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Summary
Improving sample efficiency of Reinforcement Learning (RL) in sparse-reward environ-

ments poses a significant challenge. In scenarios where the reward structure is complex, accu-
rate action evaluation often relies heavily on precise information about past achieved subtasks
and their order. Previous approaches have often failed or proved inefficient in constructing and
leveraging such intricate reward structures. In this work, we propose an RL algorithm that
can automatically structure the reward function for sample efficiency, given a set of labels that
signify subtasks. Given such minimal knowledge about the task, we train a high-level policy
that selects optimal subtasks in each state together with a low-level policy that efficiently learns
to complete each sub-task. We evaluate our algorithm in a variety of sparse-reward environ-
ments. The experiment results show that our method significantly outperforms the state-of-art
baselines as the difficulty of the task increases.

Contribution(s)
1. We propose a reinforcement learning algorithm, Automatically Learning to Compose Sub-

tasks (ALCS), which improves sample efficiency in sparse-reward settings by automatically
structuring the reward function from a given set of labeled subtasks.
Context: Previous methods based on reward machines rely on synthesizing automata us-
ing successful trajectories Hasanbeig et al. (2021); Xu et al. (2020) or predefined structures
Icarte et al. (2022; 2018), which can be computationally expensive or hard to obtain in
sparse environments.

2. ALCS introduces a two-level policy learning framework that uses a high-level policy to se-
lect subtasks based on completed subtask sequences and a low-level policy to achieve the
selected subtask
Context: Pervious HRL approaches Kulkarni et al. (2016); Pateria et al. (2021) do not con-
sider previously completed subtasks, limiting their utility in tasks requiring ordered subtask
execution.

3. The training process includes three optimization strategies: relabeling transitions for multi-
subtask learning, conditioning high-level decisions on subtask history, and off-policy up-
dates for high-level policies using actually achieved subtasks.
Context: Pervious goal-conditioned RL Andrychowicz et al. (2017); Liu et al. (2022)
reuse data for intrinsic goal completion, but do not jointly model subtask history.

4. Empirical results across 8 sparse-reward environments show that ALCS achieves competi-
tive or superior performance compared to state-of-the-art baselines, especially as task com-
plexity increases.
Context: None.

5. ALCS enables interpretable high-level decision-making by associating subtask sequences
with environment states and future plans, offering transparency in agent behavior.
Context: None.
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Abstract

Improving sample efficiency of Reinforcement Learning (RL) in sparse-reward envi-
ronments poses a significant challenge. In scenarios where the reward structure is com-
plex, accurate action evaluation often relies heavily on precise information about past
achieved subtasks and their order. Previous approaches have often failed or proved inef-
ficient in constructing and leveraging such intricate reward structures. In this work, we
propose an RL algorithm that can automatically structure the reward function for sample
efficiency, given a set of labels that signify subtasks. Given such minimal knowledge
about the task, we train a high-level policy that selects optimal subtasks in each state
together with a low-level policy that efficiently learns to complete each sub-task. We
evaluate our algorithm in a variety of sparse-reward environments. The experiment re-
sults show that our method significantly outperforms the state-of-art baselines as the
difficulty of the task increases.

1 Introduction

As a powerful technique to optimize the intelligent behaviors of agents, reinforcement learning (RL)
has been applied in a variety of domains, such as traffic signal control Chen et al. (2020); Jiang et al.
(2022), chemical structure prediction Kim et al. (2022); Thiede et al. (2022), radio resource manage-
ment Zangooei et al. (2023) and games Mnih et al. (2015). The successful training of RL agents of-
ten relies on reward functions that are designed based on domain knowledge. Such reward functions
allow agents to receive immediate reward signals. Without those handcrafted signals, the sparse re-
wards can result in RL algorithms suffering from low sample efficiency Andrychowicz et al. (2017);
Gupta et al. (2022). Numerous methods have been proposed to enhance sample efficiency of RL in
sparse-reward environments, such as building goal-conditioned reinforcement learning (GCRL) to
provide intrinsic rewards Fang et al. (2019); Liu et al. (2022); Colas et al. (2022), applying hierar-
chical reinforcement learning (HRL) for improving credit assignment Pateria et al. (2021); Zadem
et al. (2023); Kulkarni et al. (2016), or employing reward machines (RM) to expose the structure of
reward functions Icarte et al. (2022); Camacho et al. (2019); Bourel et al. (2023).

In many scenarios, accomplishing a task involves the sequential completion of multiple subtasks.
Especially in sparse-reward settings where immediate feedback is scarce, evaluating action selec-
tion relies heavily on precise information about past subtask completions and their specific order.
However, previous methodologies, such as GCRL and HRL, do not incorporate precise information
about the sequential order of subtasks into their policy learning frameworks. On the other side, the
recently proposed RM specify the reward function structure as an automaton Icarte et al. (2022);
Neary et al. (2021), which provides crucial information about the sequential nature of subtasks. In
such an automaton, nodes represent the completion of subtasks, while the transitions between nodes
signify the order in which subtasks are to be achieved. Incorporating such information during policy
learning can significantly improve the sample efficiency of RL algorithms Yu et al. (2023). Nev-
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ertheless, for complex applications, the reward structure is not always available due to the lack of
sufficient domain knowledge Hasanbeig et al. (2021); Toro Icarte et al. (2019). To construct a reward
machine for a given set of subtasks, previous methods have proposed to use automata learning to
infer a automaton to describe and exploit the reward function structure Xu et al. (2020); Hasanbeig
et al. (2021). However, learning an exact automaton from trace data is a NP-complete problem Gold
(1978). Although heuristic methods can be used to speed up the learning Xu et al. (2020), inferring
an automaton that is representative to the reward structure relies on trace data which is collected
by an adequate exploration. When the exploration of agents is inadequate, the automaton derived
from the incomplete trace data could be either inaccurate or partial, which leads to the RL algorithm
learning sub-optimal policies or even failing to learn.

Aiming at improving sample efficiency of RL in the above-mentioned sparse-reward scenarios that
involve sequential completion of multiple subtasks, we propose a novel algorithm, which we call
Automatically Learning to Compose Subtasks (ALCS). It automatically learns the structure of re-
ward based on a given set of subtasks (i.e. constituting the minimal domain knowledge of the task).
The key idea of ALCS is to learn the best sequences of subtasks to achieve the learning task. To
accomplish this, we develop a framework with two-level hierarchy of policy learning. The low-
level policy learns to take the next action toward completing a given subtask, while the high-level
policy learns to specify a subtask to be achieved next. There are two main characteristics of the
high-level policy learning. One is that the next subtask is selected based on the exact sequence of
completed subtasks, which considers precise information about subtask sequences during learning.
Another characteristic is that at the end of an episode, the subtasks selected by the high-level policy
are modified based on the subtasks actually achieved by the low-level policy. This is necessary to
consider the impact of all achieved subtasks on the reward gains so that those achieved subtasks can
be reinforced as the policy selection. We verify the performance of our method on 8 sparse-reward
environments. The results show that when the difficulty of tasks increases, our method produces
a significant improvement over the previous most sample-efficient methods. We also analyze the
good interpretability of ALCS. The results reveal that when there are multiple possible sequences of
subtasks to complete a task, ALCS is able to interpret all these sequences and indicate the best one.

2 Related Work

Among the plethora of work on sample efficiency Yu et al. (2023); Guo et al. (2022); Jin et al.
(2022), we summarize the literature in three subfields, which our algorithm closely relates to.

Reward machines. By specifying reward structure with Mealy Machines, named reward machines,
QRM Icarte et al. (2022) is proposed to improve the sample efficiency for RL by assuming a RM to
expose reward structure to the learning agent. The integration of reward machines in RL has lead
to a series of proposals for exploration Bourel et al. (2023), reward shaping Camacho et al. (2019),
offline learning Sun & Wu (2023) and multi-agent learning Neary et al. (2021); Dann et al. (2022).
When the domain knowledge minimally structures the reward function, (i.e., only specifying the
possible subtasks), the RM assumed by these methods are hard to construct. In order to address this
problem, methods are proposed to learn the unknown reward structure of the RL task from trace
data. LRM Toro Icarte et al. (2019) uses discrete optimization method to learn the RM in partially
observable settings. JIRP Xu et al. (2020) adapts classical automata learning algorithms Neider &
Jansen (2013); Jeppu et al. (2020) to learns the RM. SRM Corazza et al. (2022) extends the RM
learning to environments containing noisy rewards. ISA Furelos-Blanco et al. (2020) uses inductive
logic programming to learn reward structures for RL tasks. DeepSynth Hasanbeig et al. (2021)
employs an automata synthesis method to obtain the reweard structure. However, all those methods
require at least one positive trace (i.e., the task is solved in such trace) to learn a representative reward
structure that is helpful for policy learning. This requirement is not easy to fulfill because in a sparse-
reward environment, obtaining the positive trace can be difficult. Besides, the automata synthesis
method employed in DeepSynth is NP-complete, which could be computationally expensive when
the reward structure of the task is complex.
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Goal-conditioned reinforcement learning. Goal-conditioned reinforcement learning (GCRL)
trains an agent to achieve different goals Chane-Sane et al. (2021); Liu et al. (2022); Colas et al.
(2022) by training a goal-conditioned policy. The multiple goals provide intrinsic rewards to train
agents in sparse-reward environments Andrychowicz et al. (2017). Since rewards are intrinsic, the
algorithm can compute multiple rewards towards different goals for a single transition to reuse the
data, thus improving sample efficiency. The training of goal-conditioned policy can be improved
with efficient techniques. For example, Fang et al. (2019) generates a series of goals of varying dif-
ficulty levels based on a curiosity-driven approach to constitute easy-to-difficult curriculum learning.
Eysenbach et al. (2022) applies contrastive representation learning to action-labeled trajectories to
constitute goal-conditioned value function. Ding et al. (2022) constructs causal graphs through
causal discovery and in this way improves the generalization of GCRL. GCRL trains policies con-
ditioned on goals to be achieved. To the best of our knowledge, there are no GCRL methods that
train policies conditioned on goals that have been completed previously, which makes it difficult for
GCRL to efficiently learn tasks that require some exact sequential completion of multiple subgoals.

Hierarchical reinforcement learning. Hierarchical Reinforcement Learning (HRL) methods ex-
ploit temporal abstraction Pateria et al. (2021) or spatial abstraction Zadem et al. (2023) to improve
sample efficiency of RL. When designing the two-level policy, we are inspried by HRL with tempo-
ral abstraction, such as HAM Parr & Russell (1997), MAXQ Dietterich (2000) and h-DQN Kulkarni
et al. (2016). These methods abstract the environment as a Semi-MDP Sutton et al. (1999), which
specifies different time scales for different level of policies. A specific HRL method is Interrupting
Options Sutton et al. (1999), where the option is interrupted in extreme case at every step so that
the high-level policy and low-level policy make decisions at the same time scales. HRL approaches
select subtasks based on the environment state, which leads to existing HRL methods being inap-
propriate for solving the problem of structuring rewards using domain knowledge in the case where
the agent needs to complete subtasks in some order.

We propose ALCS which uses the idea from the mentioned three subfields. In particular, we fol-
low RM and incorporate the precise information of the sequential order of completed subtasks into
policy learning. Moreover, inspired by HRL, we train two-level policies and follow the technique
of GCRL to reuse the data to train multiple policies jointly. ALCS differs from RM because ALCS
does neither assume a given RM nor infer a reward machine for the learning agent. By training low-
level policies with subtasks, ALCS does not rely on positive trace to start the policy learning, which
makes ALCS more sample efficient than those methods that infer a reward machine. Besides, the
high-level policy of ALCS takes into account the sequence of historically completed subtasks when
making decisions, which makes ALCS different from existing HRL methods. Moreover, ALCS
trains policies conditioned not only on a subtask to be achieved but also on a sequence of com-
pleted subtasks, which is different from existing GCRL methods. We have a detailed analysis of the
distinctions and merits of our method in Appendix B.

3 Automatically Learning to Compose Subtasks

3.1 Problem Setting

The RL problem considers an agent interacting with an unknown environment Sutton & Barto
(2018). Such environment can be modeled as a finite Markov Decision Process (MDP), M =
(S,A, T , R, γ) where S is a finite set of states, A is a finite set of actions, T : S × A× S → [0, 1]
is a transition function, γ ∈ [0, 1) is a discount factor and R : S ×A×S → R is a reward function.
An agent employs a deterministic policy π : S → A to interact with the environment. At a time
step t, the agent takes action at = π(st) according to the current state st. The environment state
will transfer to next state st+1 based on the transition probability T . The agent will receive the
reward rt = R(st, at, st+1). Then, the next round of interaction begins. The goal of this agent is
to find the optimal policy π∗ that maximizes the expected return: π∗ = argmaxπE[

∑T
t=0 γ

trt|π],
where T is the terminal time step. The Q function for policy π on a state-action pair (s, a) is de-
fined as: Q(s, a) = Eπ,T [

∑T
t=0 γ

tR(st, at, st+1)|s0 = s, a0 = a]. When the estimated Q function
converges to the optimal Q∗, policy π(s) = argmaxaQ

∗(s, a) is an optimal policy.
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In this work, we extend the standard RL problem with domain knowledge consisting of a finite
vocabulary set P and a labeling function L : S → P∪{∅}. A vocabulary p ∈ P is seen as a subtask
for achieving the final learning task. Given P and the labeling function L, L(s) = p means that p is
the subtask that is achieved at state s and L(s) = ∅ means that no subtask is achieved at state s.

(a) (b)

Figure 1: (a) Coffee&mail task. The ‘a’, ‘c’, ‘m’
and ‘o’ indicates the agent, coffee, mail and office
respectively. The agent receives reward only upon
reaching the ‘o’ after reaching ‘c’ and ‘m’. (b)
RM introduced by Icarte et al. (2022) to expose
the reward structure of this task.

We demonstrate this using an example in
the OfficeWorld domain Icarte et al. (2022).
As shown in Figure 1(a), the vocabulary
set {c,m, o} specifies three possible sub-
tasks. During interaction with the environment,
agents can useL to detect whether a subtask has
been completed at s. For example, L(s) = c or
L(s) = o mean the subtask ‘picking up coffee’
or ‘arriving at office’ is achieved by the agent
at s respectively. When L(s) is ∅, no subtask
achieved at s.

In recent literature, the solution to such a prob-
lem is to specify Icarte et al. (2022) or learn Xu
et al. (2020); Hasanbeig et al. (2021) a reward
machine. An example of a reward machine for
Coffee&mail task is shown in 1(b). An RL agent with this reward machine starts from the beginning
of an episode (u0). If at any MDP state s that L(s) = c, then the RL agent moves to u1 with reward
0. Similarly, if at u3 the RL agent encounters an MDP state s that L(s) = o then the RL agent
moves to terminal state u4 with reward 1. With such a reward machine, previous methods such as
Icarte et al. (2022); Xu et al. (2020); Hasanbeig et al. (2021) learn Q-values over the cross-product
Q(s, u, a), which allows the agent to consider the MDP state s and RM state u to select the next
action a Icarte et al. (2022). In our setting, how the subtasks contribute to rewards is not required
and given. Instead, the knowledge given by P and L is limited to subtasks (not to, for example, their
ordering structures). Given such minimal knowledge of the learning task, our algorithm will learn
to capture these knowledge during the training.

3.2 Two-level policy formalization

In ALCS, a high-level policy is designed to select a next subtask to be achieved based on the environ-
ment state and the sequence of subtasks that have already achieved in the history of this episode. We
denote it as πh : S×P∗ → P , where P∗ is the Kleene closure on P . For example, in Figure 1 where
P = {c,m, o}, the Kleene closure on P is P∗ = {∅, c,m, o, cc, cm, co,mc,mm,mo, oc, om, oo,
ccc, ....}. Given a state s, πh selects the next subtask p by:

p = πh(s, p
∗) (1)

where the sequence p∗ ∈ P∗ represents the order of subtasks that have been temporally achieved in
the history of a given episode. The completed subtasks and their order are key information in the
learning tasks that requires sequential completion of subtasks. Therefore, the agent will benefit from
training the policy πh with such sequence being considered. Moreover, the learned behavior based
on p∗ empowers the high-level policy to support non-Markovian decision-making for a current state.

On the other hand, a low-level policy, denoted as πl : S×P → A, is designed to learn to achieve the
selected subtask efficiently. Taking the current state and a subtask given from high-level policy, πl
decides an environment action to achieve the subtask. πl selects actions by: a = πl(s, p). With the
two-level policy, our agent interacts with the environment as follows. At the beginning of an episode,
the agent initializes an empty sequence p∗ to store the achieved subtasks in the environment. At each
time step t, the agent first employs the high-level policy to select a subtask pt to be achieved based
on the current state st and the achieved subtask sequence p∗t , i.e., pt = πh(st, p

∗
t ). Then, the agent

uses the low-level policy to choose action at = πl(st, pt) to interact with the environment. When a



Reinforcement Learning Journal 2025
∣∣ Cover Page

subtask is achieved in st+1, it will be appended into the sequence:

p∗t+1 =

{
p∗t ⊕ L(st+1) if L(st+1) 6= ∅
p∗t otherwise

(2)

where ⊕ represents appending L(st+1) into the end of sequence p∗t . We next describe the definition
of the Q functions of two policies and the detailed corresponding training process.

3.3 Low-level training

The low-level policy πl in ALCS is to achieve the given subtask p ∈ P . Therefore, πl is not trained
with respect to the MDP reward R. For a certain p ∈ P , πl is trained with the following rewards:

Rp(st, at, st+1) =

{
1 if p = L(st+1) and p 6= L(st)

0 otherwise
(3)

According to Equation (3), it can be known that for different subtasks, πl is trained with dif-
ferent reward functions. Given Equation (3), we define the low-level Q function Ql(s, p, a) as
the excepted return based on the subtask p: Ql(s, p, a) = Eπl,T [

∑T
t=0 γ

tRp(st, at, st+1)|s0 =
s, a0 = a]. With this low-level function Ql, πl can select actions by doing argmax opera-
tion: at = argmaxaQl(st, p, a) at time step t. In the training, Ql is updated with experience
(st, at, st+1, r

p
t ), where rpt = Rp(st, at, st+1) is the reward value with respect to the subtask p.

Figure 2: Generating the high-level ex-
periences for Qh in the task of Fig-
ure 1. Each row contains a transition:
((st, p

∗
t ), pt, (st+1, p

∗
t+1), rt), where pt

here is the assumed selected subtask
and rt is the environmental reward. In
this example, subtask c, m, and o are
achieved at time step 9, 15, and 27, re-
spectively. Then, the assumed subtask
pt selected by πh are c from time step
0 ∼ 8, m from time step 9 ∼ 14, and o
from time step 15 ∼ 27.

We observe that the reward function in Equation (3) is
computed by labeling function L. Inspired by goal re-
labeling Andrychowicz et al. (2017); Liu et al. (2022)
and counterfactual experiences Icarte et al. (2022), to
improve the training efficiency, we use L to generate
multiple experience for different subtasks to update Ql,
instead of using a single experience (st, at, st+1, r

p
t ).

To do so, for a single transition (st, at, st+1) sampled
from the environment, we can generate a set of experi-
ences: {(st, at, st+1, r

p
t )} for all p ∈ P , where rpt =

Rp(st, at, st+1) is the reward for subtask p. We put the
pseudo-code for training the low-level policy and a de-
tailed description of it in the appendix C.

3.4 High-level training

The goal of the high-level policy πh in ALCS is to
compose subtasks for the original task in MDP. So πh
is designed to be trained with the MDP reward func-
tion. The corresponding Q function defined as the ex-
cepted return from the environment following πh and πl:
Qh(s, p

∗, p) = Eπl,πh,T [
∑∞
t=0 γ

tR(st, at, st+1)|s0 =
s, a0 = πl(s, p)]. With this high-level function Qh,
πh selects a subtask pt by doing the argmax operation:
pt = argmaxpQh(st, p

∗
t , p) for given st and p∗t . In the

decision-making process of selecting the subsequent sub-
task pt for completion, ALCS considers the sequence of
previously accomplished subtasks. This empowers the high-level policy to determine the execution
order of subtasks, thereby facilitating ALCS for non-Markovian decision-making capabilities.

In the general RL methods, Q function should be updated based on the trajectories collected from
exploration. However, when the trajectories of high-level policy in exploration are applied to train-
ing, it may lead to key subtasks in terms of the task completion not being learned. For example, a
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subtask pt is chosen by πh(st, p∗t ). When πl(st, pt) takes an action to achieve pt, this action causes
another subtask p′ being completed. In this case, if p′ is the key subtask that brings reward in future
time step, the importance of p′ to reward cannot be learned. Because πh(st, p∗t ) does not choose p′

as its decision and therefore p′ does not appear in the exploration trajectories of πh.

To solve this problem, we propose to generate the high-level experiences based on the actual com-
pleted subtask in the environment (subtask p′ in the above example), instead of based on the subtask
selected by the high-level policy (subtask p). In other words, the actual completed subtask will be
rewarded and the corresponding data ((st, p∗t ), p

′, (st+1, p
∗
t+1), rt) is used for the update. Whenever

a subtask is detected as ‘achieved’ by the labeling function, we assume that πh has chosen this sub-
task. And experiences will be generated to update Qh based on this assumption. An example for
generating experiences in an episode is shown in Figure 2. We include the pseudo-code for training
the high-level policy and a detailed description of it in the appendix D.

4 Experiments

(a) Coffee (b) Coffee and Mail (c) Collecting (d) Bonus

(e) Plant (f) Bridge (g) Bed (h) Gem

Figure 3: Learning curves of various RL algorithms on 8 environments from OfficeWord and
MineCraft domains.

We evaluate our method in 8 different sparse-reward environments from the two commonly used
domains 1, OfficeWord and MineCraft Icarte et al. (2022); Xu et al. (2020). We introduce the char-
acteristics of these environments and the reasons for choosing them as follows. Coffee (Go to office
after taking a coffee), Coffee&Mail (Go to office after taking both a coffee and a mail. The order
of taking the coffee and mail does not matter), Collecting (Go to office after collecting four pack-
ages A, B, C and D in the corners. The order of taking those packages does not matter), Bonus
(Same task with the Collecting environment. The agent will receive extra bonus if all packages are
collected), Plant (Get wood, use toolshed), Bridge (Get iron, get wood, use factory. The agent
recieves 1 reward after achieving this task. The iron and wood can be gotten in any order), Bed (Get
wood, use toolshed, get grass, use workbench. The grass can be gotten at any time before using the
workbench), and Gem (Get wood, use workbench, get iron, use toolshed, use axe. The iron can be
gotten at any time before using the toolshed). In those environments, the former four environments
are from the OfficeWord domain, while the latter four are from MineCraft. The agent in all environ-
ments expected for Bonus is only rewarded when completing the task (sparse-reward environments).
These environments have increasing task complexity in terms of the number of subtasks and states,
which is helpful to show how the performance of methods as the task difficulty increases. Moreover,
OfficeWord and MineCraft have 108 and 400 discrete states, respectively. Comparing methods in
the two domains can show the impact of the increased state space on the performance.

1The code is released on: https://github.com/shan0126/ALCS/tree/master.
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In addition, Bonus is a special environment. In this environment, the agent can get 1 reward for every
package, but is preferred to collect all the packages. Note that the goal in the Bonus environment is
too sparse for providing rewards. Thus, in this environment, there is also an environment reward for
completing individual subtasks (collecting one or more packages), which helps the methods learn
the skill of collecting packages. But at the same time those rewards can lead to the misalignment
policy from collecting all packages to collect individual packages. Therefore in this environment, it
is challenging for the RL agent to utilize the subtask reward without policy misalignment.

We compare the following seven different methods as follows. ALCS is a implement prototype with
learning rates 0.1 for both Ql and Qh. In the training, the rate for ε−greedy exploration is 20% to
provide stochastic exploration. JIRP Xu et al. (2020) infers an RM using the libalf library Bollig
et al. (2010) from the RL trajectory. JIRP employs the same level of domain knowledge to our
method, i.e., a set of labels that signify subtasks. DeepSynth Hasanbeig et al. (2021) uses automata
synthesis Jeppu et al. (2020) to learn a high-level automaton model to guide RL policy learning.
Likewise, DeepSynth employs the same level of domain knowledge to our method. HRL Kulkarni
et al. (2016) learns hierarchical policies. We follow the implementation Xu et al. (2020) where treats
subtasks p ∈ P as options and the termination condition of an option is whenever the corresponding
p is achieved. Interrupting options Sutton et al. (1999) is a HRL method in which the high-level
policy can interrupt low-level policies if there are better subtasks to be completed. Interrupting
options is an indispensable method for avoiding the missing of key subtasks. HER Andrychowicz
et al. (2017) is a well-known GCRL method. The goal in HER is defined as the subtask p ∈ P and
the corresponding goal-conditioned reward is the same as Equation (3). HER is an efficient method
to train to complete multiple subtasks. Q learning Watkins & Dayan (1992) is a well-known general
RL algorithm. We use the implementation version from Icarte et al. (2022).

Notably, JIRP and DeepSynth are the state-of-the-art methods on the above-mentioned domains.
In general, JIRP learns better when there is only a binary reward at the end of the episode, and
DeepSynth is more adaptable in non-binary cases. They all have access to a given set of subtasks,
as well as a label function and the return of this function is the identity of the subtask based on the
environmental state when this subtask is completed for the first time in an episode.

4.1 Comparison

(a) Coffee (b) Coffee and Mail (c) Collecting (d) Bonus

Figure 4: Learning curves for ablation experiment of ALCS on 4 environments from OfficeWord.

We first compare our method with baselines on 8 environments from OfficeWord and MineCraft
domains to validate the superiority of ALCS. The results are shown in Figure 3. The error bounds
(i.e., shadow shapes) indicate the upper and lower bounds of the performance with 20 runs excluding
2 best and 2 worst results. The results show that algorithms that cannot utilize information about
subtasks already performed, such as Q learning, are unable to learn the optimal policy in these
domains. Our method significantly outperforms the baseline methods (including the state-of-the-
art methods JIRP and DeepSynth) in all environments except Coffee where the reward structure is
simple and easy to explore. In such an environment, learning an exact model with JIRP in Coffee
environments to specify the reward structure is a better solution. However, when the reward structure
is complex, the sample efficiency of ALCS can significantly outperform all other methods.

Another conclusion can be drawn by comparing those methods between OfficeWord and MineCraft
domains. It is well known that the sample efficiency of the RL algorithm can decrease on environ-
ments with large state space. Comparing the performance of those RL algorithms in OfficeWord do-
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main, their performance in the MineCraft are reduced because of the larger state space. In contrast,
our method is less affected by increased state space compared to the baselines. In addition to the
state space, the problem difficulty increases when the number of subtasks increases. By comparing
the performance of ALCS across Bridge, Bed and Gem environments, it can be seen that the perfor-
mance variance of ALCS grows with the increasing task complexity. This suggests that our method
can suffer from the exponential growth of subtasks but still be more scalable than state-of-the-art
methods. Moreover, in the Collecting environment where all baselines fail on policy learning, these
baselines can learn some policies for subtasks when rewards are shaped for completing the collection
of one or more packages (in the Bonus environment). However, these shaped rewards can misalign
the learned policy from collecting all packages to collecting individual packages for baselines. Our
two-layer policy learning can overcome such policy misalignment.

4.2 Ablation study

In order to explore the contribution that each proposed technique to the whole algorithm, we compare
the ALCS with its ablative variants on the OfficeWord domain. The results are shown in Figure
4, where ‘ALCS w/o M’ stands for ALCS algorithm without multiple experiences generating for
updating Ql (as proposed in Subsection 3.3), ‘ALCS w/o S’ represents ALCS algorithm without
sequence of completed subtask for πh (as presented in Subsection 3.2), and ‘ALCS w/o A’ indicates
ALCS algorithm without the assumed choice of subtask for training πh (as presented in Subsection
3.4) which can be also seen as the on-policy version of ALCS. As shown in Figure 4, in case of ALCS
w/o M, when not generating multiple experiences for Ql, the performance of the algorithm drops in
all environments due to insufficient learning of the low-level policy, and in Collecting environment,
ALCS w/o M cannot even learn. In ALCS w/o S, when πh learns without a sequence of completed
subtask, it cannot select the optimal subtask to be achieved due to the inability to obtain sufficient
information on the completed subtasks. In case of ALCS w/o A, we see that the off-policy learning
in ALCS with the assumed choice of the subtask is the key to high-level πh to efficiently learn to
compose subtasks. In addition, in the coffee environment, the subtask on picking coffee has a high
probability of being completed while executing the subtask on arriving at the office. In this case,
the selection of the subtask for picking a coffee will not be learned by the πh. Therefore, even if
the tasks in the Coffee environment are not complex, without assuming a choice of subtask, ALCS
cannot to learn good policies.

In addition, the policy trained by ALCS can be extended by a tree-based search algorithm into an
interpretable policy. We put the corresponding methodology as well as experimental demonstrations
in appendix A.

5 Conclusion and future work

In this paper, we propose ALCS, an RL algorithm to automatically structure the reward function
to improve the sample efficiency in sparse-reward tasks. ALCS uses a two-level policy to learn
composing subtasks and to achieve them in the best order for maximizing the excepted return from
environments. Besides, three optimization methods are designed for this two-level policy learning
framework, which includes providing information of the completed subtask sequence for a better
high-level decision, generating multiple experience for sample efficiency, and training high-level
policy with assumed selection based on the actually achieved subtasks. We show that in a variety
of sparse-reward environments, ALCS significantly outperforms the state-of-the-art methods in en-
vironments with high task difficulty and demonstrates the interpretative capacity for indicating the
selected sequence among multiple possible sequences. In future work, we want to explore the con-
vergence of the proposed algorithm and to continue our efforts to automatically learn to structure
the reward function. In this paper, the subtasks are given as domain knowledge that specifies all
subtasks. In future, we will extend our method with partial information about the specified subtasks.
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Appendix

A Interpretability

How to make the RL algorithms interpretable has widely raised concerns recently for ethical and
legal considerations in application Puiutta & Veith (2020); Heuillet et al. (2021); Glanois et al.
(2021). In this section, based on the given minimal domain knowledge, we interpret the behavior of
agents trained by ALCS.

In the training process of ALCS, we can use a tree structure to record all the sequences of subtasks
that have been achieved. This tree begins with a root node ‘∅’. Each descendant node of the root is a
subtask p ∈ P . The nodes in the path from the root to a descendant can form a sequence p∗ ∈ P∗. In
the beginning of an episode, the agent always starts from the root node ‘∅’, which means no subtask
has been achieved in the history of this episode. Then, if a subtask p is achieved, a new child node
with respect to p is added in the tree. Besides, the reward from the environment when subtask p is
achieved will be recorded on the edge to the corresponding child node. Given an achieved sequence
of subtask p∗t at time step t, a node associated with the current state can be uniquely identified in
the tree. We call this node as a current node at t, denoted as N(p∗t ). At the start of the episode,
the agent’s current node N(p∗t ) is reset to the root node, i.e. p∗t is reset to ∅. An example of this is
shown in Figure 5.

Figure 5: An example tree to record sequences of subtasks during training in the task of Figure 1.
For finite MDP the tree is finite as the depth of the tree will be limited by the episode steps and the
width will be limited by |P|.

With this tree, the RL agent can interpret its behavior based on the given domain knowledge during
execution. The interpretation consists of the following three parts. 1) What has already happened.
During execution, the current p∗t can be seen as an interpretation of what subtasks have happened in
which order. 2) Current best subtask. The current pt selected by πh is interpreted as the current
best subtask. 3) Planning for the future. With p∗t ⊕ pt, the agent can localize a node on the tree.
By performing a breadth-first search (BFS) on the subtree with this node as root, the agent can find
a sequence of subtasks that can obtain the reward. This sequence of subtasks is interpreted as the
planning for the future. If the BFS algorithm cannot find a satisfied descendant node in limited
depth, then we say there is no interpretation to future plan for the current decision.

The advantage of this is that the interpretation takes into account both the high-level information
constructed by domain knowledge (i.e., the tree) and the environment state information through
pt = π(st, p

∗
t ). When the environment state changes, both the behavior and its interpretation could

change, which makes the decision-making procedure of an agent more transparent.

We demonstrate the interpretability of our learned policy in the Coffee and Mail environment. In this
task, there are two possible sequences of subtasks to bring reward: c → m → o and m → c → o.
However, the optimal sequence of subtasks is different when the agent starts from different positions.
As shown in Figure 6, starting from position 1©, the agent takes fewer steps with the sequence
c → m → o. At position 2© m → c → o is a better sequence with fewer steps to finish the task.
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The previous approaches with an automaton in interpretation will consider the two sequences to be
equivalent.

Figure 6: Interpretation on Coffee&Mail. The three colors on the right of the figure represent the
three corresponding parts of interpretation.

The high-level policy learned in ALCS can explain the difference, because our high-level policy can
output an exact subtask to be achieved based on the environment state. As shown in Figure 6, when
the agent starts in different positions, with different state being input into πh, πh will select different
‘current best subtask’ to achieve based on Equation (1). As shown in right of Figure 6, ‘c’ is selected
at 1© and ‘m’ is selected at 2©. Then, according to the recording tree, it provides future planning
after achieving the selected subtask. These constitute a complete interpretation on how to compose
subtasks exactly to finish the task with fewer steps.

B ALCS revisited

Like previous methods inferring an RM for policy learning, ALCS aims to improve the sample ef-
ficiency for sparse-reward learning tasks that involve sequentially completing multiple subtasks by
constructing the reward structure. Such problems with complex reward structures have not typically
been addressed by previous HRL and GCRL methods. This subsection will revisit how ALCS lever-
ages the strengths from RM methods while surmounting challenges that are difficult to overcome
with the HRL and GCRL methodologies.

A reward machine succinctly exposes the structure of a reward function to the RL agent via an
automaton, as shown in Figure 1(b). This reward structure reveals the necessary subtasks and their
ordering through paths from the start state to the reward state in the automaton. Following such
structure, an abstract state on these paths characterizes an intermediate status towards completing the
subtasks in some order. For example, u1 represents the intermediate status that ‘c’ has been achieved
and u3 represents that both ‘c’ and ‘m’ have been achieved. Augmenting the MDP state with such
high-level abstract state provides key information of achieved subtasks in history to support low-
level decision-making. Inspired by this, in the absence of given RM, we argue to enable RL agents
to make decisions based on achieved subtasks as well.

To do this, we develop a two-level policy framework to make decisions and learn to automatically
structure the reward function by composing subtasks. A case to show how ALCS make decisions in
an episode is shown in 2© of Figure 7. The high-level policy first selects a subtask to be achieved
at each time step based on the current MDP state augmented with previously completed subtasks.
Then the low-level policy selects an action to interact with the environment based on the current
MDP state and the subtask chosen by the high-level policy. For example, at s3, the high-level policy
selects subtask o based on the MDP state as well as on previously completed subtasks c and m, then
the low-level policy selects an action to achieve o based on s3. As an episode ends, the high-level
decision for each time step on this episode trajectory will be modified based on the subsequently
completed subtask according to subsection 3.4. For example, in 3© of Figure 7, the decisions at s0
and s1 are modified as c based on the subsequently achieved subtask at s2.

ALCS is quite different compared to previous HRL methods, the decision process of which is
demonstrated in 1© of Figure 7. In the common case of HRL Dietterich (2000); Kulkarni et al.
(2016), at s0 the high-level policy first selects a subtask to be achieved. The low-level policy will
persistently aim to complete this subtask as the goal to select actions until the subtask is achieved.
Then the high-level policy selects a subtask based on the current state s3 again. By allowing the two



Reinforcement Learning Journal 2025
∣∣ Cover Page

Figure 7: Example to show different methods in the Coffee&mail task. 1© and 2© show the decision
process of two-level policy in previous HRL methods and in the proposed ALCS, respectively. 3©
indicates the high-level trajectory for training generated from the decision process in 2©.

level policies to make decisions on different time scales, the higher level obtains a shorter trajectory
{s0,‘m’, s3,‘o’, s5}, which enables efficient credit assignment over long timescales Pateria et al.
(2021).

However, this representative HRL approach is not suitable for learning to automatically structure
reward function with subtasks. On the one hand, high-level policy in HRL always makes decisions
based on the current MDP state, which does not contain precise information about completed sub-
tasks as the RM state does. Thus this high-level decision making is limited in its contribution to
the overall action selecting of the RL agent. On the other hand, HRL uses an abstracted MDP tra-
jectory to train the high-level policy, which can lead the learning of high-level policies to miss key
subtasks. As in Figure 7, although the agent completes the task, the high-level learning in HRL only
reinforces the selection of subtasks ‘m’ and ‘o’, missing another key subtask ‘c’ for the underlying
reward structure. As a contrast, such critical subtasks are not missed in the ALCS training.

Besides, what subtask the policy is based on distinguishes ALCS from previous GCRL methods.
GCRL methods train policies based on the subtask to be accomplished. And how to select the
subtask to be accomplished is either by means of a predefined subtask selection function or by using
an HRL approach to learning Colas et al. (2022). This still prevents GCRL from automatically
learning composing subtasks with specific order for a given task. And although the low-level policy
in ALCS takes a similar decision-making approach based on the subtasks to be completed as GCRL,
the high-level policy in ALCS learns automatically to select the next subtask to be achieved based
on the exact sequence of completed subtasks. The high-level policy is conditioned on completed
subtasks instead of a subtask to be achieved. To the best of our knowledge, this is different from all
previous GCRL methods and gives ALCS the ability to automatically compose subtasks with valid
orders.

C Generating multiple experiences and updating Ql

Algorithm 1 describes the detailed practice for updating Ql with multiple experiences generated
from single transition. Given an input transition (st, at, st+1), Algorithm 1 in Lines 2 ∼ 7 assigns
different rewards following Equation 3 for all possible p ∈ P to this transition, which yields a
collection of experiences. Then those experiences will be used to update Ql in Lines 10 ∼ 17. After
sufficiently updating for Ql, given a subtask p, πl can repeatedly perform this subtask. But this is
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Algorithm 1 Generating multiple experiences and updating Ql.
Input: Transition (st, at, st+1), original Ql, learning rate α

1: Initialize experiences← {}
2: for p ∈ P do
3: if p = L(st+1) and p 6= L(st) then
4: rpt ← 1, done← True
5: else
6: rpt ← 0, done← False
7: end if
8: Add tuple (st, at, st+1, r

p
t , p, done) into experiences

9: end for
10: for (s, a, s′, r, p, done) in experiences do
11: if done then
12: y ← r
13: else
14: y ← r + γmaxa′ Ql(s

′, p, a′)
15: end if
16: Ql(s, p, a)← (1− α)Ql(s, p, a) + α · y
17: end for

generally not enough to maximize the environment rewards. So we also need to train the πh, which
is responsible for learning to compose subtasks in any order to maximize the environment rewards.

D Automatically Learning to Compose Subtasks

Algorithm 2 shows the overall training procedure of our method. When an episode begins, we
initialize some variables in Lines 2 ∼ 4, where experience_h is the experiences for this episode to
update Qh, e_temp is a temporary experience set, and p∗t stores the sequence of achieved subtasks
at the time step t. After the initialization for an episode, the algorithm will repeat the process in
Line 6 ∼ 36 until the episode terminates. In each episode, the agent first choose a subtask pt in
Line 6. Then an action at is selected following the ε−greedy exploration in Line 7 ∼ 11, where
rand() represents a function for sampling a variable between 0 and 1 uniformly. After executing
at, the Ql is updated using Algorithm 1 with respect to the current transition in Line 13. Then,
high-level experiences are generated in Line 14 ∼ 28. The experiences e in line 15 and Line 21
are differentiated according to whether there is a subtask being achieved at current time step. If a
subtask is achieved (i.e., L(st+1) 6= ∅), this achieved subtask, denoted as pact in Line 19, will be
appended into p∗t in Line 20. Besides, pact will be treated as the assumed subtask selected by πh.
Based on pact the high-level experiences for updating are generated in Line 23 ∼ 26. Finally, Qh
will be updated for each experience in the episode in Line 30 ∼ 33. According to Algorithm 2, Qh
and Ql are jointly updated with the same transition data but different rewards.
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