
Appendix428

A Details of Datasets429

Table A.1: Overview of total simulations performed for the HfO dataset. Ncond represents the total
number of simulation conditions, Nstr is the total number of MD snapshots, and Nf indicates the
total number of atomic force data. Structures with index (idx.) indicate the same crystal family but
have different lattice parameters.

Element Structure (idx.) Simulation Condition Ncond Nstr Nf

Hf & O

Monoclinic m-MQA method 6 16,000 1,536,000
Tetragonal m-MQA method 6 16,000 1,536,000
Cubic m-MQA method 6 16,000 1,536,000
Orthorhombic (1) m-MQA method 6 16,000 1,536,000
Orthorhombic (2) m-MQA method 6 16,000 1,536,000
Randomized Structures (ID) m-MQA method 30 80,000 7,680,000

Hf & O Randomized Structures (OOD) m-MQA method 12 32,000 3,072,000

Table A.2: Overview of total simulations performed for the SiN dataset. Ncond represents the total
number of simulation conditions, Nstr is the total number of MD snapshots, and Nf indicates the
total number of atomic force data.
Element Structure Simulation Condition Ncond Nstr Nf

Si & N

Amorphous

High T MD (2000, 4000 K; w/o strain) 11 13,650 1,006,500
High T MD at 1500K (w/ strain ±7%) 4 4,000 306,000
Quenching (4000 to 300 K; w/o strain) 8 26,150 1,305,600
Quenching (4000 to 300 K; w/ strain ±7%) 4 2,000 153,000
Structure Relaxation (w/o strain) 11 1,274 77,952
Structure Relaxation (w/ strain ±7%) 4 570 38,760

Crystals (α, β, γ) MD (300, 1200, 2100 K) 9 18,000 504,000
Structure Relaxation 9 569 15,932

Defect Structures MD with Divacancy (2000 K) 3 300 87,600
MD with Grain-Boundary (2000 K) 5 500 103,600

Surfaces MD (300, 1200 K) 6 6,000 480,000
Structure Relaxation 6 1,400 105,600

Isolated Clusters MD (300, 1200 K) 6 1,200 142,400
Structure Relaxation 6 600 70,800

Si

Crystals (Diamond, MD (2100 K; w/o strain) 4 2,000 69,500
SC, BCC, FCC) MD (2100 K; w/ strain ±7%) 8 4,000 139,000

Defect Structures MD with Divacancy (2100 K) 1 150 32,100
MD with Two Vacancies (2100 K) 1 100 51,000

N N2 Molecules MD (2100, 4000 K) 4 2,000 128,000

Si & N Amorphous (OOD) Melt, Quench, and Relaxation 3 3,700 388,500

A.1 Guidance430

Simulation data can be flexibly utilized by researchers to study interatomic potential models according431

to their specific preferences. For example, the HfO dataset was generated using the m-MQA method,432

which involved initial structures encompassing various crystals as well as randomized structures. In433

our HfO dataset, we included both types of structures to provide researchers with a comprehensive434

dataset. Researchers have the flexibility to train their models using a subset of the dataset consisting435

of randomized structures and evaluate their performance on the remaining portion of the dataset436

13



(a) Amorphous

(b) Crystals (α, β, γ)

(c) Defects (1D & 2D)

(d) Isolated cluster (e) Surface

(f) SC (g) BCC

(h) FCC (i) Diamond

(j) 1D defect

(k) N2 molecules

Figure A.1: Reference atomic structures employed in the SiN dataset.

comprising crystal structures, and vice versa. This approach enables thorough testing and assessment437

of model performance across different structural configurations within the HfO dataset.438

Researchers can modify the SiN simulation data to investigate the generalization performance of439

MLFF models. Despite the integrated SiN dataset containing not only SiN compounds but also Si-440

only structures and N-only structures, researchers have the choice to exclusively use SiN compounds441

for model training. Subsequently, they can evaluate the generalization performance of these models442

on Si- and N-only structures. However, it is crucial to recognize the significant challenge arising from443

the substantial disparities in sample distributions between SiN compounds and the Si- and N-only444

structures.445

The generation of specialized datasets for silicon nitride necessitates a high degree of domain446

expertise. However, our proposed m-MQA scheme represents a notable advancement by presenting a447

streamlined approach for generating the HfO dataset. In contrast to conventional methods reliant on448

specialized knowledge, this scheme empowers researchers familiar with DFT to effortlessly generate449

the dataset. By simplifying the dataset generation process and eliminating the requirement for450
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Figure A.2: Distribution of energy per atom and forces for SiN datasets: (a) energy per atom and (b)
force per atom.
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Figure A.3: Distribution of energy per atom and forces for selected MD simulations for HfO:
(a) energy per atom and (b) force per atom.

extensive domain expertise, our m-MQA scheme enhances accessibility for researchers, facilitating451

advancements in MLFF research.452

A.2 Dataset Characteristics453

To illustrate the diversity of datasets of our DFT calculations, we analyze the energy and force454

distribution for each DFT calculation. Figure A.2 shows the energy and force distributions of the455

representative crystal structures in the SiN datasets. For brevity, we only plot the energy and force456

distribution of single MD scenario for each structure. The SiN dataset contains numerous phases,457

showing well-separated variations for both energy and forces. The force distribution is particularly458

interesting since it reflects the structural properties of each MD simulation. The force distribution459

shows a considerable variation ranging from 0 to 6 eV/Å for amorphous phases. However, the highly460

symmetric crystalline phases (α, β, and γ-SiN) show that most of the forces on atoms are zero. MD461

simulations on face-centered cubic (FCC), body-centered cubic (BCC), and simple cubic (SC) also462

show relatively large variations of forces, but their distributions are narrower than amorphous cases.463

The N-alone case shows similar distribution as the SiN-crystalline case.464

Unlike SiN, the HfO datasets consist of 96 atoms with a fixed Hf:O stoichiometry of 1:2. Each465

MD scenario shows variations in energy and force, as demonstrated in Figure A.3 (a). The high-466

temperature pre-melting stage at 5000K shows the largest energy distribution. Depending on the467

compressive (HfO-premelting-c-5000K) or expansive (HfO-premelting-e-5000K) strain, they exhibit468
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Figure A.4: Distribution of the averaged bond order parameter q̄4 and q̄6 for SiN.
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Figure A.5: Distribution of the averaged bond order parameter q̄4 and q̄6 for HfO.

well-separated energy distribution. The average energy also lowers as the temperature decreases469

through the melting and quenching process. For the annealing process, they show the narrowest470

energy distribution. The force distributions of these MD scenarios also follow the typical patterns471

shown in MD simulations. For liquid-like pre-melting and melting stages (Figure A.3 (b)), we472

see relatively broader force distributions. As the temperature decreases through the quenching and473

annealing process, the average force on each atom decreases.474

Another essential aspect of the MLFF dataset is the inclusion of diverse atomic environments. Since475

the local atomic environment determines the atomic energy and forces, having a diverse atomic476

environment in the dataset is crucial. One way of quantifying the local environment is the bond order477

parameter (BOA) [51]. We employ the averaged BOA, usually denoted by two-dimension vectors q̄4478

and q̄6 [52]. This parameter can be a simple but good indicator for quantifying the diversity of the479

local atomic environment.480

Figures A.4 and A.5 shows the averaged BOA of SiN and HfO, respectively. SiN shows distinct481

phase separation in the q̄4 − q̄6 plane, with most BOA values falling between 0 ≤ q̄4 ≤ 0.3 and482

0 ≤ q̄6 ≤ 0.3. HfO also exhibits similar phase separation, with unique patterns for each MD483

scenario. For the high-temperature pre-melting step, the phase boundary is separated by a change in484

volume. For the melting and quenching steps, their coverage overlaps. However, the energy and force485

distribution among these MD scenarios are different as shown in Figure A.3. This means that the486
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Figure A.6: A modified Melting-Quenching-Annealing scheme used for generating HfO dataset.

local atomic environment also differs even though q̄4 and q̄6 shows similar distribution. It is important487

to acknowledge that the BOA does not take into account atomic species and distance information,488

which can limit its reliability as a comprehensive descriptor. However, this analysis can provide an489

initial insight into the dataset’s quality, serving as a starting point for further investigations.490

A.3 Utilization of Large-Scale Structural Databases491

The Materials Project [42] and AFLOW [43] are comprehensive databases that encompass a wide492

range of atomic structures, spanning various elements and structural motifs. These structures are493

predominantly derived from precise quantum mechanical calculations and represent materials in their494

energetically stable states, where the forces on most atoms approach zero.495

For those diving into MD simulations via MLFF models, understanding the nature of these databases496

is crucial. They primarily present configurations where atoms are at their stable states with minimum-497

energy. Molecular dynamics simulations, on the other hand, often explore high-energy conditions and498

a variety of force environments. Such scenarios are underrepresented in these databases, making them499

less suitable for training MLFF models directly. However, with their extensive collection of stable500

crystal structures, these databases are invaluable for selecting initial configurations when curating an501

MLFF training dataset.502

A.4 Details of the Modified Melt-Quench-Annealing Method503

The generation of the HfO dataset involved the use of a modified melt-quench-annealing (m-MQA)504

method, where the temperature was scheduled as depicted in Figure A.6. In the m-MQA method,505

aimed at obtaining high entropy structures, we incorporated three pre-melting stages at an exceedingly506

high temperature of 5000 K. These stages involved pre-melting at crystal’s original volume (pre-507

melting 1), followed by 10% isotropic compression (pre-melting 2) and 10% expansion (pre-melting508

3) relative to the original volume. These steps were taken to ensure the presence of both dense and509

sparse atomic environments in the resulting dataset. Initial structures underwent three pre-melting510

steps at 5000 K for 6 ps, melting at 3500 K for 9 ps, quenching from 3500 to 300 K for 16 ps. Finally,511

the structures were restored to their original volume and annealed at 600 K for 6 ps. All simulations512

were performed under the NVT ensemble with the Nose-Hoover thermostat.513

A.5 Dataset Instruction514

The extended-xyz format begins with a line declaring the total number of atoms. The subsequent515

line typically encompasses lattice information, energy, and other relevant details associated with516

the atomic structure for that specific simulation step. From the third line, each line represents an517

individual atom: the first column designates the atomic type, followed by its Cartesian coordinates518

and force components. This structured pattern is interspersed throughout the file, capturing snapshots519
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(a) [Input] An atomic structure (b) [Preprocessed] Graph (Optional) (c) [Output] Energy and Forces

Figure B.1: General flow of MLFF models.

from various points in the simulation, providing a comprehensive record that offers insights into the520

dynamic behavior of atoms at different stages.521

While the extended-xyz format can be handled with conventional text-processing utilities, employing522

specialized computational toolkits considerably streamlines the process. The Atomic Simulation523

Environment (ASE) [53], renowned for its versatility, effortlessly accommodates a wide range of524

atomistic formats, including the extended-xyz. From intuitive data visualization to comprehensive525

atomic analyses, its functionality significantly enhances user efficiency. Similarly, the Python526

Materials Genomics (pymatgen) [54] presents itself as an invaluable tool for researchers focused527

on atomic structural analysis. It offers deep insights into atomic structural data, enabling seamless528

structural analysis and transformations. Both ASE and pymatgen serve as commendable aids,529

optimizing the user experience in managing atomic structural databases.530

B Details of Benchmark Models531

In this Section, we briefly review the MLFF models used in this benchmark. Figure B.1 describes532

general flow of MLFF models. Figure B.1a illustrates a structure of input data, which is an 3D point533

cloud data consist of coordinates ri = (xi, yi, zi) ∈ R3, and atom numbers Zi ∈ Z for 1 ≤ i ≤ n534

where n represents the number of atoms. Figure B.1b describes the preprocessed data with 3D graph535

form, by constructing edges between points within a cutoff radius. As shown in Figure B.1c, model536

output consists of total system energy E ∈ R and force Fi = (F x
i , F

y
i , F

z
i ) ∈ R3.537

BPNN [13] As a pioneer study for MLFF, BPNN introduced a base idea for the MLFF field: the538

total energy is represented by a sum of atomic features. For a regression model, a neural network539

consisting of fully-connected layers is employed. To train the neural network, the coordinates of atoms540

are converted into hand-crafted features by using symmetry functions to describe local environment541

of atoms; the hand-crafted features are generally referred to as descriptors.542

DPA-1 [49] DPA-1, which was specifically designed to be operated on DeePMD-kit [48], is an543

end-to-end deep potential energy model that includes trainable descriptors. These descriptors are544

invariant under translation, rotation, and permutation. It also employs a self-attention mechanism to545

effectively incorporate angular information for improved performance.546

SchNet [16] SchNet is a deep neural network to adaptively learn atomic features representing547

local atomic environment from atom-centered symmetry functions without relying on pre-defined548

descriptors. It combines atomic intermediate features using continuous-filter convolutions to mimic549

atomic interactions.550
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DimeNet++ [18] DimeNet [17] is an MLFF model based on graph neural networks (GNNs), where551

directional information of atomic environment is embedded into directional messages. It utilizes552

distance features and dihedral angle features based on radial basis function and spherical basis553

function, respectively. As an improved version of DimeNet, DimeNet++ introduce an efficient554

implementation of the directional message passing layer of DimeNet, and its neural architecture is555

modified from that of DimeNet, enhancing predictive capabilities.556

GemNet (GemNet-T and -dT) [19] GemNet is a GNN-based model that incorporates directed557

edge embeddings and two-hop message passing, allowing the model to capture complex directional558

information. Quadruplet, a tuple with four atoms, can be used for these scheme; GemNet using the559

quadruplet is called GemNet-Q. In GemNet-T, the message and intermediate features are described560

by using atom pairs and triplets, which is a tuple with three atoms. As an alternative to calculate561

forces, direction force prediction method is proposed and applied into GemNet-T arhitecture, which562

is GemNet-dT. GemNet achieves universal approximation capabilities for translation-invariant and563

permutation/rotation-equivariant predictions.564

NequIP [22] NequIP utilizes E(3)-equivariant convolutions to capture interactions of geometric565

tensors, including vectors and higher-order tensors, of atom embeddings. NequIP can learn a566

representation of atomic environments more comprehensively, compared to models that use invariant567

convolutions and operate solely on scalars. Thus, it achieves prominent accuracy on a diverse range568

of molecules and materials while requiring significantly fewer training data.569

Allegro [23] In GNN-based MLFF models, message passing is considered as a necessary technique570

to learn many-body interactions. However, the message passing needs information exchange among571

atoms, leading a large communication overhead on distributed computing system, which is unsuitable572

for large-scale simulation. To address this issue, Allegro combines equivariant features and tensor573

products to represent a strictly local equivariant atomic features without relying on message passing,574

achieving both accuracy and scalability.575

MACE [24] MACE is theoretically based on multi-ACE framework [55] that was extended from576

atomic cluster expansion (ACE) framework by introducing GNNs equipped with high body-order577

messages. Due to the usage of high body-order messages, MACE can reduce message passing578

layers to learn the atomic potentials, enabling fast and parallelizable computations and enhancing the579

training efficiency.580

SCN [25] SCN is a GNN-based model where atom features are a set of spherical channels repre-581

sented by spherical harmonics, enabling it satisfy rotation equivariance. By relaxing the constraint of582

rotational equivariance in message passing and aggregation, SCN demonstrated that the performance583

of energy and force prediction can be improved. SCN is specifically designed for OC20 and requires584

heavy computation and memory usage. To deal with this issue, we reduced its model size by using 4585

interaction (message passing) layers and 64 spherical channels; the small SCN was used for the all of586

our experiments.587

C Details of Numerical Benchmark588

C.1 Error Metrics and Losses589

Energy and force errors are commonly employed as evaluation metrics to assess the performance of590

MLFF models, primarily due to their ease of use and straightforward interpretability. The errors and591

loss functions can be computed in several ways, which are listed in Table C.1. As in discussed in592

Section 4.1, we chose the RMSE of per-atom energy, which can be considered invariant among593

various snapshot sizes, and the axis-wise RMSE of forces (briefly called the RMSE of forces). In594

addition, we also list the MSE-based loss and MAE-based loss.595
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Table C.1: Error metrics and losses used in MLFF research and this benchmark. N is the number of
snapshots, ni is the number of atoms in snapshot with index i. The normal characters such as Ei,
f i,k
x indicate reference data (i.e., ground truth). The characters with a hat such as Êi, f̂ i,k

x indicate
predicted values by MLFF models. λf is a coefficient of force loss.

Type Name Formulation

Energy
error metric

MAE of (total) energy
∑N

i=0 |Ei − Êi| / N

RMSE of (total) energy
[∑N

i=0 |Ei − Êi|2 / N
]1/2

MAE of per-atom energy
∑N

i=0

∣∣Ei−Êi

ni

∣∣ / N

RMSE of per-atom energy
[∑N

i=0

∣∣Ei−Êi

ni

∣∣2 / N
]1/2

Energy loss
MAE of per-atom energy

∣∣Ei−Êi

ni

∣∣
MSE of per-atom energy

∣∣Ei−Êi

ni

∣∣2
Force
error metric

Axis-wise MAE of force
∑N

i=0

∑ni

k=0

(
|f i,k

x − f̂ i,k
x |+ |f i,k

y − f̂ i,k
y |+ |f i,k

z − f̂ i,k
z |

) / ∑N
i=0 3ni

Axis-wise RMSE of force
[∑N

i=0

∑ni

k=0

(
|f i,k

x − f̂ i,k
x |2 + |f i,k

y − f̂ i,k
y |2 + |f i,k

z − f̂ i,k
z |2

) / ∑N
i=0 3ni

]1/2

Force loss

Axis-wise MAE of force
∑ni

k=0

(
|f i,k

x − f̂ i,k
x |+ |f i,k

y − f̂ i,k
y |+ |f i,k

z − f̂ i,k
z |

) /
3ni

Axis-wise MSE of force
∑ni

k=0

(
|f i,k

x − f̂ i,k
x |2 + |f i,k

y − f̂ i,k
y |2 + |f i,k

z − f̂ i,k
z |2

) /
3ni

L2-MAE of force
∑ni

i=0

(
|f i,k

x − f̂ i,k
x |2 + |f i,k

y − f̂ i,k
y |2 + |f i,k

z − f̂ i,k
z |2

)1/2/
ni

L2-MSE of force
∑ni

i=0

(
|f i,k

x − f̂ i,k
x |2 + |f i,k

y − f̂ i,k
y |2 + |f i,k

z − f̂ i,k
z |2

) /
ni

EF metric = RMSE of per-atom energy + Axis-wise RMSE of force

MAE-based loss = MAE of per-atom energy + λf× L2-MAE of force
MSE-based loss = MSE of per-atom energy + λf× Axis-wise MSE of force

C.2 Training Hyperparameters596

In the ML community, where the reproducibility of experiments is highly valued, sharing training597

recipes that include hyperparameters for training MLFF models is considered a valuable endeavor. In598

alignment with this attitude, we present the hyperparameters of the models, which we trained for this599

benchmark study. The configuration files are included in codes of the supplementary materials.600

By doing so, we aim to promote transparency and enable others to replicate and build upon our work601

in a meaningful way.602

The all of configurations including neural architecture hyperparameters and optimization hyperpa-603

rameters are prepared into our codes in Supplementary materials: codes.zip (in configs/train/SiN/ and604

configs/train/HfO/). Also, the training factors are listed in Table C.2.605

As a variant of Adam [56], AMSGrad [57] maintains the maximum of the past squared gradients606

instead of using exponential moving average, leading to more stable convergence. However, we607

empirically observed that training losses of MLFF models are often skyrocketed, resulting in relatively608

slow convergence. Thus, for models that used AMSGrad in the original papers, we tried to train609

models with or without AMSGrad, and then the better results are reported in this paper. Recently-610

proposed models tend to employ exponential moving average (EMA), which may also help to obtain611

stable training results.612

While most of the hyperparameters of each model including the neural architecture introduced in the613

original paper (except SCN) were preserved, we established a common rule of some hyperparameters614

which can affect the training cost: epochs, batch size, and learning rate schedule. For both HfO and615

SiN datasets, MLFF models were trained during 200 epochs. The training batch size for each model616

was selected from the options of 3, 4, 8, 16 to ensure compatibility with the memory capacity of the617

V100 GPU; the batch size selected by each model can be seen in Table C.2.618

We trained models using a linear decaying schedule (LinearLR) that an learning rate is linearly619

decayed every step until the training is completed, i.e., 200 epochs. The most existing MLFF models620
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Table C.2: Details of training factors for 10 MLFF models.
Model Optimizer Initial Batch size etc.

learning rate SiN HfO

BPNN Adam 5.e-3 16 16 weight decay: 1.e-6
DPA-1 Adam 1.e-3 16 16
SchNet Adam 1.e-4 16 16
DimeNet++ Adam 1.e-4 3 8
GemNet-T AdamW 5.e-4 4 8 AMSGrad, ema decay: 0.999, gradient clipping: 10
GemNet-dT AdamW 5.e-4 4 8 AMSGrad, ema decay: 0.999, gradient clipping: 10
NequIP Adam 5.e-3 16 16 ema decay: 0.99
Allegro Adam 5.e-3 16 16 ema decay: 0.99
MACE Adam 1.e-2 16 16 weight decay: 5.e-7, ema decay: 0.99
SCN AdamW 4.e-4 6 8 AMSGrad, ema decay: 0.999
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Figure C.1: EF metrics and training times of GemNet-dT and MACE trained with or without
restricting the number of neighborhood atoms.

primarily employed one of the two types of learning rate schedules: ReduceLROnPlateau [19, 22,621

23, 24] and StepLR [17, 18, 25] implemented in PyTorch. The former stably gives decent training622

results but makes it difficult to estimate when the training will be completed. The latter allows for623

predicting the training completion point by specifying the training cost. However, it requires careful624

consideration of factors such as the decaying points, the decay factor, and the number of decay625

steps. Therefore, to control the training cost, we opted for a linear decaying schedule with solely one626

required hyperparameter, an initial learning rate, and thus we can control the training budget for fair627

benchmark. During training, the learning rate linearly decreases from the initial learning rate to 0 at628

each iteration.629

C.3 Data Preprocessing630

C.3.1 Graph Generation631

For the fairness comparison among MLFF models, we train MLFF models with a radius cutoff of 6.0632

and a maximum limit of 50 neighborhood atoms. As illustrated in Figure C.1, despite the 1.5x and633

1.3x increase in training costs for GemNet-dT and MACE, respectively, the test EF metrics of the two634

models are hardly improved. This implies that the features of an atom, derived by message-passing635

in GNNs, may be more strongly influenced by the closer neighborhood atoms. In MACE, utilizing636

more neighborhood atoms does not lead to improvements, but instead results in higher EF metric on637

the OOD set. Thus, analyzing the effect of graph generation conditions is also important to obtain638

models that have lower OOD errors and are more suitable for simulations.639

C.3.2 Normalization for Energy and Forces640

In this benchmark, when training MLFF models, we adopt a common normalization strategy for641

energy and forces. Here, we introduce normalization for energy and forces, and show our empirical642

results that present little difference regardless of a normalization strategy.643

Normalizing energy and forces are commonly utilized in MLFF research, either through explicit644

normalization of energy and forces [29] or by incorporating scale and shift factors within the model645
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Figure C.2: EF metrics of GemNet-dT and MACE trained with different normalization strategies.

to fulfill the normalization role [22, 23, 24]. In this Section, after defining the normalization of energy646

and forces, we analyze the effect of the normalization to training results.647

First, to introduce the normalization technique for energy and forces, we have to be aware that648

the force of an atom is equal to the derivative of total energy with respect to the atom position in649

various MLFF models. Calculating forces via taking the derivatives naturally induces two properties:650

sum of all forces in a single snapshot is equal to 0, and multiplying a constant to an energy affects651

exactly same to the forces. Fortunately, the first property implies that the forces does not require652

centralization (i.e., shifting the forces by their mean, 0). Thus, it suffices to scale the forces by653

dividing their standard deviation σf [22, 23, 24, 29]. Moreover, by the second property, the scaling654

factor of the energy should be identical to the scaling factor of the forces, i.e., σf .655

The only remaining part in defining the normalization is how to centralize the energy, and several656

methods for the centralization have been proposed. As discussed about error metrics and losses, the657

energy types to be targeted for obtaining the shift factor are two: total energy and per-atom energy.658

The total energy can be centralized by Ẽi = Ei − Ē, where Ei is the total energy of snapshot i and659

Ē is the mean of total energies [29]. However, for MLFF models that calculate the total energy by660

predicting and summing up individual atomic energies, the centralization of total energy only works661

properly for the datasets, which consist of snapshots with the identical size.662

As an alternative, some researches [22, 23, 24] centralize per-atom energy instead of the total energy,663

which leads to664

Ẽi = Ei −
ni

N

∑
i

Ei

ni
, (2)

where ni is the size of snapshot i and thus 1
N

∑
i
Ei

ni
is the mean of per-atom energies. When shifting665

the total energy, the mean of per-atom energies is compensated by multiplying the snapshot size.666

Since the SiN dataset consists of various snapshots with different number of atoms, Eq. 2 is employed667

for the centralization. Finally, the normalization of energy and forces for this benchmark is formulated668

as669

Ẽi =
(
Ei −

ni

N

∑
i

Ei

ni

)/
σf , F̃i = Fi/σf (3)

MACE [24] can use per-species normalization, which is an extension of the per-atom normalization,670

by computing per-species energy for each chemical species by solving linear system set by the671

datasets. However, such method is not appropriate to the datasets which only contain snapshots with672

uniform stoichiometric ratio, such as the HfO dataset; the linear system becomes singular, and thus673

the per-species energy is not determined.674

To explore the influence of the normalization strategies on the training results, we trained models675

using three different strategies: per-atom normalization, per-atom centralization, no normalization.676

As presented in Figure C.2, the differences in errors obtained from models trained using these three677

methodologies are marginal, even in OOD errors. The energy prediction method employed by the678

MLFF models in this benchmark entails obtaining per-atom values within the model, which are then679

summed up to calculate the total energy of a snapshot. Thus, even not employing normalization,680

internal representations in MLFF models can inherently aligns with the per-atom values and be used681

in simulations for structures whose sizes are different from those in the training dataset. This is682

empirically demonstrated by the small error differences between test and OOD data.683
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Figure C.3: EF metrics of 10 MLFF models trained with MSE- and MAE-based loss functions.

C.4 Supplementary Results684

C.4.1 Results of Benchmark for Energy and Force685

Table C.3 presents numerical results, which are visualized in Figure 1. As in discussed in Section 4.1,686

we trained MLFF models with two loss functions. For SiN and HfO datasets, we illustrate the the687

training results of these two loss functions in Figure C.3 (a) and (b), respectively; blue and red bars688

represent the training results of MSE- and MAE-based loss functions, respectively. Section 4.2 covers689

the analysis about these results.690

In addition, maintaining the same training recipes except setting the number of epochs as 50, we691

trained the models using OC20 dataset [29]; the training results are visualized in Figure C.3 (c).692

Training recipes of OC20 benchmark are different from ours. For instance, the target energy values693

of snapshots are adjusted by subtracting so-called reference energy, which corresponds to the energy694

of an initial snapshot with the same trajectory as the snapshots, and then apply the normalization695

technique for the shifted energy values; in contrast, we use the target energy values and apply per-696

atom energy normalization. Furthermore, DimeNet++ and GemNet-dT used for OC20 benchmark697

have larger architectures than those introduced in their original papers, while we utilize the original698

architectures; nevertheless, they show prominent results in energy and force prediction.699

Overall, GNN-based models experience high-ranked performance. GNNs incorporating equivariance,700

such as Allegro and MACE, demonstrate inferior performance in energy and force prediction com-701

pared to SchNet, which is already considered the least favorable model in SiN and HfO datasets. For702

models except BPNN and Allegro, differences between the training results of two loss functions are703

less than those in SiN and HfO datasets, and EF metrics of using MAE-based loss are very slightly704

higher than using MSE-based loss. The results obtained from BPNN, where EF metrics of the model705

trained with MAE-based loss on both val_id and val_ood_both are higher, imply that descriptor-based706

models may experience a significant performance drop, when dealing with datasets containing a707

wide range of atom species such as OC20. Allegro trained with MAE-based loss may be reasonably708

trained when observing the results of val_id, but fails to correctly predict energy and forces on OOD709
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Table C.3: Numerical results (EF metrics) of MLFF models, visualized in Figures 1 and C.3.
Model Loss SiN HfO OC20

Train Test OOD Train Test OOD train val_id val_ood_both

BPNN MSE-based 393.3 466.2 566.0 219.2 220.5 232.7 477.2 495.0 701.1
MAE-based 291.4 316.2 459.4 206.4 210.2 227.4 984.2 991.3 991.5

DPA-1 MSE-based 335.0 347.1 472.0 232.7 234.0 257.1 127.8 128.9 184.6
MAE-based 309.9 325.5 471.2 246.2 247.0 274.3 131.1 132.9 190.0

SchNet MSE-based 192.0 471.2 820.7 171.5 417.4 506.4 145.3 147.2 219.8
MAE-based 114.6 453.5 849.1 190.8 408.3 500.6 152.1 153.1 238.2

DimeNet++ MSE-based 84.3 119.8 188.3 37.1 48.0 69.7 102.1 88.2 131.9
MAE-based 64.8 124.1 213.3 42.8 51.6 76.9 108.8 93.0 141.1

GemNet-T MSE-based 144.5 164.9 184.9 43.0 45.8 62.7 113.4 102.4 130.9
MAE-based 98.2 118.1 142.7 27.3 33.0 54.3 112.1 102.0 130.1

GemNet-dT MSE-based 138.5 158.5 201.0 53.4 56.8 75.2 110.3 98.3 130.7
MAE-based 87.9 120.4 171.1 36.3 41.9 67.2 103.4 91.4 124.5

NequIP MSE-based 163.0 174.4 245.5 75.1 79.6 104.5 133.9 126.3 180.4
MAE-based 157.9 170.4 245.1 79.8 82.6 117.8 140.7 135.0 200.4

Allegro MSE-based 236.2 245.1 344.6 152.5 156.2 227.4 168.9 163.7 213.7
MAE-based 209.0 225.4 349.3 152.7 156.0 360.5 169.4 169.6 2.1e+14

MACE MSE-based 186.7 190.3 252.0 62.8 64.6 136.3 153.2 146.8 411.8
MAE-based 147.1 155.1 217.7 65.7 66.2 92.2 164.5 158.5 218.4

SCN MSE-based 138.2 153.5 230.0 50.4 56.9 81.1 - - -
MAE-based 50.2 97.9 170.0 30.1 41.5 67.3 105.5 87.7 135.6

data of OC20, referred to as val_ood_both. It may be beneficial to analyze which factors of Allegro710

bring about such failure, because Allegro is compatible with the parallel computing of MD simulation711

tools such as LAMMPS while the other models cannot, which is important to enable large-scale712

simulations using MLFF models.713

C.4.2 Results of Model Exploration Study714

The numerical results of model exploration study, which are discussed in Section 4.3 and visualized715

in Figure 3, are listed in Table C.4, where the variation scales of each model and corresponding model716

sizes (i.e., the number of parameters) are also included. The result of DPA-1 shows that DPA-1 can717

locate on the pareto-frontier in Figure 3. DPA-1, among the models evaluated in this study, is the718

only model that can be operated exclusively in DeePMD-kit [48], a TensorFlow-based framework.719

Therefore, the result of DPA-1 was excluded from Figure 1 because it may not be appropriate to720

directly compare that with the results of other models obtained from our PyTorch-based framework.721

C.5 Data Scaling Effect722

We additionally present the data scaling effect, which may be helpful to make a training strategy723

for MLFF researchers. We follow the experimental settings of previous works [22, 24], where the724

ReduceLROnPlateu scheduler is used to train MLFF models. Even though the training steps cannot725

be fixed due to this scheduler unlike our setting, we anticipate that the training might be stopped at726

similar update steps. Thus, in this data scaling experiments, MLFF models are trained by the fixed727

number of steps for model update; the setting is referred to as the equal budget setting. We randomly728

sample 20%, 40%, 60%, and 80% of data from the HfO training set (i.e., 5.6k, 11.2k, 16.8k, and729

22.4k), and trained models by 1000, 500, 334, and 250 epochs, correspondingly. We select six models730

(BPNN, GemNet-T, GemNet-dT, NequIP, Allegro, and MACE) and obtain their energy and force731

errors using the HfO test and OOD sets. Except the data size and epochs, the training recipe used in732

the MAE-based training experiments of Figure 1 is maintained.733

The results are reported in Table C.5 and visualized in Figure C.4. For all models, as more training data734

are used, the training error increases while both the test error decreases, where the gap between these735
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Table C.4: Numerical results visualized in Figure 3 (HfO test set). Double, Base, Half, and Quarter
indicate the range of the relative variation scale {2x, 1x, 0.5x, 0.25x}, correspondingly. †DPA-1
is specifically designed for use with DeePMD-kit, whereas the other models are implemented and
evaluated within our framework.

Model Variation scale Number of Params. EF metric Inference time (ms)

Double 1.92M 356.9 31.2
BPNN Base 0.50M 356.1 31.5

Half 0.13M 358.9 32.1

DPA-1† Base 6.14M 234.0 23.9

SchNet

Double 35.61M 743.6 24.3
Base 9.09M 687.8 23.4
Half 2.37M 627.0 23.1
Quarter 0.64M 692.3 24.8

Base 1.89M 81.8 62.5
DimeNet++ Half 0.48M 111.6 68.3

Quarter 0.13M 145.2 68.9

Base 1.89M 51.1 64.3
GemNet-T Half 0.48M 67.6 62.1

Quarter 0.13M 94.5 62.4

Double 9.14M 55.0 34.5
GemNet-dT Base 2.31M 64.7 29.5

Half 0.59M 84.7 24.9

NequIP

Double 1.45M 113.9 62.1
Base 0.36M 133.4 62.0
Half 0.09M 160.0 61.3
Quarter 0.02M 197.5 57.0

Double 5.61M 243.1 48.7
Allegro Base 1.40M 263.1 30.0

Half 0.35M 289.9 27.4

Double 0.26M 86.1 35.6
MACE Base 0.11M 104.3 36.2

Half 0.05M 128.3 35.9

Base 1.58M 62.2 327.2
SCN Half 0.47M 90.9 316.2

Quarter 0.13M 183.3 332.2

two errors also decrease. The OOD error decreases in most cases. Therefore, our data scaling results736

suggest that training with fewer epochs and more data can be helpful to improve the generalization737

performance of MLFF models. Meanwhile, the difference between EF metrics using 80% and 100%738

training set is marginal, meaning that the performance improvement that can be gained by using more739

data seems to be saturated. Such observation implies that it is reasonable that our training set sampled740

from the raw dataset is sufficient for semiconductor MLFF benchmark.741

We can opt for another data scaling experimental setup where the identical training epochs are used742

to train MLFF models; the setting is referred to as the equal epoch setting. In the equal epoch setting,743

as the training set size is reduced, the number of model update steps is also reduced. Considering that744

accuracy drop was clearly observed when using less data at the equal budget setting, we omit the745

experiments of the equal epoch setting because further accuracy drop is intuitively expected.746
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Figure C.4: Data scaling effect. The EF metrics are obtained from six MLFF models trained by using
20%, 40%, 60%, 80%, and 100% of the HfO training set. For all the points of Test and OOD curves,
the test and OOD sets described in the main paper are identically used to obtain EF metrics. At each
point of Train curves, the correspondingly sampled training set is used.

Table C.5: Numerical results visualized in Figure C.4.
Training set EF Metric (↓) Training set EF Metric (↓)

Model size (ratio) Train Test OOD Model size (ratio) Train Test OOD

5.6k (20%) 190.1 231.4 260.6 5.6k (20%) 72.5 99.4 174.6
11.2k (40%) 200.9 216.4 239.1 11.2k (40%) 76.6 88.1 148.5

BPNN 16.8k (60%) 204.1 212.9 232.4 NequIP 16.8k (60%) 78.1 84.2 130.0
22.4k (80%) 205.8 210.8 230.8 22.4k (80%) 79.0 82.5 119.1
28.0k (100%) 206.4 210.2 227.4 28.0k (100%) 79.8 82.6 117.8

5.6k (20%) 19.8 48.9 75.2 5.6k (20%) 144.7 174.6 1923.8
11.2k (40%) 23.6 39.3 64.7 11.2k (40%) 148.9 163.8 658.3

GemNet-T 16.8k (60%) 25.1 35.2 59.2 Allegro 16.8k (60%) 150.8 157.5 365.8
22.4k (80%) 26.0 33.3 54.1 22.4k (80%) 152.0 156.4 415.3
28.0k (100%) 27.3 33.0 54.3 28.0k (100%) 152.7 156.0 360.5

5.6k (20%) 25.1 62.4 91.8 5.6k (20%) 61.7 71.0 221.6
11.2k (40%) 31.7 49.0 79.2 11.2k (40%) 64.3 68.3 180.4

GemNet-dT 16.8k (60%) 34.4 44.4 73.0 MACE 16.8k (60%) 65.1 67.6 126.0
22.4k (80%) 35.3 42.1 67.0 22.4k (80%) 66.4 67.3 114.6
28.0k (100%) 36.3 41.9 67.2 28.0k (100%) 66.1 66.3 92.2

D Details of Properties Benchmark747

D.1 Radial and Angular Distribution Functions748

The dynamic indicators, namely RDF and ADF, are classified as such since they are derived from749

high-temperature MD simulation trajectories. In order to investigate the stability of models in different750

atomic environments induced by high turbulence or active movement caused by high thermal energy,751

we carefully selected high temperatures for SiN (1200 K) and HfO (1200 and 1800 K). RDF, also752

known as the pair correlation function, captures the changes in density relative to the distance from753

a chosen reference particle. On the other hand, ADF expands the scope of analysis beyond radial754

distances and centers on characterizing the angular distribution of particles surrounding a reference755

particle. The analysis of RDF and ADF plays a fundamental role in simulations as it enables the756

identification of structures, phases, and interactions. Moreover, it provides a deeper understanding of757

behaviors and reactions occurring within solids.758
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The radial distribution function, g(r) is an average density of particles within distance r, which is759

represented by760

g(r) =
dnr

4πρr2dr
, (4)

where ρ indicates an average density of the system.761

For compound AB, there could be three types of RDF results: A-A, A-B, and B-B. Mean Absolute762

Error (MAE) was calculated against the DFT reference for each case. The resulting three MAE values763

were then averaged to obtain the RDF error for each specific structure. Similarly, ADF could yield764

six types of results: A-A-A, B-B-B, A-B-A, B-A-B, A-A-B, and B-B-A. For each ADF case, the765

MAE was calculated by comparing it to the respective DFT reference. The resulting six MAE values766

were then averaged to obtain the ADF error for each specific structure.767

To compare two distribution functions, we employ L1 distance between distribution functions. Thus768

an error metric of a RDF g(r) generated by a MLFF is defined by769

ERDF = d(g, gDFT) =
1

Rc

∫ Rc

0

|g(r)− gDFT(r)|dr (5)

where, Rc is equal to 6Å.770

Similarly, an error of an ADF h(θ) is defined by771

EADF = d(h, hDFT) =
1

π

∫ π

0

|h(θ)− hDFT(θ)|dθ. (6)

In both datasets, high-temperature simulations with various initial structures were conducted for a772

duration of 6 ps. Ground truth trajectories were computed using DFT. RDF and ADF were computed773

by averaging the last 3 ps of the simulation; a total of 50 snapshots were averaged, with an interval774

of 6 fs between each snapshot. The simulated structures employed in this study were supercells,775

encompassing a varying number of atoms. Specifically, the supercells comprised a range of 2,592 to776

3,456 atoms for HfO and 1,296 to 2,835 atoms for SiN (refer to Table D.1 for additional information).777

This range of atom counts facilitates future scalability studies of MLFF. Additionally, users have the778

flexibility to increase supercell sizes as desired.779

For the SiN, four different structures were simulated at 1200 K. Two structures with Si:N ratios of780

3:4 and 1:1, which were within the range of ratios covered by the training dataset, were used to781

compute RDFID and ADFID. The RDFID value was calculated by averaging the RDF errors of the782

two structures, and likewise, the ADFID value was obtained by averaging the ADF errors of the two783

structures. Additionally, two structures with Si:N ratios of 1:2 and 3:2, which were outside the range784

of ratios present in the training dataset, were employed to calculate RDFOOD and ADFOOD.785

A total of eight structures were simulated for the hafnium oxide case. Among these, five structures786

were simulated at 1200 and 1800 K (resulting in a total of 10 simulations) using the same stoichiometry787

(Hf:O = 1:2) as in the training set. These simulation trajectories were then used to calculate RDFID788

and ADFID. On the other hand, the remaining three structures were considered out-of-distribution789

structures with varying stoichiometries of Hf:O, specifically 1:1, 2:3, and 4:7. These three structures790

were simulated at 1200 K and then employed to calculate RDFOOD and ADFOOD.791

D.1.1 Understanding RDF & ADF: Insight, Motive, and Explanation792

In simulation studies, understanding atomic position patterns can be complex. To solve this, re-793

searchers turn to RDF and ADF, two pivotal post-processing techniques, to differentiate between794

materials or states. RDF quantifies atomic or molecular density fluctuations based on distance,795

providing insights into localized structural properties. In contrast, ADF elucidates angular tendencies796

between particle triplets, offering a perspective on molecular shapes and bonding angles. Collectively,797

they act as benchmarks, verifying the real-world alignment of simulations.798
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Table D.1: Details of evaluated structures for RDF and ADF. Structures with index (idx.) indicate the
same crystal family but have different lattice constants. The index numbering has been restarted for
each dataset (e.g., Cubic (1) of SiN and Cubic (1) of HfO have different lattice constants).

Distribution Structure (idx.) Hf:O (or Si:N) # atoms (3×3×3) Temp.

SiN
ID Amorphous 1:1 1296 1200 K

Triclinic 3:4 2835 1200 K

OOD Cubic (1) 1:2 2592 1200 K
Cubic (2) 3:2 2720 1200 K

HfO

ID

Monoclinic 1:2 2592 1200 & 1800 K
Tetragonal 1:2 2592 1200 & 1800 K
Cubic (1) 1:2 2592 1200 & 1800 K
Orthorhombic (1) 1:2 2592 1200 & 1800 K
Orthorhombic (2) 1:2 2592 1200 & 1800 K

OOD
Hexagonal (1) 1:1 3456 1200 K
Hexagonal (2) 2:3 3240 1200 K
Cubic (2) 4:7 2376 1200 K
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Figure D.1: RDFs of α-Si3N4 (left) and liquid-Si3N4 (right).

At the heart of MLFF models lies the ability to accurately predict energies and forces governing atoms799

and molecules. These predictions are crucial as they directly influence the movement, behavior, and800

interactions of atoms, which, in turn, dictate the patterns seen in RDF and ADF. When the RDF and801

ADF predicted by an MLFF closely align with those from DFT calculations, it’s a strong indication802

that the model is capturing the essential physics and is making accurate energy and force predictions.803

RDF and ADF can be used to capture phenomena such as phase transitions, system characteristics,804

and intermolecular dynamics. A prime example is the simulation of the silicon nitride phase shift from805

solid to liquid, where stark RDF modifications are observable in Figure D.1. What begins as distinct806

peaks in its crystalline form smoothes out during the melting process, signifying inherent structural807

shifts. Figure D.1 contrasts the RDF patterns of crystalline silicon during its initial state and post-808

melting phase, underlining the transformative effects of atomic rearrangements. Such configurations809

inherently relate to the balance of interatomic forces and the resultant energy landscape. When atoms810

approach each other under specific conditions, they might form bonds due to attraction or repel,811

settling into stable distances. This equilibrium gives rise to distinctive RDF and ADF profiles that812

mirror these atomic positions.813

While RDF and ADF primarily help visualize atomic configurations, they also play a crucial role814

in assessing the fidelity of atomic paths predicted by MLFF. For example, In Figure D.3-(c), there815

is a noticeable anomaly in the RDF for Hf-Hf interactions on the OOD Hexagonal (2) structure816

when obtained using the MAE-based SchNet model. This anomaly is characterized by a pronounced817

peak at unusually short ‘r’ distances. This unlikely closeness between Hf-Hf atoms, especially when818

compared to ground truth data, not only challenges physical rationale but also signals potential819

weaknesses in the predictive capability of the MLFF model.820
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Figure D.2: RDF comparisons: DFT ground truth vs. model predictions for SiN in ID Amorphous
and OOD Cubic 2 structures.

In our framework, we introduce straightforward evaluations of RDF and ADF for MLFF models by821

contrasting them against reference profiles from gold-standard DFT simulations (Table D.1). A close822

match between the MLFF-derived profiles and these references signifies model accuracy. Though a823

smaller error naturally indicates superior model performance, for visualization in the form of radar824

plots as shown in Figures D.13 and D.14, we inversely transform the RDF and ADF errors such825

that a value of 1 denotes optimal performance. The specifics of this transformation are detailed in826

Section D.4.827

D.2 Bulk Modulus and Equilibrium Volume828

The bulk modulus and equilibrium volume derived from the Birch-Murnaghan equation of state (EoS)829

are critical in investigating thin film materials, including silicon nitride andd hafnium oxide. The830

bulk modulus provides insights into the mechanical stability of these films, indicating their resistance831

to volume shifts under varying pressure conditions and their resilience against external stresses.832

Additionally, it characterizes the elastic properties of the films, impacting aspects like flexibility and833

hardness. Meanwhile, the equilibrium volume aids in understanding the relationship between the834

film’s thickness and residual stress, enabling us to evaluate the film’s state - strained or relaxed, and835

refine the growth procedure. Furthermore, both these parameters influence the interfacial properties836

such as adhesion strength and interface energy, integral for the performance and stability of thin film837

systems. Comprehension of these parameters is essential for engineering thin films with the required838

properties, for their potential application in electronics, optoelectronics, and microelectromechanical839

systems.840

The bulk modulus is a fundamental quantity that measures a material’s resistance to compression841

and expansion. It quantifies the material’s ability to withstand changes in volume when subjected842

to external pressure. Comparing the bulk moduli of different materials allows for the assessment of843

their relative compressibility and overall mechanical strength. Additionally, the equilibrium volume,844

obtained through the fitting of the Birch-Murnaghan EoS, represents the volume at which the material845
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Figure D.3: RDF comparisons: DFT ground truth vs. model predictions for HfO in ID Orthorhombic
2 and OOD Hexagonal 2 structures.

possesses the minimum energy. Determining the equilibrium volume enables the identification of the846

most energetically stable configuration of the material, providing insights into its structural stability847

and phase transitions.848

The bulk modulus and equilibrium volume can be obtained by fitting the Birch-Murnaghan EoS.849

The EoS establishes a relationship between the energy and volume of a solid material, and it can be850

expressed as follows:851

E (V ) = E0 +
9V0B0

16


[(

V0

V

)2/3

− 1

]3

B′
0 +

[(
V0

V

)2/3

− 1

]2 [
6− 4

(
V0

V

)2/3
] , (7)

where V0 is the equilibrium volume, B0 is the bulk modulus, and B′
0 is the derivative of the modulus852

with respect to pressure.853

The internal energy versus volume data obtained from DFT calculations served as reference to assess854

the accuracy of MLFF models. In the case of HfO, five crystalline structures present in the training855

set were utilized to calculate BID
0 and VID

0 . Additionally, one crystal with different stoichiometry,856

not included in the training set, was employed to determine BOOD
0 and VOOD

0 . Similarly, in the case857

of SiN, five different crystalline structures with varying numbers of atoms were used in the EoS858

evaluation. Among these structures, three were included in the training set and employed to calculate859

BID
0 and VID

0 . The remaining two structures, which was not commonly found in the training set,860

was utilized to determine BOOD
0 and VOOD

0 . For more detailed information regarding the structures861

evaluated please refer to Table D.2. The values of BID
0 , BOOD

0 , VID
0 , and VOOD

0 were determined by862

calculating the arithmetic mean of the absolute percentage errors for the evaluated structures.863

D.2.1 Understanding the Equation of State: Insight, Motive, and Explanation864

Our paper introduces the equation of state as an evaluation method, with metrics derived from the EoS,865

specifically the bulk modulus (B0) and equilibrium volume (V0), serving as the primary assessment866
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Table D.2: Details of evaluated structures for EoS.
Distribution Space Group Hf-O (or Si-N) ratio Number of atoms

SiN
ID

P31c 3:4 28
P1 3:4 14
P1 3:4 28

OOD Fd3̄m 3:4 14
Fd3̄m 3:4 56

HfO ID

P21/c 1:2 96
P42/nmc 1:2 96
Fm3̄m 1:2 96
Pbca 1:2 96
Pnma 1:2 96

OOD Fd3̄m 4:7 88

metrics. These metrics offer a way to assess how closely the predictions of the MLFF models align867

with the results from more established methods, like DFT.868

The bulk modulus provides insights into a material’s resistance to compression. In simple terms,869

it helps us understand how much a material can be compressed. A higher value indicates that the870

material is less likely to change its volume under pressure. The equilibrium volume, on the other hand,871

tells us about the optimal volume where a material is most stable and uses energy most efficiently.872

The core requirement of the MLFF model is its capability to simulate atomic interactions. When these873

interactions are observed at a larger scale, they manifest as properties such as the material’s resistance874

to compression and its most stable form. These properties are effectively represented by metrics like875

the bulk modulus and equilibrium volume. This suggests that a model which can accurately predict876

atomic interactions is also likely to be proficient at predicting these larger-scale properties.877

An important validation of the MLFF model’s effectiveness is its alignment with DFT results. If our878

MLFF model’s predictions are consistent with DFT-calculated metrics, it indicates that our model has879

a good grasp on the intricate interactions between atoms. For ML experts, the EoS metrics serve a880

dual purpose. Not only do they offer a straightforward and clear measure of the model’s performance,881

but they also bridge the gap between intricate atomic simulations and tangible material properties,882

making the underlying science more accessible and understandable.883

In the real experiment, when the mismatch of lattice constant (V0
1/3) exceeds over 5% between884

materials, it becomes very difficult to synthesize the materials. Thus, a reasonable MLFF model885

should predict volume accurately within this range. Since the GGA-level of DFT calculation already886

contains volume error of 2-3%[58], the error on the lattice constant should be less than 3%, which887

suggest that error on V0 (|V0,DFT − V0,MLFF|/V0,DFT) be less than 0.1.888

Our framework offers an easy-to-use evaluation and reference data for a diverse range of solid889

structures (Table D.2). It not only automates the calculation of the bulk modulus and the equilibrium890

volume but also provides comparative DFT results as a gold standard. As depicted in these Figures D.4891

and D.5, less effective MLFF models may struggle in accurately predicting atomic interactions when892

there’s a change in volume due to varying pressures. This misalignment in prediction can lead to893

deviations in the energy shift graph from the ideal DFT profile. Such discrepancies indicate the894

model’s challenges in capturing energy variations associated with changes in the internal atomic895

configurations, highlighting potential inaccuracies in forecasting the material’s mechanical properties.896

This approach gives us a broader perspective, enabling an assessment of MLFF’s capabilities beyond897

merely energy and force predictions, and demonstrates its application in real-world simulation898

scenarios.899
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Figure D.4: EoS comparisons: DFT ground truth vs. model predictions for SiN in P31c and OOD
Fd3̄m structures. Each curve has been shifted to reflect the energy difference relative to its minimum
value.
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(a) MAE-trained models on ID P21/c
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Figure D.5: EoS comparisons: DFT ground truth vs. model predictions for HfO in P21/c and OOD
Fd3̄m structures. Each curve has been shifted to reflect the energy difference relative to its minimum
value.
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Table D.3: Details of PEC evaluations.
Formula Variable∗ Range

SiN
two-body

Si-Si distance (r) 1.000 ∼ 6.000 Å
Si-N distance (r) 1.000 ∼ 6.000 Å
N-N distance (r) 0.500 ∼ 6.000 Å

many-body Si3N distance (r) 2.000 ∼ 6.000 Å
SiN4 distance (r) 2.000 ∼ 6.000 Å

HfO

two-body
Hf-Hf distance (r) 1.000 ∼ 6.000 Å
Hf-O distance (r) 1.000 ∼ 6.000 Å
O-O distance (r) 0.500 ∼ 6.000 Å

many-body
HfO2 distance (r) 0.986 ∼ 6.786 Å
HfO3 angle (θ) 0 ∼ 140◦

HfO4 angle (θ) 0 ∼ 180◦

*Please refer Figure D.6

D.3 Potential Energy Curves900

Potential curves for two-body interatomic interactions were computed by manipulating the distance901

between a pair of atoms. Additionally, specific MLFF models, which incorporate many-body terms,902

were assessed with an array of molecular structures that encompassed more than just two atoms. These903

many-body potential energy curves were derived by adjusting particular distances or angles within904

these molecular structures. In these evaluations, the ground truth obtained from DFT calculations905

was used as a reference. For detailed information on these evaluations, please refer to Table D.3 and906

Figure D.6. In the case of SiN many-body structures, we employed equilateral triangles (Si3N) and907

tetrahedron (SiN4) as they represent the atomic environment of each element with their first nearest908

neighbors in crystals. Additionally, the many-body structures of HfO were prepared by referencing909

a study on monohafnium oxide clusters, which is relevant for understanding defect sites in HfO910

thin films [59]. PEC evaluation has the potential to be a valuable tool in the solid-state domain,911

particularly in scenarios where certain chemical reactions or electrochemical properties are expected912

to take place in rare atomic environments.913

D.3.1 Understanding PEC: Insight, Motive, and Explanation914

MLFFs have emerged as a significant tool in computational materials science. Through data-915

driven processes, they can precisely predict energies and forces within molecular configurations.916

Their performance is considered reliable when they align well with PECs from high-fidelity DFT917

calculations.918

PECs have historically been essential for empirical interatomic potential model fitting. They have919

served as the cornerstone of empirical methodologies, used to understand energy changes based on920

varying atomic configurations. Given this foundational role of PECs, their alignment with modern921

MLFFs becomes crucial.922

The alignment of an MLFF with high-fidelity DFT-derived PECs verifies its ability to capture complex923

interactions and its competence in modeling forces. Notably, forces are derived from the gradients of924

the molecular energy landscape. An MLFF’s ability to predict energy landscapes, as validated by its925

congruence with DFT-derived PECs, ensures that the resulting molecular simulations are trustworthy.926

In summation, the alignment between MLFFs and DFT-derived PECs, especially across diverse927

molecular configurations, demonstrates the adaptability and effectiveness of the MLFF model.928

A distinguishing feature of our framework is its user-friendly evaluation capability across a broad929

spectrum of molecular structures (Figure D.6), especially concerning PECs. While our main focus930

has been on condensed-phase systems, handling sparse molecular systems poses inherent challenges.931
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Figure D.6: Molecules used for PEC evaluations.

These sparse systems act as outliers for models predominantly trained on condensed-phase datasets.932

Successfully obtaining accurate PECs for such outliers underlines the robustness and versatility of933

the MLFF approach.934

D.3.2 PEC Evaluation935

Figures D.9 to D.10 visualize the PEC evaluation results of models for SiN data, while Figures D.11936

to D.12 depict the results for HfO. PEC evaluation poses a significant challenge as it involves937

assessing sparse atomic environments that are rarely encountered by models trained on condensed-938

phase datasets. While it is not essential for models used in condensed-phase material research to939

excel in PEC evaluation, the evaluation results provided valuable insights into the disparities between940

the two datasets. The SiN data included a wide range of atomic compositions and environments,941

including Si-only and N-only structures. In contrast, the HfO data exhibited a less diverse range.942

Consequently, the PEC evaluation results for SiN showed a closer resemblance to the DFT ground943

truth curve compared to the results for HfO.944

To explain in a slightly more physics-oriented manner, given that most models predominantly train945

on low-energy data, predicting the high-energy PE surface becomes a challenging extrapolation task946

for these models. However, predicting this high-energy PE regime, usually occurring when the atoms947

get close, is important for stable MD simulation.948

Two distinct methods can address this discrepancy in PE surface prediction. The first, termed as a949

data-centered approach, emphasizes the incorporation of more data from the high-energy regime,950

necessitating careful DFT calculations. The second approach, so called δ-learning, tries to combine951

classical force-field model and MLFF models [60, 61, 62]. With this method, an initial approximation952

of the PE surface is derived using the classical force-field model, followed by the refinement of the953
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Figure D.7: Pearson correlation matrix illustrating the relationships between "EF Metric (ID)", "EF
Metric (OOD)", "Static Inds", "Dynamic Inds.", and "Total Inds" across two datasets: (a) SiN and
(b) HfO. The "Static Inds." and "Dynamic Inds." for each model were computed by summing the
indicator scores from both ID and OOD cases. The "Total Inds." represents the combined sum of the
"Static Inds." and "Dynamic Inds." scores.

Table D.4: Raw scores of models for indicators using SiN dataset and trained with MAE-based loss.
Lower values indicate better performance.

EF mtr.ID EF mtr.OOD RDFID RDFOOD ADFID ADFOOD VID
0 VOOD

0 BID
0 BOOD

0

BPNN 3.2e+2 4.6e+2 4.7e-2 1.5e-1 3.5e-2 1.1e-1 5.4e-1 1.9e-1 2.1e+1 5.1e+1
DPA-1 3.3e+2 4.7e+2 5.0e-2 1.9e-1 3.4e-2 2.2e-1 1.6e-1 1.5e+0 6.0e+0 2.5e+1
SchNet 4.5e+2 8.5e+2 6.0e-2 1.1e+0 3.9e-2 4.3e-1 8.1e-1 1.9e+0 4.8e+1 9.3e+1
DimeNet++ 1.2e+2 2.1e+2 4.2e-2 1.1e-1 3.2e-2 9.2e-2 2.8e-1 5.7e-1 1.4e+0 2.7e+0
GemNet-T 1.2e+2 1.4e+2 4.0e-2 3.3e-2 3.0e-2 2.1e-2 1.5e-1 1.1e-1 3.3e+0 1.2e+0
GemNet-dT 1.2e+2 1.7e+2 4.1e-2 6.9e-2 3.1e-2 5.9e-2 1.2e+0 5.8e-1 1.7e+0 3.2e+0
NequIP 1.7e+2 2.5e+2 4.1e-2 7.0e-2 3.1e-2 4.1e-2 8.3e-2 1.4e-1 1.4e+0 5.2e+0
Allegro 2.3e+2 3.5e+2 4.4e-2 4.2e-1 3.3e-2 2.3e-1 2.5e-2 8.2e-2 2.7e+0 2.8e+1
MACE 1.6e+2 2.2e+2 4.0e-2 4.4e-2 3.0e-2 3.5e-2 7.1e-2 1.2e-1 4.5e-1 6.9e+0
SCN 9.8e+1 1.7e+2 4.1e-2 5.7e-2 3.0e-2 4.4e-2 4.5e-1 1.3e+0 5.7e+0 7.9e+0

residual portion using an MLFF model. Both strategies present potential solutions when confronting954

inconsistencies in the PE surface predictions.955

D.4 Calculating Indicator Score: Formula and Details956

For all simulation indicators and numerical metrics, lower values indicate better results than higher957

values. To draw radar plots for model comparison, an inverse linear transformation were applied to958

map them between 0 and 1, where a score of 1 incidates the best performance. Minimum observed959

error was considered as the perfect score of 1, serving as the ideal benchmark for each metric. In960

order to maintain reasonable values, we meticulously selected maximum thresholds for each metric.961

For detailed information regarding the transformation rule and maximum thresholds, please refer962

to Table D.8. The raw scores of the models prior to this mapping are summarized in Tables D.4963

to D.7. The details of calculating the raw score for each indicator are explained in Sections D.1 to D.3,964

along with evaluated structures and a description of simulation environments. The performance965

comparison among models based on indicators after the reverse mapping to scores ranging from 0 to966

1 is visualized using radar plots in Figures D.13 and D.14.967
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Table D.5: Raw scores of models for indicators using SiN dataset and trained with MSE-based loss.
Lower values indicate better performance.

EF mtr.ID EF mtr.OOD RDFID RDFOOD ADFID ADFOOD VID
0 VOOD

0 BID
0 BOOD

0

BPNN 4.7e+2 5.7e+2 5.0e-2 1.7e-1 3.3e-2 1.4e-1 4.7e-1 7.5e-1 1.2e+1 3.2e+1
DPA-1 3.5e+2 4.7e+2 5.0e-2 1.2e-1 3.5e-2 1.5e-1 3.6e-1 2.5e+0 2.0e+0 3.6e+1
SchNet 4.7e+2 8.2e+2 5.7e-2 1.1e+0 3.5e-2 4.9e-1 6.8e-1 1.8e+0 5.1e+1 1.5e+2
DimeNet++ 1.2e+2 1.9e+2 4.5e-2 2.1e-1 3.1e-2 7.0e-2 1.9e-1 4.8e-1 5.0e-1 3.0e+0
GemNet-T 1.6e+2 1.8e+2 4.5e-2 3.6e-2 3.0e-2 2.7e-2 3.3e-1 5.3e-1 1.9e+0 1.2e+0
GemNet-dT 1.6e+2 2.0e+2 5.0e-2 1.1e-1 3.1e-2 7.2e-2 7.4e-1 8.0e-1 1.1e+1 2.3e+1
NequIP 1.7e+2 2.5e+2 4.5e-2 8.4e-2 3.1e-2 5.1e-2 1.6e-1 2.7e-1 2.4e+0 6.5e+0
Allegro 2.5e+2 3.4e+2 4.9e-2 1.4e-1 3.2e-2 1.1e-1 2.3e-1 7.2e-1 3.9e-1 9.8e+0
MACE 2.0e+2 2.6e+2 4.6e-2 3.7e-2 3.2e-2 2.4e-2 1.9e-1 6.3e-2 3.2e+0 6.0e+0
SCN 1.5e+2 2.3e+2 6.7e-2 1.2e-1 3.5e-2 1.3e-1 7.7e-1 1.3e+0 7.4e+0 5.8e+0

Table D.6: Raw scores of models for indicators using HfO dataset and trained with MAE-based loss.
Lower values indicate better performance. N/A indicates an interrupted simulation for the dynamic
indicator due to abnormal energy changes.

EF mtr.ID EF mtr.OOD RDFID RDFOOD ADFID ADFOOD VID
0 VOOD

0 BID
0 BOOD

0

BPNN 2.1e+2 2.3e+2 4.9e-2 1.3e-1 4.3e-2 1.1e-1 3.4e-1 1.1e+0 7.5e+0 1.0e+1
DPA-1 2.5e+2 2.7e+2 7.7e-2 1.3e-1 8.1e-2 9.9e-2 7.7e-1 6.0e-2 8.2e+0 7.5e+0
SchNet 4.1e+2 5.0e+2 5.1e-2 2.4e-1 4.5e-2 1.5e-1 8.0e-1 3.8e+0 7.2e+1 3.8e+2
DimeNet++ 5.2e+1 7.7e+1 2.9e-2 6.7e-2 2.2e-2 4.3e-2 9.5e-2 2.2e+0 9.2e-1 3.6e+0
GemNet-T 3.3e+1 5.4e+1 2.9e-2 1.2e-1 2.2e-2 8.5e-2 1.6e-2 9.2e-1 3.0e-1 7.0e+0
GemNet-dT 4.2e+1 6.7e+1 2.9e-2 6.7e-2 2.1e-2 8.5e-2 6.8e-2 1.6e+0 6.5e-1 2.0e+1
NequIP 8.3e+1 1.2e+2 3.3e-2 1.9e-1 3.1e-2 1.5e-1 1.4e-1 9.0e-1 1.9e+0 3.5e+0
Allegro 1.6e+2 3.6e+2 4.7e-2 N/A 4.7e-2 N/A 3.0e-1 1.7e-1 2.6e+0 8.3e+0
MACE 6.6e+1 9.2e+1 3.2e-2 N/A 2.6e-2 N/A 5.9e-2 1.6e-1 5.8e-1 8.7e+0
SCN 4.2e+1 6.7e+1 2.8e-2 6.4e-2 2.1e-2 5.6e-2 4.6e-1 8.6e-1 5.3e+0 5.2e+0

Table D.7: Raw scores of models for indicators using HfO dataset and trained with MSE-based loss.
Lower values indicate better performance. N/A indicates an interrupted simulation for the dynamic
indicator due to abnormal energy changes.

EF mtr.ID EF mtr.OOD RDFID RDFOOD ADFID ADFOOD VID
0 VOOD

0 BID
0 BOOD

0

BPNN 2.2e+2 2.3e+2 4.5e-2 9.1e-2 4.5e-2 7.6e-2 6.3e-1 1.2e+0 3.6e+0 6.3e+0
DPA-1 2.3e+2 2.6e+2 7.1e-2 1.3e-1 7.4e-2 8.9e-2 6.3e-1 6.4e-1 5.9e+0 2.8e+0
SchNet 4.2e+2 5.1e+2 9.0e-2 4.1e-1 9.2e-2 1.5e-1 1.1e+0 6.6e+0 1.2e+2 7.7e+2
DimeNet++ 4.8e+1 7.0e+1 3.2e-2 1.3e-1 2.5e-2 1.4e-1 6.3e-2 1.9e+0 1.0e+0 3.9e+1
GemNet-T 4.6e+1 6.3e+1 3.4e-2 6.5e-2 2.6e-2 5.1e-2 4.4e-2 9.5e-1 2.9e-1 1.5e+0
GemNet-dT 5.7e+1 7.5e+1 3.2e-2 1.6e-1 2.5e-2 1.3e-1 1.7e-1 1.1e+0 1.5e+0 1.3e+1
NequIP 8.0e+1 1.0e+2 3.8e-2 1.4e-1 3.5e-2 8.5e-2 5.8e-2 2.7e-1 1.1e+0 8.1e-1
Allegro 1.6e+2 2.3e+2 4.8e-2 N/A 4.7e-2 N/A 3.3e-1 1.9e-1 9.4e-1 1.4e+1
MACE 6.5e+1 1.4e+2 3.3e-2 1.0e-1 2.6e-2 7.0e-2 3.1e-2 5.4e-1 3.7e-1 3.1e+0
SCN 5.7e+1 8.1e+1 2.9e-2 8.0e-2 2.2e-2 7.1e-2 3.2e-1 1.5e+0 2.2e+0 3.7e+0
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Figure D.8: Hf collision during the evaluation of Allegro in dynamic indicators. (a), (b), (c), and
(d) are presented in chronological order, with each atom’s relative force magnitude and direction
indicated by a yellow arrow.

Table D.8: The maximum threshold (THmax) used for mapping a metric x. The transformation rule is
as follows: x′ = THmax−x

THmax−xmin
, where x′ represents the transformed score, x is the original score, THmax

is the maximum threshold, and xmin represents the minimum value among the model evaluation
results, where achieving the minimum signifies the most desirable outcome for each metric.

Metric xmin THmaxHfO SiN

EF Metric 3.3e+1 9.8e+1 8.5e+2
RDF 2.8e-2 3.3e-2 4.5e-1
ADF 2.1e-2 2.1e-2 4.5e-1
Bulk Modulus (B0) 1.9e-1 3.9e-1 5.0e+1
Equilibrium Vol. (V0) 1.6e-2 2.5e-2 3.0e+0

D.5 Empirical Model Analysis968

BPNN requires hand-crafted features but has simplest overall structure, which makes the model969

relatively fast and less accurate than recent SOTA models.970

DPA-1 has relatively low accuracy on the EF metric, but shows better performance on simulation971

indicators.972

SchNet lies on the pareto-frontier as the fastest model, but the speed gain may not be enough to973

compensate overall accuracy drop compared to recent fast models such as Allegro or GemNet-dT.974

DimeNet++ and GemNet-T are models with similar base structure. They show a similar overall975

tendency: generally high accuracy but less accurate on the V0 indicator, and having relatively slow976

inference speed. Overall, GemNet-T, which lies on the most accurate side of pareto-frontier, seems977

slightly better predictive performance than DimeNet++.978
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Figure D.9: Comparison of two-body PECs for SiN using MLFF models: models trained with
MAE-based loss (left) and MSE-based loss (right).
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Figure D.10: Comparison of many-body PECs for SiN using MLFF models: models trained with
MAE-based loss (left) and MSE-based loss (right).
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Figure D.11: Comparison of two-body PECs for HfO using MLFF models: models trained with
MAE-based loss (left) and MSE-based loss (right).

GemNet-dT employs direct force prediction, which does not require backpropagation to compute979

forces from energy. As a result, it provides a high inference speed with low accuracy drop on ID980

samples, but not on OOD samples.981

NequIP and MACE show high accuracy on both EF metrics and simulation indicators. However,982

MACE is 1.7x is faster than NequIP with similar accuracy. Compared to GemNet-dT, MACE has983

equivalent EF accuracy similar prediction results on energy and force with a slightly slower inference984

speed, but it works better on simulation indicators, and on OOD samples.985

Allegro has a high inference speed and decent EF accuracy, however, it show perform unstable on986

MD simulations with OOD samples.987

SCN achieves high overall accuracy, but has a significantly slow inference speed which is 5x slower988

than GemNet-T, and 9x slower than MACE.989
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Figure D.12: Comparison of many-body PECs for HfO using MLFF models: models trained with
MAE-based loss (left) and MSE-based loss (right).
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(a) MLFFs trained with MAE-based loss.
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(b) MLFFs trained with MSE-based loss.

Figure D.13: Comprehensive comparison of models on the SiN dataset, based on EF metric and
simulation metrics. Higher values indicate better performance. The red and blue plots represent the
results for ID and OOD, respectively.
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(a) MLFFs trained with MAE-based loss.
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(b) MLFFs trained with MSE-based loss.

Figure D.14: Comprehensive comparison of models on the HfO dataset, based on EF metric and
simulation metrics. Higher values indicate better performance. The red and blue plots represent the
results for ID and OOD, respectively.
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