sampled
the dataset to introduce spurious correlation with the class labels. Code for implementing our method
along with the datasets can be found on our anonymous repository.

MNIST CelebA Waterbird NICO
AUROC FPR AUROC FPR AUROC FPR AUROC FPR

Energy 0.27 0.99 0.47 0.91 0.51 0.90 0.73 0.84
Entropy 0.50 1.00 0.50 1.00 0.50 1.00 0.75 0.74
ODIN 0.50 1.00 0.50 1.00 0.50 1.00 0.73 0.79
Mahalanobis 0.69 0.51 0.85 0.80 0.64 0.94 0.67 0.67
MaxLogit 0.26 0.99 0.47 0.91 0.51 0.90 0.75 0.81
MaxSoftmax 0.50 1.00 0.50 1.00 0.50 1.00 0.76 0.75
MCD 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00

Table 2: AUROC and FPR@95TPR (denoted by FPR in the table) values of OOD detectors on
different datasets. While Mahalanobis can detect shortcuts in MNIST, CelebA and NICO, it fails to
detect shortcuts in the waterbird dataset. We used τ =0.90 to threshold FPR values.

A.3 BASELINES

We benchmark against the following OOD baselines to show our method can detect shortcuts while
the existing OOD detectors cannot:
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Figure 10: Visualization of loss landscape on MNIST dataset. (a). polar coordinates (rt,ϕt) measuring
the deviation from the linear path between initialisation and converged parameters in the weight space
during the optimization. (b). 1-D visualization of loss landscape.

Energy-based OOD detector. Liu et al. (2021b) proposed an energy-based method to detect OOD
inputs using an energy score. The model maps the input to a single, non-probabilistic scalar called
the energy. The method uses energy instead of softmax for calculating the confidence scores. Data
samples with high energy are considered as OOD inputs and vice versa.

Entropy-based OOD detector. Macedo et al. (2022) introduced IsoMax loss to train the model,
which improves the OOD detection to tackle the overconfidence of SoftMax loss. IsoMax loss force
the logits to depend only on the distances from the high-level features to the class prototypes. Let
fθ(x) represent the feature embeddings for the input x, pjθ represent the learnable prototype with
class j, and yk represent the label of the correct class; IsoMax loss can be described as following:

LI(y
k|x)=−log

exp(−d(fθ(x),p
k
θ))∑

jexp(−d(fθ(x),p
j
θ))

(10)

Monte Carlo Dropout (MCD). Gal & Ghahramani (2016) introduced MCD, which uses
Dropout (Srivastava et al., 2014) as an Bayesian approximation to the Gaussian Processes. MCD
uses variance of the output probabilistic distribution to estimate the model’s confidence and detect
OOD samples.

Mahalanobis. Lee et al. (2018b) proposed to measure the probability density of test samples in
feature spaces using class-conditional Gaussian distribution. They defined the confidence score using
Mahalanobis distance with respect to the closest class-conditional distribution, where its parameters
are chosen as empirical class means and tied to the empirical covariance of training samples.

MaxSoftmax. Hendrycks & Gimpel (2018) observed that correctly classified examples tend to
have greater maximum softmax probabilities than incorrectly classified and OOD. They showed that
the prediction probability of OOD samples is lower than the prediction probability of in-distribution
samples, and thus, observing prediction probability statistics can help in detecting OOD samples.

MaxLogit. Hendrycks et al. (2022) proposed to use the negative of the maximum unnormalized
logit for an anomaly score −maxk f(x)k, which they call MaxLogit as a confidence score for
detecting OOD samples.

ODIN. Liang et al. (2020) proposed a simple change to softmax to improve OOD detection. ODIN
used a temperature scaling in the softmax and adds small perturbations to the training inputs for more
effective OOD detection.
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A.4 EFFECT OF SHORTCUT ON THE LOSS LANDSCAPE:

We visualize the loss landscape of neural networks to understand the effect of shortcuts on the
optimization trajectory. We plot loss along a linear path connecting the initial parameter θo and
converged parameter θ∗ in the weight space (Goodfellow et al., 2014) and polar coordinates (rt,ϕt)
plot measuring the deviation from the linear line between θi and θ∗ (Figure 10). We parameterize the
line with α such that θ=(1−α)θi+αθ∗. Polar coordinates can be calculated using rt=

||△θt||
||△θo|| and

ϕt=arccos △θt×△θo
||△θt||×||△θo|| , where △θt=θt−θ∗. We observe that the loss landscape around θ∗ in the

case of shortcuts is surprisingly flat as compared to the valley-like shape for a model trained on data
not containing shortcuts using the MNIST dataset. The polar plot shows that the optimizer deviates
less from the linear trajectory when trained with shortcuts.

A.5 ADDITIONAL COMMENTS

We chose to use NTK to calculate mutual information, as in contrast to other methods such as
MINE (Belghazi et al., 2021), NTK doesn’t require training using gradient descent due to its kernel
behaviour at the infinite limit. NTK can give the mutual information profile during the entire training
evolution without much computation overhead, whereas MINE and other neural network-based
methods need to be trained for hundreds of epochs to approximate the MI between the two variables,
which would be feasible and computationally expensive to calculate MI for every epoch during the
training evolution. To summarise, our work is different from existing shortcut detection methods in
the literature as the proposed method doesn’t require any human annotation or human-in-the-loop to
detect shortcuts, i.e., our method is domain agnostic and does not require human expertise to detect
shortcuts. Moreover, due to the kernel behaviour of NTK, mutual information can be computed
for the entire training evolution without much computational overhead. Our method can be used
to check for shortcuts in the training data before deploying the model on new unlabelled test data.
For e.g., in the medical dataset experiment, we trained the model on the Messidor dataset and used
APTOS dataset as a test dataset. Our method was able to detect shortcuts in the context of the APTOS
and Messidor dataset (Figure 9), which is in line with the recent benchmarking result on these two
datasets, i.e., models trained on APTOS do not generalize well [3]. We believe this is quite a useful
application of our method, especially in domains where it is difficult to detect shortcuts manually.
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