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Abstract
We propose a new method for solving imaging
inverse problems using text-to-image latent diffu-
sion models as general priors. Existing methods
using latent diffusion models for inverse prob-
lems typically rely on simple null text prompts,
which can lead to suboptimal performance. To
improve upon this, we introduce a method for
prompt tuning, which jointly optimizes the text
embedding on-the-fly while running the reverse
diffusion. This allows us to generate images that
are more faithful to the diffusion prior. Specifi-
cally, our approach involves a unified optimiza-
tion framework that simultaneously considers the
prompt, latent, and pixel values through alternat-
ing minimization. This significantly diminishes
image artifacts - a major problem when using la-
tent diffusion models instead of pixel-based diffu-
sion ones. Our method, called P2L, outperforms
both pixel- and latent-diffusion model-based in-
verse problem solvers on a variety of tasks, such
as super-resolution, deblurring, and inpainting.
Furthermore, P2L demonstrates remarkable scala-
bility to higher resolutions without artifacts.

1. Introduction
Imaging inverse problems are often solved by optimiz-
ing or sampling a functional that combines a data-
fidelity/likelihood term with a regularization term or signal
prior (Romano et al., 2017; Venkatakrishnan et al., 2013;
Ongie et al., 2020; Kamilov et al., 2023; Kawar et al., 2022;
Kadkhodaie & Simoncelli, 2021; Chung et al., 2023b). A
common regularization strategy is to use pre-trained image
priors from generative models, such as GANs (Bora et al.,
2017), VAEs (Bora et al., 2017; González et al., 2022), Nor-
malizing flows (Whang et al., 2021) or Diffusion models
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(DM) (Song et al., 2022; Chung & Ye, 2022).

In particular, DMs have gained significant attention as im-
plicit generative priors for solving inverse problems in imag-
ing (Kadkhodaie & Simoncelli, 2021; Whang et al., 2022;
Daras et al., 2022; Kawar et al., 2022; Feng et al., 2023;
Laroche et al., 2023; Chung et al., 2023b). Leaving the
pre-trained diffusion prior intact, one can guide the infer-
ence process to perform posterior sampling conditioned on
the measurement at inference time by resorting to Bayesian
inference. In the end, the ultimate goal of Diffusion model-
based Inverse problem Solvers (DIS) would be to act as a
fully general inverse problem solver, which can be used not
only regardless of the imaging model, but also regardless of
the data distribution.

Solving inverse problems in a fully general domain is hard.
This directly stems from the difficulty of generative model-
ing a wide distribution, where it is known that one has to
trade-off diversity with fidelity by some means of sharpen-
ing the distribution (Brock et al., 2018; Dhariwal & Nichol,
2021). The standard approach in modern DMs is to condi-
tion on text prompts (Rombach et al., 2022; Saharia et al.,
2022b), among them the most popular being Stable Diffu-
sion (SD), a latent diffusion model (LDM), which is itself
an under-explored topic in the context of inverse problem
solving. While text conditioning is now considered stan-
dard practice in content creation including images (Ramesh
et al., 2022; Saharia et al., 2022b), 3D (Poole et al., 2023;
Wang et al., 2023c), video (Ho et al., 2022), personaliza-
tion (Gal et al., 2022), and editing (Hertz et al., 2022), it has
been completely disregarded in the inverse problem solving
context. This is natural, as it is highly ambiguous which
text would be beneficial to use when all we have is a de-
graded measurement. The wrong prompt could easily lead
to degraded performance.

In this work, we aim to bridge this gap by proposing a way to
automatically find the right prompt to condition DMs when
solving inverse problems. This can be achieved through
optimizing the continuous text embedding on-the-fly while
running DIS. We formulate this into a united framework of
updating the text embedding and the latent in an alternating
fashion, such that they become gradually aligned during
the sampling process. Orthogonal and complementary to
embedding optimization, we devise a simple Latent DIS
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(LDIS) that controls the evolution of the latents to stay on the
natural data manifold and additionally utilizes the VAE prior
for stability of the solutions. We name the algorithm that
combines these components P2L, short for Prompt-tuning
Projected Latent diffusion model-based inverse problem
solver. In reaching for the ultimate goal of DIS, we focus
on 1) Latent DIS (LDIS) for solving inverse problems in
the 2) fully general domain (using a single pre-trained
checkpoint) that targets 3) 512×512 resolution1. All the
aforementioned components are highly challenging, and
thus not extensively studied.

2. Background
2.1. Latent diffusion models

DMs are generative models that learn to reverse the for-
ward noising process (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2021), starting from the initial distribu-
tion p0(x), x ∈ Rn and approaching the standard Gaussian
pT (x) = N (0, I) as T →∞ by the forward Gaussian per-
turbation kernels p(xt|x0) = N (x0, t

2I)2. The forward/re-
verse processes can be characterized with Ito stochastic
differential equations (SDE). Sampling from the distribu-
tion can either be done through solving the reverse SDE, or
equivalently by solving the probability-flow ordinary differ-
ential equation (PF-ODE) (Song et al., 2021; Karras et al.,
2022):

dxt = −t∇xt
log p(xt) dt =

xt − E[x0|xt]
t

dt, (1)

with xT ∼ pT (xT ), where we use the Tweedie’s
formula (Efron, 2011) given as E[x0|xt] = xt +
t2∇xt log p(xt). Here ∇xt log pt(xt) is typically approx-
imated with a score network sθ(·) or a noise estimation
network εθ(·), and learned through denoising score match-
ing (DSM) (Vincent, 2011) or epsilon-matching loss (Ho
et al., 2020).

Pixel DMs that operate on the pixel space x are compute-
heavy. One workaround for compute-efficient generative
modeling is to leverage a variational autoencoder that
maximizes the evidence lower bound (ELBO) (Rombach
et al., 2022; Kingma & Welling, 2013). This leads to
the following encoder and decoder representation for all

1All prior works on DIS/LDIS focused on 256×256 resolution.
Most LDIS focused their evaluation on a constrained dataset such
as FFHQ, and did not scale their method to more general domains
such as ImageNet.

2Here, we use the choice used in (Karras et al., 2022) for
simplicity, but use variance preserving (VP) models (Song et al.,
2021) for experiments as pre-trained models are available in this
form. The different choices can be considered equivalent (Kawar
et al., 2022)

x ∼ pdata(x) ∈ Rn: x = Dϕ(z), where

z = Eφ(x) := Eµφ (x) + Eσφ (x)� ε, ε ∼ N (0, I). (2)

Here, Eµφ , Eσφ are parts of the encoder that outputs the mean
and the variance of the encoder distribution, Dϕ is the de-
coder, and z ∈ Rk with k < n corresponds to the latent rep-
resentation. After encoding into the latent space (Rombach
et al., 2022), one can train a DM in the low-dimensional
latent space. LDMs are beneficial in that the computation
is cheaper as it operates in a lower-dimensional space, con-
sequently being more suitable for modeling higher dimen-
sional data (e.g. large images of size ≥ 5122). The effec-
tiveness of LDMs have democratized the use of DMs as the
de facto standard of generative models especially for images
under the name of Stable Diffusion (SD), which we focus
on extensively in this work.

One notable difference of SD from standard pixel
DMs (Dhariwal & Nichol, 2021) is the use of text condition-
ing εθ(·, C), where C is the continuous embedding vector
usually obtained through the CLIP text embedder (Rad-
ford et al., 2021). As the model is trained with LAION-
5B (Schuhmann et al., 2022), a large-scale dataset contain-
ing image-text pairs, SD can be conditioned during the
inference time to generate images that are aligned with the
given text prompt by directly using εθ(·, C), or by means of
classifier-free guidance (CFG) (Ho & Salimans, 2021).

2.2. Solving inverse problem with (L)DMs

Given access to some measurement

y = Ax+ n, A ∈ Rm×n, n ∼ N (0, σ2
yIm) (3)

where A is the forward operator and n is additive white
Gaussian noise, the task is retrieving x ∈ Rn from y ∈ Rm.
As the problem is ill-posed, a natural way to solve it is to per-
form posterior sampling x ∼ p(x|y) by defining a suitable
prior p(x). In DIS, DMs (i.e. denoisers) act as the implicit
prior with the use of the score function. The objective of
solving inverse problems is to provide a restoration that is as
close as possible to the ground truth given the measurement,
whether we are targeting to minimize the distortion or to
maximize the perceptual quality (Blau & Michaeli, 2018;
Delbracio & Milanfar, 2023).

Earlier methods utilized an alternating projection approach,
where hard measurement constraints are applied in-between
the denoising steps whether in pixel space (Kadkhodaie
& Simoncelli, 2021; Song et al., 2021) or measurement
space (Song et al., 2022; Chung & Ye, 2022). Distinctively,
projection in the spectral space via singular value decom-
position (SVD) to incorporate measurement noise has been
developed (Kawar et al., 2021; 2022). Subsequently, meth-
ods that aim to approximate the gradient of the log posterior
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in the diffusion model context have been proposed (Chung
et al., 2023b; Song et al., 2023b), expanding the applicability
to nonlinear problems. Broadening the range even further,
methods that aim to solve blind (Chung et al., 2023a; Murata
et al., 2023), 3D (Chung et al., 2023c; Lee et al., 2023), and
unlimited resolution problems (Wang et al., 2023b) were
introduced. More recently, methods leveraging diffusion
score functions within variational inference to solve inverse
imaging has been proposed (Mardani et al., 2023; Feng
et al., 2023). Notably, all the aforementioned methods uti-
lize pixel-domain DMs. Orthogonal to this direction, some
of the recent works have shifted their attention to using la-
tent diffusion models (Rout et al., 2023b; Song et al., 2023a;
He et al., 2023), a direction that we follow in this work.

In fact, inverse solvers can be directly linked to posterior
sampling from p(x0|y), which can be achieved by modify-
ing Eq. (1) with

dxt = −t∇xt
log p(xt|y) dt =

xt − E[x0|xt,y]

t
dt.

(4)

Here, log p(xt|y) = log p(xt) + log p(y|xt). How-
ever, as log p(y|xt) is intractable, DPS (Chung et al.,
2023b) proposes to approximate it with log p(y|xt) '
log p(y|E[x0|xt]), whose approximation error can be quan-
tified and bounded by the Jensen gap.

This idea was recently extended to LDMs in a few recent
works (Rout et al., 2023b; He et al., 2023), which con-
sider the following straightforward extension image domain
DPS (Chung et al., 2023b) as the baselne.

∇zt log p(y|zt) ' ∇zt log p(y|Dϕ(E[z0|zt]))
= ∇zt

‖y −Dϕ(ẑ0)‖22/σ2
y, (5)

with ẑ0 := E[z0|zt], leading the following latent update:

zt−1 = DDIM(zt)− ρ∇zt
‖y −ADϕ(ẑ0)‖2, (6)

where ρ is the step size, and DDIM(·) denotes a single step
of DDIM (or DDPM in general) sampling. We refer to the
sampler that uses the approximation in Eq. (5) as Latent
DPS (LDPS) henceforth.

However, the crucial component that delineates LDM is
the existence of VAE. When naively using the LDPS in
Eq. (6), the decoder introduces a significant amount of error
especially when the estimated clean latent ẑ(C)0 falls off the
manifold of the clean latents. To address this, (Rout et al.,
2023b) proposed Posterior Sampling using Latent Diffusion
(PSLD) to regularize the update steps on the latent so that
the clean latents are led to the fixed point of the successive
application of decoding-encoding. Formally, omitting the

dependence on C, they use the following gradient step

∇zt log(y|zt) ' ∇zt(‖y −ADϕ(ẑ0)‖22+

λ‖ẑ0 − Eφ(Dϕ(ẑ0))‖22), (7)

where the additional regularization term weighted by λ
leads ẑ0 towards the fixed point. On the other hand, (He
et al., 2023) extends LDPS by using history updates as in
Adam (Kingma & Ba, 2015). Concurrent work by Rout
et al. (2023a) proposes to match higher-order moments of
Tweedie.

The adoption of a regularized version, as indicated in Eq. (7),
over the baseline formulation Eq. (5) presents a compromise
between maintaining data fidelity and ensuring the stability
of the VAE. This often leads to a decline in performance,
particularly in scenarios with low SNR, as will be demon-
strated in subsequent experimental results3. Furthermore,
most existing works in the literature that aim for LDIS, to
the best of our knowledge, neglect the use of text embedding
by resorting to the use of null text embedding C∅. There
exists one concurrent work (Kim et al., 2023) which uses
a fixed target text while adapting the null text in CFG to
emphasize the target text conditioning when solving inverse
problems. Our method is orthogonal to Kim et al. (2023)
as our aim is to automatically find the ambiguous text em-
bedding that best describes the image, rather than guide the
result towards a specific mode described by the target text.

2.3. Prompt-tuning inverse problem solver

In modern language models and vision-language models,
prompting is a standard technique (Radford et al., 2021;
Brown et al., 2020) to guide the large pre-trained models
to solve downstream tasks. As it has been found that even
slight variations in the prompting technique can lead to
vastly different outcomes (Kojima et al., 2022), prompt
tuning (learning) has been introduced (Shin et al., 2020;
Zhou et al., 2022), which defines a learnable context vector
to optimize over. It was shown that by only optimizing
over the continuous embedding vector while maintaining
the model parameters fixed, one can achieve a significant
performance gain. In the context of DMs, prompt tuning has
been adopted for personalization (Gal et al., 2022; Mokady
et al., 2023), where one defines a special token to embed a
specific concept with only a few images.

Inspired by this, we are interested in the prompt optimization
in LDIS. In the context of LDIS,

arg min
x,c

L(x, c) ≡ arg min
z,c

L(Dϕ(z), c) (8)

3Also see Fig. 13 and Fig. 14, where it can be seen that repeat-
edly applying encoding-decoding steps yields diverging results,
regardless of using “glue” steps introduced in PSLD (Rout et al.,
2023b).
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FFHQ ImageNet

SR×8 Inpaint (p = 0.8) SR×8 Inpaint (p = 0.8)

Prompt FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑
"" 61.16 0.327 26.49 52.34 0.241 29.78 78.68 0.397 23.49 70.87 0.350 26.20

"A high quality photo" 61.17 0.327 26.57 52.82 0.237 29.70 77.00 0.396 23.51 69.10 0.350 26.26
"A high quality photo of a cat" 69.03 0.377 26.39 55.15 0.248 29.63 76.69 0.402 23.63 68.48 0.355 26.13
"A high quality photo of a dog" 66.55 0.371 26.48 55.91 0.249 29.65 76.45 0.394 23.58 67.75 0.354 26.10
"A high quality photo of a face" 60.41 0.325 26.74 52.33 0.239 29.69 77.32 0.403 23.60 68.83 0.352 26.20

Prompt optimizaton 58.73 0.317 26.68 51.40 0.233 29.69 66.96 0.386 23.57 66.82 0.314 26.29

PALI prompts from y 61.33 0.329 26.81 54.34 0.249 29.76 68.28 0.388 23.57 69.55 0.355 26.26
PALI prompts from x 60.73 0.322 26.76 52.06 0.238 29.75 66.55 0.387 23.57 64.00 0.348 26.17

Table 1. Difference in restoration performance using LDPS on SR×8 task with varying text prompts. Prompt optimization: text embedding
optimized without access to ground truth. PALI prompts from x/y: captions are generated with PALI (Chen et al., 2022) from x: ground
truth clean images / y: degraded images. The former can be considered an empirical upper bound.

where the first equation follows from x = Dϕ(z) in the
deterministic decoder mapping of VAE, where c is the text
embedding and the loss L will be explained in more detail
in subsequent session. It is easy to see that

arg min
z,c

L(Dϕ(z), c) ≤ arg min
z

L(Dϕ(z), c = C∅), (9)

where C∅ is the text embedding from the null text prompt.
Notably, by keeping one of the variables fixed, we are op-
timizing for the upper bound of the objective that we truly
wish to optimize over. It would be naturally beneficial to
optimize the LHS of Eq. (9), rather than the RHS used in
the previous methods.

To see Eq. (9) in effect, we conduct two canonical experi-
ments with 256 test images of FFHQ (Karras et al., 2019)
and ImageNet (Deng et al., 2009): super-resolution (SR) of
scale ×8 and inpainting with 80% of the pixels randomly
dropped, using the LDPS algorithm. Keeping all the other
hyper-parameters fixed, we only vary the text condition for
the diffusion model. In addition to using a general text
prompt, we use PALI (Chen et al., 2022) to provide captions
from the ground truth images (x) and from the measure-
ments (y) and use them when running LDPS. Further ex-
perimental details can be found in Appendix B. In Table 1,
we first see that simply varying the text prompts can lead
to dramatic difference in the performance. For instance,
we see an increase of over 10 FID when we use the text
prompts from PALI for the task of ×8 SR on ImageNet. In
contrast, using the prompts generated from y often degrades
the performance (e.g. inpainting) as the correct captions
cannot be generated. Indeed, from the table, we see that by
applying our prompt tuning approach, we achieve a large
performance gain, sometimes even outperforming the PALI
captions which has full access to the ground truth when
attaining the text embeddings. From this motivating exam-
ple, it is evident that additionally optimizing for c would
bring us gains that are orthogonal to the development of
the solvers (Rout et al., 2023b; He et al., 2023; Song et al.,

2023a), a direction which will be explored in this paper.

3. Main Contribution: the P2L algorithm
To effectively utilize the Latent Diffusion Inverse Solver
(LDIS) with prompt optimization, it is crucial to ensure two
key criteria: 1) consistency with respect to the measure-
ments, and 2) the feasibility of the latent as per the LDM.
Our approach diverges from conventional regularization
strategies, such as PSLD in Eq. (7). Instead, we base our
formulation on Eq. (9), which offers a more direct route to
achieving these objectives:

min
z∈P (z|y)

min
C

‖y −ADϕ(z(C))‖2 (10)

subject to z ∈ FX (11)

where P (z|y) denotes the posterior distribution of z given
the measurement condition y and FX denotes the set of
latent that can be represented by some image x:

FX = {z|z = Eµφ (x) for some x}

A key contribution of our study is the demonstration that the
optimization problem involving prompt, latent, and pixel
values can be effectively addressed through alternating min-
imization, as explained in the following sections. We sum-
marize our alternating sampling method in Algorithm 1 and
Algorithm 2, based on DDIM sampling, with standard noise
schedule notations adopted from (Ho et al., 2020).

The intuition of the overall algorithm is that by incorporating
the text conditioning automatically, ambiguities arising from
the natural ill-posedness of the inverse problems can be
mitigated. Further, artifacts that often arise from naive
latent space optimization can be corrected by leveraging the
VAE during inverse problem-solving. Brief overview of the
method structure:

1. (Sec. 3.1) Prompt embedding optimization through
fidelity loss minimization
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Algorithm 1 P2L

Require: εθ, zT ,y, C, T,K, γ, λD
1: for t = T to 1 do
2: C∗t ← OPTIMIZEEMB(zt,y, C0t ,K) . Sec. 3.1
3: ε̂t ← εθ(zt, C∗t )
4: ẑ0|t ← (zt −

√
1− ᾱtε̂t)/

√
ᾱt

5: if (t mod γ) = 0 then
6: x̂0 ← arg minx0

‖y − Ax0‖22 + λ‖x0 −
Dϕ(ẑ0|t)‖22

7: z̃0|t ← Eφ(x̂0) . Sec. 3.3
8: else
9: z̃0|t ← ẑ0|t

10: end if
11: z′t−1 ←

√
ᾱt−1z̃0|t +

√
1− ᾱt−1ε̂t

12: zt−1 ← z′t−1 − ρt∇zt‖y −ADϕ(ẑ0|t)‖ . Sec. 3.2
13: C(0)t−1 ← C∗t
14: end for
15: return x0 ← Dϕ(z0)

Algorithm 2 Prompt tuning

1: function OPTIMIZEEMB(zt,y, C(0)t ,K)
2: for k = 1 to K do
3: ε̂t ← εθ∗(zt, C(k−1)t )
4: ẑ0|t ← (zt −

√
1− ᾱtε̂t)/

√
ᾱt

5: ẑ′0|t ← ẑ0|t − ρ∇ẑ0|t‖y −ADϕ(ẑ0|t)‖
6: Lt ← ‖y −ADϕ(ẑ′0|t, C

(k−1)
t )‖22

7: C(k)t ← C(k−1)t − AdamGrad(Lt)
8: end for
9: return C∗t ← C

(K)
t

10: end function

2. (Sec. 3.2) Latent update via LDPS step with the opti-
mized prompt

3. (Sec. 3.3) Latent correction. This involves decoding,
enforcing data consistency in the pixel space, and re-
encoding

3.1. Prompt tuning

To update the prompt, we address the inner optimization
challenge presented in Eq. (10), which involves identifying
a suitable latent that aligns with z ∈ P (z|y). This pro-
cess is akin to the approach used in decomposed diffusion
sampling (DDS) as described in (Chung et al., 2024). It
entails minimizing the loss detailed in Eq. (10), starting
from the denoised latent ẑ0|t. As a result, we obtain ẑ′0|t as
a first order approximation of E[z0|zt,y, C], by adjusting
ẑ0|t and incorporating data consistency, as outlined in Line
5 of Algorithm 2. Now for the updated latent ẑ′0|t,we should
solve the inner optimization problem of Eq. (10), leading to

the following optimization:

C∗t = arg min
C

‖y −ADϕ(ẑ
(C)
0|t )‖22 (12)

We found that this alternating minimization should be solved
multiple times to have meaningful update of the problem.
This corresponds to the OPTIMIZEEMB in Algorithm 1, with
details of the optimization function in Algorithm 2. Further
details can be found in Appendix A,D.

3.2. Enforcing data fidelity

For a given optimized prompt C∗t , a straightforward exten-
sion of the LDPS for latent update zt−1 in Eq. (6) is

zt−1 = DDIM(zt)− ρ∇zt‖y −ADϕ(ẑ
(C∗t )
0 )‖22, (13)

where ẑ(Ct)0 := E[z0|zt, C∗t ] is the prompt conditioned pos-
terior mean. Here, DDIM(zt) can be equivalently repre-
sented by the denosing step through Tweedie’s formula:

ẑ0|t := (zt −
√

1− ᾱtε̂t)/
√
ᾱt (14)

followed by the noising step:

DDIM(zt) =
√
ᾱt−1ẑ0|t +

√
1− ᾱt−1ε̂t (15)

where ε̂t := εθ (zt, C∗t ), as shown in (Chung et al., 2024).
These data fidelity enforcing steps are presented in line
3-4,9-12 of Algorithm 1.

3.3. Enforcing latent feasibility

However, the aforementioned data fidelity enforcing steps
do not consider the latent constraint Eq. (11). Specifically,
without considering our constraint, we see in Fig. 2 and
Fig. 3 that artifacts arise, and this cannot be fully mitigated
by leveraging the regularizations proposed in PSLD (Rout
et al., 2023b). In this section, we show that this constraint
can be easily enforced by incorporating the VAE prior.

Specifically, inspired by the regularization term in PSLD
in Eq. (7), we consider the following loss, which is the
maximum a posteriori (MAP) objective under the VAE prior
in Eq. (2) with isotropic covariance (González et al., 2022).

L(x, z) = ‖y −ADϕ(z)‖22 + ζ‖z − Eµφ (x)‖22, (16)

where ζ absorbs the weighting caused by the variance of
respective terms. Instead of enforcing the hard constraint
between the x and z in the form of x = Dϕ(z) as in (Rout
et al., 2023b) that can introduce the trade-off between data
consistency and the stability of latent, our main goal is to
enforce a soft constraint by splitting the variables similar
in spirit to the alternating direction method of multipliers
(ADMM) (Boyd et al., 2011).

5



Prompt-tuning Latent Diffusion Models for Inverse Problems

Namely, using the variable splitting x = Dϕ(z), the opti-
mization problem with respect to x becomes

min
x
‖y −Ax‖22 + ζ‖z − Eµφ (Dϕ(z))‖22

+ λ‖x−Dϕ(z) + η‖22. (17)

where η denotes the dual variable in ADMM. Since we
consider using only a single step ADMM update for each
diffusion sampling step, we set dual variable η as a zero
vector and do not consider its update. This leads to

x∗ = arg min
x

‖y −Ax‖22 + λ‖x−Dϕ(z)‖22. (18)

Solving for Eq. (18) is performed using conjugate gradi-
ent (CG) with the clean latent ẑ0|t obtained through the
Tweedie’s formula Eq. (14), leading to the following up-
date:

x̂0 = arg min
x

‖y −Ax‖22 + λ‖x−Dϕ(ẑ0|t)‖22 (19)

as presented in line 3-6 of Algorithm 1. The resulting op-
timization problem in Eq. (19) is indeed a pixel-domain
proximal update from Dϕ(ẑ0|t), which can be interpreted
as enforcing the data fidelity in the pixel domain under the
regularization from latent feasiblity.

Subsequently, using the encoder approximation and setting
z = Eφ(x) with η = 0, the optimization problem with
respect to z reads

min
z
‖y −ADϕEµφ (x)‖22 + ζ‖z − Eµφ (x)‖22.

For a given pixel-domain update x̂0 from Eq. (19), the cor-
responding latent update then has the closed-form solution

ẑ0|t = Eµφ (x̂0) (20)

Note that by Eq. (20), we guarantee that the clean latents stay
on the range space of the encoder, automatically satisfying
the constraint in Eq. (11). For this reason, we often denote
the method proposed in this section simply as “projection”
to the constraint set.

In practice, we choose to apply Eq. (19) and Eq. (20) every
few iteration to control dramatic changes in the sampling,
and to save computation. Nevertheless, solving Eq. (19)
requires access toA>, which is often non-trivial to define.
Contrarily, our jax implementation enables defining A>

through jax.vjp. For further discussion, see Appendix E.
Upon implementing Eq. (19) and Eq. (20), we reintroduce
a data consistency step, as demonstrated in lines 11-12 of
Algorithm 1. This step is to ensure that the process does not
deviate from data consistency.

3.4. Targetting arbitrary resolution

Another important contribution of this work is its scalability
to arbitrary resolution with large image size. Despite its fully
convolutional nature, as SD was trained with 64×64 latents
(↔ 512 × 512 images), the performance degrades when
we aim to deal with larger dimensions, again due to train-
test time discrepancy. Several works aimed to mitigate this
issue by processing the latents with strided patches (Bar-
Tal et al., 2023; Jiménez, 2023; Wang et al., 2023a) that
increases the computational burden by roughly O(n2). In
contrast, in Appendix F, we show that our approach using
the projection step by simply running Alg. 1, used without
any patch processing, can outperform previous methods that
rely on patches, resulting in significantly improved image
quality and faster inference speed. This is because when
given a latent that stays within the range space of the encoder
thanks to Eq. (20), the decoder is able to produce a high-
quality image directly even when the input size is larger
than 64× 64.

Guidance on hyperparameter selection P2L, with
prompt embedding as an additional variable to optimize
over, has more hyperparameters than standard DIS. While
we report the best choices in Tab. 6, here we provide a solid
choice that works well across most experiments. 1) For
optimizing prompt embedding, 1 5 iterations (K) with a
learning rate of 1e − 4 yields stable performance. We ob-
serve setting too high values of K or learning rate leads
to overfitting, while setting them too small yields marginal
improvements. 2) One can reliably choose GD with static
step size of 1.0 for LDPS update, as advised in many pre-
vious works (Chung et al., 2023b; Rout et al., 2023b). 3)
projection works when applied every 3-5 steps (γ), while the
value of λ matters less and can be freely chosen between 0.1
1.0 with negligible difference in the performance. When
applying projection too often, artifacts arise.

4. Experiments
Datasets, Models We consider two different well-
established datasets: 1) FFHQ 512×512 (Karras et al.,
2019), and 2) ImageNet 512×512 (Deng et al., 2009). For
the former, we use the first 1000 images for testing, simi-
lar to (Chung et al., 2023b). For the latter, we choose 1k
images out of 10k test images provided in (Saharia et al.,
2022a) by interleaved sampling, i.e. using images of index
0, 10, 20, etc. after ordering by name. For the latent diffu-
sion model, we choose SD v1.4 pre-trained on the LAION
dataset for all the experiments, including the baseline com-
parison methods based on LDM. As there is no publicly
available image diffusion model that is trained on an iden-
tical dataset, we choose ADM (Dhariwal & Nichol, 2021)
trained on ImageNet 512×512 data as the universal prior
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when implementing baseline pixel-domain DIS. Note that
this discrepancy may lead to an unfair advantage in the
performance for evaulation on ImageNet, and an unfair dis-
advantage in the performance when evaluating on FFHQ.
All experiments were done on NVIDIA A100 40GB GPUs.

Inverse Problems We test our method on the following
degradations: 1) Super-resolution from ×8 averagepool-
ing, 2) Inpainting from 10-20% free-form masking as used
in (Saharia et al., 2022a), 3) Gaussian deblurring from an
image convolved with a 61×61 size Gaussian kernel with
σ = 3.0, 4) Motion deblurring from an image convolved
with a 61×61 motion kernel that is randomly sampled with
intensity 0.54, following (Chung et al., 2023b). For all degra-
dations, we include mild additive white Gaussian noise with
σy = 0.01.

Evaluation As the main objective of this study is to im-
prove the performance of LDIS, we mainly focus our eval-
uation on the comparison against the current SOTA LDIS:
we compare against LDPS, GML-DPS (Rout et al., 2023b),
PSLD (Rout et al., 2023b), and LDIR (He et al., 2023).
We additionally compare against TRreg (Kim et al., 2023)
to emphasize that the aim of the works are different. All
LDIS including the proposed P2L use 1000 NFE DDIM
sampling with η = 0.05, with the exception of TReg, which
uses 200 NFE DDIM sampling. Using higher NFE did not
help in improving sample quality. We additionally compare
against SOTA pixel-domain DIS: DPS (Chung et al., 2023b),
Diff-PIR (Zhu et al., 2023), DDS (Chung et al., 2024), and
ΠGDM (Song et al., 2023b). For DPS, we use 1000 NFE
DDIM sampling. For Diff-PIR, DDS, and ΠGDM, we use
100 NFE DDIM sampling. We choose the optimal η values
for these algorithms through grid-search. Details about the
comparison methods can be found in Appendix D.3. We per-
form a quantitative evaluation with standard metrics: PSNR,
FID, and LPIPS.

Comparison against baseline In all of the inverse prob-
lems that we consider in the paper, our method outperforms
all the baselines by quite a large margin in terms of percep-
tual quality, measured by FID and LPIPS, while keeping the
distortion at a comparable level against the current state-of-
the-art methods. Especially, we see about 10 FID decrease
in deblurring and inpainting tasks compared to the runner
up in both FFHQ and ImageNet dataset (See Tables 8,2).
The superiority can also be clearly seen in Fig. 1, where
P2L achieves stable, high-quality reconstruction throughout
all tasks. Results from both LDPS and PSLD often con-
tain local grid-like artifacts (Red boxes in Figures) and are
blurry. With P2L, the restored images are sharpened while

4https://github.com/LeviBorodenko/motionblur
5The parameter η indicates the stochasticity of the sampler.

η = 0.0 leads to deterministic PF-ODE.

the artifacts are effectively removed. LDIR are less prone to
artifacts owing to the smoothed history gradient updates, but
often results in unrealistic textures and deviations from the
measurement, which is also reflected in having the lowest
PSNR among the LDIS-class methods. In contrast, P2L is
free from such drawbacks even when leveraging Adam-like
gradient update steps. It should be noted that the compute
time for P2L linearly increases as we increase the number
of training iterations for the text embedding. The compute
time for K = 0 is similar to other LDIS baselines, but
it becomes slower if K becomes larger. Devising a more
time-efficient way to perform text embedding optimization
is thus a promising future research direction. For further
details on the runtime analysis, see Appendix C.

One rather surprising finding is the heavy downgrade in
the performance for DIS methods. Even on in-distribution
ImageNet test data, methods such as DPS and DiffPIR be-
come very unstable. This can be attributed to the generative
prior being poor: directly training DMs on high-resolution
images often result in poor performance6. This observation
again points to the importance of developing methods that
can leverage foundation models when aiming for general
domain higher-resolution data. See Appendix G for further
results. As a final note, we believe that the compromise
in PSNR is related to the imperfectness of the VAE used
in SD v1.47, and we expect such degradation to be miti-
gated when switching to better, larger autoencoders such as
SDXL (Podell et al., 2023).

Design components In Table 3, we perform an ablation
study on the design components of the proposed method.
From the table, we confirm that prompt tuning, projection
to the range space of the encoder, and performing proximal
update step (denoted as Γ) before the projection all con-
tributes to the gain in the performance. It is important that
these gains are synergistic, and one component does not
hamper the other. In the Appendix Tab. 7, we further show
that our prompt-tuning approach is robust to the variation in
the hyper-parameters (learning rate, number of iterations).
Specifically, among the 9 configurations that we try, only
the one with 5 iterations, lr=0.001 is inferior to not using
prompt tuning. In Fig. 3, we visualize the progress ofD(ẑ0)
through time t starting from the same random seed, com-
paring LDPS, PSLD, and LDPS + projection (row 4 of
Tab. 6). Here, we see that our proposed projection approach
effectively suppresses the artifacts that arise during the re-
construction process, whereas PSLD introduces additional
artifacts. Furthermore, in Appendix F, we show that our

6For ≥ 512× 512 resolution, either using latent diffusion or
using cascaded models (Saharia et al., 2022b) are popular.

7Auto-encoding 1000 ground-truth test images result in the fol-
lowing metrics: FFHQ (PSNR): 29.66 ± 2.29, ImageNet (PSNR):
27.12 ± 4.38.
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Figure 1. Inverse problem solving results on ImageNet 512× 512 test set. Row 1: SR×8, Row 2: gaussian deblurring, Row 3: motion
deblurring, row 4: inpainting.

SR (×8) Deblur (motion) Deblur (gauss) Inpaint

Method FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑
P2L (ours) 51.81 0.386 23.38 54.11 0.360 24.79 39.10 0.325 25.11 32.82 0.229 21.99

LDPS 61.09 0.475 23.21 71.12 0.441 23.32 48.17 0.392 24.91 46.72 0.332 21.54
GML-DPS (Rout et al., 2023b) 60.36 0.456 23.21 59.08 0.403 24.35 45.33 0.377 25.44 47.30 0.294 21.12
PSLD (Rout et al., 2023b) 60.81 0.471 23.17 59.63 0.398 24.21 45.44 0.376 25.42 40.57 0.251 20.92
LDIR (He et al., 2023) 63.46 0.480 22.23 88.51 0.475 21.37 72.10 0.506 22.45 50.65 0.313 23.28
TReg (Kim et al., 2023) 104.3 0.520 18.97 102.97 0.501 19.06 117.3 0.455 16.84 77.76 0.349 14.98

DDS (Chung et al., 2024) 203.2 1.213 12.72 84.67 0.925 14.52 70.51 0.835 16.58 60.18 0.354 17.03
DPS (Chung et al., 2023b) 54.61 0.544 20.70 71.99 0.599 19.62 98.33 0.910 15.05 71.70 0.360 15.15
DiffPIR (Zhu et al., 2023) 488.3 1.182 13.44 87.04 0.622 19.32 79.31 0.755 20.55 45.97 0.300 20.11
ΠGDM (Song et al., 2023b) 53.00 0.490 21.08 75.35 0.682 18.66 70.26 0.797 21.96 65.75 0.322 16.84

Table 2. Quantitative evaluation (PSNR, LPIPS, FID) of inverse problem solving on ImageNet 512×512-1k validation dataset. Bold: best,
underline: second best. Methods that are not LDM-based are shaded in gray.

FFHQ ImageNet

Design components SR×8 Inpaint (p = 0.8) SR×8 Inpaint (p = 0.8)

Projection Γ Prompt tuning FID↓ PSNR↑ FID↓ PSNR↑ FID↓ PSNR↑ FID↓ PSNR↑
7 7 7 61.16 26.49 52.34 29.78 78.68 23.49 70.87 26.20
7 7 3 58.73 26.68 51.40 29.69 76.40 23.52 67.06 26.32
3 7 7 55.91 26.37 48.71 29.68 74.22 23.16 66.92 26.08
3 3 7 55.68 26.43 47.76 29.70 74.01 23.32 65.45 26.29
3 3 3 52.96 26.64 46.92 29.63 70.08 23.48 59.26 26.12

Table 3. Ablation studies on the design components

σy Γ PSNR FID

0.0 glue 26.51 54.69
Ours 26.80 54.58

0.01 glue 26.39 56.47
Ours 26.43 55.68

0.05 glue 23.86 68.99
Ours 24.92 65.90

Table 4. Choice of Γ
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approach is also useful for targetting arbitrary resolution
image restoration, as the errors accumulated by processing
latents in higher dimensions can be corrected through our
projection approach. Remarkably, we see that our approach
often offers better results (e.g. see Fig. 5) than operating in
strided patches (Bar-Tal et al., 2023; Jiménez, 2023), which
requires quadratic scaling of compute time.

Choice of Γ When projecting to the range space of E , we
choose to use the proximal optimization strategy in Eq. (19)
and Eq. (20). Instead, one could resort to projection to the
measurement subspace (“gluing” of (Rout et al., 2023b))
by using Γ(x̂0) = A>y + (I −A>A)x̂0. In Table 4, we
compare our choice of Γ against the gluing on various noise
levels on FFHQ SR×8. We see that for all noise levels,
our projecton steps consistently outperform the gluing, even
when Γ is applied every γ = 4 steps of reverse diffusion.
Furthermore, the differences become more pronounced as
we increase the noise level. The difference in the compute
time between the two choices is minimal: 331.7 [s] vs 333.2
[s] measured in wall-clock time using RTX 3090 GPU per
the restoration of a single image when we compare gluing
vs. proximal optimization.

Visualization of the optimized prompt Although the op-
timized prompt during the P2L inference cannot be directly
decoded as a text, we can indirectly try to visualize what the
prompt has learned from the optimization process. If the
embedding was optimized in a meaningful way, we would
expect it to contain some information about the underlying
image. Hence, when we use this embedding to generate
samples with standard CFG, we would achieve images that
are more similar to the underlying image, compared to not
using this embedding. In Fig. 12, we verify that this is in-
deed the case on the SR×8 experiment on AFHQ cat and
dog images.

5. Conclusion
We proposed P2L, a latent diffusion model-based inverse
problem solver that introduces two new strategies. First, a
prompt tuning method to optimize the continuous input text
embedding used for DMs was developed. We observed that
our strategy can boost the performance by a good margin
compared to the usage of null text embedding that prior
works employ. Second, a projection approach to keep the
latents in the range space of the encoder during the reverse
diffusion process was proposed. We show that our approach
paves way to jointly utilizing diffusion generative prior and
the VAE generative prior. Our approach effectively miti-
gated the artifacts that often arise during inverse problem
solving, while also sharpening the final output. P2L out-
performs previous diffusion model-based inverse problem
solvers that operate on the latent and the image domain.

Limitations While prompt tuning enhances the perfor-
mance, it also incurs additional computational complexity
as additional forward/backward passes through the latent
diffusion model and the decoder is necessary. Consequently,
the method will need future investigations when aiming for
time-critical applications. As we optimize the continuous
text embeddings rather than the discrete text directly, it is
hard to decipher what the text embedding after the optimiza-
tion has converged to explicitly. This is a limitation of the
text embedder used for SD, as CLIP does not utilize a de-
coder. We could instead opt for the use of Imagen (Saharia
et al., 2022b), where T-5 with an encoder-decoder architec-
ture is used, where one could easily check the learned text
from our prompt-tuning scheme.

Impact Statement
This paper presents work whose goal is to advance inverse
problem solving through generative modeling. There are
many potential societal consequences of our work, none
which we feel must be specifically highlighted here.
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Jiménez, Á. B. Mixture of diffusers for scene composition
and high resolution image generation. arXiv preprint
arXiv:2302.02412, 2023.

Kadkhodaie, Z. and Simoncelli, E. Stochastic solutions
for linear inverse problems using the prior implicit in a
denoiser. In Advances in Neural Information Process-
ing Systems, volume 34, pp. 13242–13254. Curran Asso-
ciates, Inc., 2021.

Kamilov, U. S., Bouman, C. A., Buzzard, G. T., and
Wohlberg, B. Plug-and-play methods for integrating
physical and learned models in computational imaging:
Theory, algorithms, and applications. IEEE Signal Pro-
cessing Magazine, 40(1):85–97, 2023.

Karras, T., Laine, S., and Aila, T. A style-based genera-
tor architecture for generative adversarial networks. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4401–4410, 2019.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating
the design space of diffusion-based generative models. In
Proc. NeurIPS, 2022.

Kawar, B., Vaksman, G., and Elad, M. Snips: Solving
noisy inverse problems stochastically. Advances in Neural
Information Processing Systems, 34:21757–21769, 2021.

Kawar, B., Elad, M., Ermon, S., and Song, J. Denoising
diffusion restoration models. In Oh, A. H., Agarwal, A.,
Belgrave, D., and Cho, K. (eds.), Advances in Neural
Information Processing Systems, 2022. URL https://
openreview.net/forum?id=kxXvopt9pWK.

Kim, J., Park, G. Y., Chung, H., and Ye, J. C. Regularization
by texts for latent diffusion inverse solvers. arXiv preprint
arXiv:2311.15658, 2023.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In ICLR, 2015.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. Ad-
vances in neural information processing systems, 35:
22199–22213, 2022.

Laroche, C., Almansa, A., and Coupete, E. Fast dif-
fusion em: a diffusion model for blind inverse prob-
lems with application to deconvolution. arXiv preprint
arXiv:2309.00287, 2023.

Lee, S., Chung, H., Park, M., Park, J., Ryu, W.-S., and
Ye, J. C. Improving 3D imaging with pre-trained
perpendicular 2D diffusion models. arXiv preprint
arXiv:2303.08440, 2023.

Mardani, M., Song, J., Kautz, J., and Vahdat, A. A varia-
tional perspective on solving inverse problems with diffu-
sion models. arXiv preprint arXiv:2305.04391, 2023.

Mokady, R., Hertz, A., Aberman, K., Pritch, Y., and Cohen-
Or, D. Null-text inversion for editing real images us-
ing guided diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6038–6047, 2023.

Murata, N., Saito, K., Lai, C.-H., Takida, Y., Uesaka, T.,
Mitsufuji, Y., and Ermon, S. Gibbsddrm: A partially
collapsed gibbs sampler for solving blind inverse prob-
lems with denoising diffusion restoration. arXiv preprint
arXiv:2301.12686, 2023.

Ongie, G., Jalal, A., Metzler, C. A., Baraniuk, R. G., Di-
makis, A. G., and Willett, R. Deep learning techniques for
inverse problems in imaging. IEEE Journal on Selected
Areas in Information Theory, 1(1):39–56, 2020.

Podell, D., English, Z., Lacey, K., Blattmann, A., Dockhorn,
T., Müller, J., Penna, J., and Rombach, R. Sdxl: im-
proving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

Poole, B., Jain, A., Barron, J. T., and Mildenhall, B.
Dreamfusion: Text-to-3d using 2d diffusion. In The
Eleventh International Conference on Learning Represen-
tations, 2023. URL https://openreview.net/forum?
id=FjNys5c7VyY.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M.
Hierarchical text-conditional image generation with clip
latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Romano, Y., Elad, M., and Milanfar, P. The little engine that
could: Regularization by denoising (red). SIAM Journal
on Imaging Sciences, 10(4):1804–1844, 2017.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
10684–10695, 2022.

11

https://openreview.net/forum?id=kxXvopt9pWK
https://openreview.net/forum?id=kxXvopt9pWK
https://openreview.net/forum?id=FjNys5c7VyY
https://openreview.net/forum?id=FjNys5c7VyY


Prompt-tuning Latent Diffusion Models for Inverse Problems

Rout, L., Chen, Y., Kumar, A., Caramanis, C., Shakkottai,
S., and Chu, W.-S. Beyond first-order tweedie: Solving
inverse problems using latent diffusion. arXiv preprint
arXiv:2312.00852, 2023a.

Rout, L., Raoof, N., Daras, G., Caramanis, C., Dimakis,
A. G., and Shakkottai, S. Solving linear inverse problems
provably via posterior sampling with latent diffusion mod-
els. arXiv preprint arXiv:2307.00619, 2023b.

Saharia, C., Chan, W., Chang, H., Lee, C., Ho, J., Salimans,
T., Fleet, D., and Norouzi, M. Palette: Image-to-image
diffusion models. In ACM SIGGRAPH 2022 Conference
Proceedings, pp. 1–10, 2022a.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton,
E. L., Ghasemipour, K., Gontijo Lopes, R., Karagol Ayan,
B., Salimans, T., et al. Photorealistic text-to-image dif-
fusion models with deep language understanding. Ad-
vances in Neural Information Processing Systems, 35:
36479–36494, 2022b.

Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C.,
Wightman, R., Cherti, M., Coombes, T., Katta, A., Mullis,
C., Wortsman, M., et al. Laion-5b: An open large-scale
dataset for training next generation image-text models.
Advances in Neural Information Processing Systems, 35:
25278–25294, 2022.

Shin, T., Razeghi, Y., Logan IV, R. L., Wallace, E., and
Singh, S. Autoprompt: Eliciting knowledge from lan-
guage models with automatically generated prompts.
arXiv preprint arXiv:2010.15980, 2020.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International Conference on
Machine Learning, pp. 2256–2265. PMLR, 2015.

Song, B., Kwon, S. M., Zhang, Z., Hu, X., Qu, Q., and
Shen, L. Solving inverse problems with latent diffu-
sion models via hard data consistency. arXiv preprint
arXiv:2307.08123, 2023a.

Song, J., Vahdat, A., Mardani, M., and Kautz, J.
Pseudoinverse-guided diffusion models for inverse prob-
lems. In International Conference on Learning Rep-
resentations, 2023b. URL https://openreview.net/
forum?id=9 gsMA8MRKQ.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. In 9th Interna-
tional Conference on Learning Representations, ICLR,
2021.

Song, Y., Shen, L., Xing, L., and Ermon, S. Solving inverse
problems in medical imaging with score-based generative
models. In International Conference on Learning Rep-
resentations, 2022. URL https://openreview.net/
forum?id=vaRCHVj0uGI.

Venkatakrishnan, S. V., Bouman, C. A., and Wohlberg, B.
Plug-and-play priors for model based reconstruction. In
2013 IEEE global conference on signal and information
processing, pp. 945–948. IEEE, 2013.

Vincent, P. A connection between score matching and de-
noising autoencoders. Neural computation, 23(7):1661–
1674, 2011.

Wang, J., Yue, Z., Zhou, S., Chan, K. C., and Loy, C. C.
Exploiting diffusion prior for real-world image super-
resolution. arXiv preprint arXiv:2305.07015, 2023a.

Wang, Y., Yu, J., Yu, R., and Zhang, J. Unlimited-size
diffusion restoration. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 1160–1167, 2023b.

Wang, Z., Lu, C., Wang, Y., Bao, F., Li, C., Su, H., and
Zhu, J. Prolificdreamer: High-fidelity and diverse text-
to-3d generation with variational score distillation. arXiv
preprint arXiv:2305.16213, 2023c.

Whang, J., Lei, Q., and Dimakis, A. Solving inverse prob-
lems with a flow-based noise model. In International Con-
ference on Machine Learning, pp. 11146–11157. PMLR,
2021.

Whang, J., Delbracio, M., Talebi, H., Saharia, C., Dimakis,
A. G., and Milanfar, P. Deblurring via stochastic refine-
ment. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 16293–
16303, 2022.

Zhou, K., Yang, J., Loy, C. C., and Liu, Z. Learning to
prompt for vision-language models. International Jour-
nal of Computer Vision, 130(9):2337–2348, 2022.

Zhu, Y., Zhang, K., Liang, J., Cao, J., Wen, B., Timofte,
R., and Van Gool, L. Denoising diffusion models for
plug-and-play image restoration. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1219–1229, 2023.

12

https://openreview.net/forum?id=9_gsMA8MRKQ
https://openreview.net/forum?id=9_gsMA8MRKQ
https://openreview.net/forum?id=vaRCHVj0uGI
https://openreview.net/forum?id=vaRCHVj0uGI


Prompt-tuning Latent Diffusion Models for Inverse Problems

A. Background on diffusion models
Lemma A.1 (Tweedie’s formula). Given a Gaussian perturbation kernel p(xt|x0) = N (xt; stx0, σ

2
t I), the posterior

mean is given by

E[x0|xt] =
1

αt
(xt + σ2

t∇xt
log p(xt)) (21)

Proof.

∇xt log p(xt) =
∇xtp(xt)

p(xt)
(22)

=
1

p(xt)
∇xt

∫
p(xt|x0)p(x0) dx0 (23)

=
1

p(xt)

∫
∇xtp(xt|x0)p(x0) dx0 (24)

=
1

p(xt)

∫
p(xt|x0)∇xt log p(xt|x0)p(x0) dx0 (25)

=

∫
p(x0|xt)∇xt log p(xt|x0) dx0 (26)

=

∫
p(x0|xt)

stx0 − xt
σ2
t

dx0 (27)

=
stE[x0|xt]− xt

σ2
t

. (28)

Rearranging the terms, we achieve the conclusion.

Lemma A.1 lets us compute the posterior mean when we have access to the score function. In diffusion models, we
parametrize the score function with a neural network and train it through denoising score matching

θ∗ = arg min
θ

Et∼U [0,1],x0∼pdata,ε∼N (0,I)‖sθ(xt, t)−∇xt
log p(xt|x0)‖22. (29)

Let us consider the case of DDPM (Ho et al., 2020) with the forward perturbation kernel p(xt|x0) = N (xt;
√
ᾱtx0, (1−

ᾱt)I)8. Then, we have the following alternative parametrizations

sθ∗(xt, t) = − 1√
1− ᾱt

εθ∗(xt, t) =

√
ᾱtDθ∗(x0)− xt√

1− ᾱt
, (30)

where the second parametrization comes from epsilon-matching (Ho et al., 2020) and is mostly used throughout the work,
and the last parametrization directly estimates the posterior mean by regarding the diffusion model as a denoiser.
Corollary A.2 (Conditional Tweedie’s formula).

E[x0|xt,y] =
1

st
(xt + σ2

t∇xt
log p(xt|y)) (31)

The corollary is a simple consequence of conditioning the Tweedie’s formula with an additional variable y. As log p(xt|y)
is intractable, we can estimate Eq. (31), with the choices of st, σt made from DDPM, with (Chung et al., 2023b)

E[x0|xt,y] =
1√
ᾱt

(xt + (1− ᾱt)∇xt
(log p(xt) + log p(y|xt))) (32)

(DPS)
≈ 1√

ᾱt
(xt + (1− ᾱt) (sθ∗(xt, t) +∇xt

log p(y|x̂0))) (33)

= x̂0 +
1− ᾱt√
ᾱt
∇xt

log p(y|x̂0) (34)

8In the discrete setup, ᾱt :=
∏t

i=1 αt, and αt := 1− βt with q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI)
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where x̂0 := Dθ∗(xt, t). Further, we can circumvent the need to backpropagate through the diffusion model and save
computation by using the DDS approximation (Chung et al., 2024)

E[x0|xt,y]
(DDS)
≈ x̂0 +

1− ᾱt√
ᾱt
∇x̂0

log p(y|x̂0), (35)

where the difference stems from that we take the gradient w.r.t. x̂0 rather than xt. Running Eq. (4) with the approximations
Eq. (33) or Eq. (35) amounts to approximately sampling from the posterior distribution.

B. Proof-of-concept experiment
For the caption generation with PALI, we simply take the captions with the highest score. Examples of the captions generated
from PALI are presented in Fig. 9. In our initial experiments, we found that using PALI captions directly did not directly
lead to an improvement in the performance, as it only describes the content of the image, and says nothing about the quality
of the image. Therefore, we use the following text prompts for the oracle “A high quality photo of a {PALI prompt}”,
similar to the general text prompts.

For both inverse problems (SR×8, inpainting with p = 0.8), we use the LDPS algorithm with 1000 NFE and η = 0.0. We
apply prompt tuning algorithm per denoising step as indicated in Algorithm 2, with K = 5 and learning rate of 1e − 4.
When optimizing for the text embedding, we initialize it with the embedding vector from the token “A high quality
photo of a face” for FFHQ, and “A high quality photo” for ImageNet in the case of inpainting. Note that for the
latter, we did not find much performance difference when initializing from the null text prompt, or even initializing it with
“A high quality photo of a dog”. For ×8 SR, we initialize the text embeddings from PALI captions generated from y,
as we empirically observe that PALI captions from y still have a relatively good coarse description about the given image.

C. Runtime analysis

Method Time [s] FID↓ PSNR↑ Type

P2L (K = 5) 1982.7 51.81 23.38

Latent
diffusion

P2L (K = 3) 1333.6 52.90 23.36
P2L (K = 1) 657.3 55.62 23.35
P2L (K = 0) 333.2 56.20 23.30

LDPS 313.9 61.09 23.21
GML-DPS (Rout et al., 2023b) 390.6 60.36 23.21
PSLD (Rout et al., 2023b) 408.7 60.81 23.17
LDIR (He et al., 2023) 317.2 63.46 22.23

DDS (Chung et al., 2024) 20.1 203.2 12.72
Pixel

diffusion
DPS (Chung et al., 2023b) 291.0 54.61 20.70
DiffPIR (Zhu et al., 2023) 21.2 488.3 13.44
ΠGDM (Song et al., 2023b) 30.2 53.00 21.08

Table 5. Comparison in compute time for each method using RTX
3090 GPU in wall-clock time [s].

In Tab. 5, we include the runtime for each algorithm used
in the paper when solving inverse problems with diffu-
sion models, measured in wall-clock time [s] with a single
RTX 3090 GPU. Note that P2L (K = 0) corresponds to
the case where we do not use prompt-tuning, and only
apply the idea of leveraging the VAE prior (i.e. encoder
range space projection). In this case, the compute time
is roughly equivalent to the LDIS baselines. As we in-
crease the number of iterations for prompt embedding op-
timization, the required computation time approximately
linearly increases. In this regard, P2L requires more com-
pute against other LDIS baselines as we additionally op-
timize for the text prompt, which can be considered a
downside of the approach. However, it should be noted
that P2L is the first approach that shows the possibility
and feasibility of the approach. While it may not be com-
putationally efficient at this point, P2L would be a good
cornerstone that future works can build upon to devise faster, more efficient solvers.

D. Implementation details
D.1. C update prompt tuning

We consider the following optimization problem

C∗ = arg min
C

‖y −AD (E[z0|zt,y, C]) ‖22, (36)
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FFHQ ImageNet

problem Deblur (motion) Deblur (gauss) SR×8 inpaint Deblur (motion) Deblur (gauss) SR×8 inpaint

Gradient type Adam Adam GD Adam Adam GD GD GD
ρt 0.05 0.05 1.0 0.05 0.1 ᾱt 15ᾱt 0.5
γ 5 4 4 3 5 4 4 3
λ 1.0 1.0 1.0 0.1 1.0 1.0 1.0 0.1
K 3 5 5 1 3 3 3 1
learning rate 5e− 5 1e− 4 1e− 4 1e− 4 1e− 5 1e− 4 1e− 5 1e− 4

Table 6. Hyper-parameter choice for the proposed method. White shade: hyper-parameters related to gradient updates, blue shade:
hyper-parameters related to projecting onto the range space of E , red shade: hyper-parameters related to prompt tuning.

where Eq. (36) is performed for every timestep t during the inference stage. Here, we approximate the conditional posterior
mean as

E[z0|zt,y, C] =
1√
ᾱt
zt +

1− ᾱt√
ᾱt

(∇zt log p(zt|C) +∇zt log p(y|zt, C)) (37)

' ẑ(C)0 +
1− ᾱt√
ᾱt
∇zt log p(y|ẑ(C)0 ) (38)

' ẑ(C)0 +
1− ᾱt√
ᾱt
∇
ẑ
(C)
0

log p(y|ẑ(C)0 ), (39)

which is the consequence of the DDS approximation in Eq. (35). Notice that we update our embeddings to improve the
fidelity Eq. (36). However, in practice, this also leads to higher quality images in terms of perception. For optimizing
Eq. (36), we use Adam with the learning rate and the number of iterations as denoted in Table 6 for every t. In practice, we
choose a static step size ρ = 1.0 with the gradient of the norm, which was shown to be effective in (Chung et al., 2023b).
The resulting prompt tuning algorithm is summarized in Algorithm 2.

Algorithm 3 P2L: Adam

Require: εθ∗ , zT ,y, C, T,K, γ, β1, β2, ε,Γ
1: mT ← np.zeros like(zT )
2: vT ← np.zeros like(zT )
3: for t = T to 1 do
4: C∗t ← OPTIMIZEEMB(zt,y, C0t ,K)
5: ε̂t ← εθ∗(zt, C∗t )
6: ẑ0|t ← (zt −

√
1− ᾱtε̂t)/

√
ᾱt

7: if (t mod γ) = 0 then
8: ẑ′0|t ← E

(
Γ
(
D(ẑ0|t)

))
9: end if

10: z′t−1 ←
√
ᾱt−1ẑ

′
0|t +

√
1− ᾱt−1ε̂t

11: g ← ∇zt
‖AD(ẑ0|t)− y‖

12: m̂t−1 ← (β1mt + (1− β1)g) /(1− β1)
13: v̂t−1 ← (β2vt + (1− β2)(g ◦ g)) /(1− β2)

14: zt−1 ← z′t−1 − ρt
m̂t−1√
v̂t−1+ε

15: C(0)t−1 ← C∗t
16: end for
17: return x0 ← D(z0)

D.2. zt update

In Table 6, there are two gradient types: GD and Adam. For GD, we use standard gradient descent steps as presented
in Algorithm 1. For Adam, using the same prompt tuning Algorithm 2, we adopt a history gradient update scheme as
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proposed in (He et al., 2023) to arrive at Algorithm 3. Note that the hyper-parameters of the Adam update were fixed to be
β1 = 0.9, β2 = 0.999, ε = 1e− 8, which is the default setting. We only search for the optimal step size ρt via grid search,
which is set to 0.1 for motion deblurring in ImageNet, and 0.05 otherwise.

D.3. Comparison methods

LDPS LDPS in Eq. (6) can be considered a straightforward extension image domain DPS (Chung et al., 2023b). The
three works that we review in this section (He et al., 2023; Rout et al., 2023b; Song et al., 2023a) all consider LDPS as a
baseline. In Eq. (6), we use a static step size of ρ = 1, widely adopted in literature.

LDIR (He et al., 2023) Using Adam-like history gradient update scheme, a single iteration of the algorithm can be
summarized as follows

gt = ∇zt‖y −AD(ẑ0)‖ (40)
m̂t = (β1mt−1 + (1− β1)gt)/(1− β1) (41)
v̂t = (β2vt−1 + (1− β2)(gt ◦ gt))/(1− β2) (42)

zt−1 = DDIM(zt)− ρ
m̂t√
v̂t + ε

, (43)

where ◦ denotes element-wise product, and β1, β2, ε are the hyperparameters of the sampling scheme. As LDIR uses a
momentum-based update scheme, we have smoother gradient transitions. We fix β1 = 0.9, β2 = 0.999, ε = 1e− 8 to be
identical to when using the proposed method. The step size ρ is chosen to be the optimal value found through grid search:
0.1 for ImageNet motion deblurring, and 0.05 otherwise.

GML-DPS, PSLD (Rout et al., 2023b) GML-DPS attempts to regularize the predicted clean latent ẑ0 to be a fixed point
after encoding and decoding. Formally, the update step reads

zt−1 = DDIM(zt)− ρ∇zt
(‖y −AD(ẑ0)‖2 + γ‖ẑ0 − E(D(ẑ0))‖2) . (44)

Further, PSLD applies an orthogonal projection onto the subspace ofA in between decoding and encoding to enforce fidelity

zt−1 = DDIM(zt)− ρ∇zt

(
‖y −AD(ẑ0)‖2 + γ‖ẑ0 − E(A>y + (I −A>A)D(ẑ0))‖2

)
. (45)

We use the static step size of ρ = 1, and choose γ = 0.1, as advised in (Rout et al., 2023b). GML-DPS and PSLD are
closest to the proposed method in spirit, as these methods attempt to guide the latents to stay closer to the natural manifold
by enforcing them to be a fixed point after autoencoding. The difference is that these approaches use gradient guidance
while we try to explicitly project the latents into the the natural manifold.

TReg (Kim et al., 2023) TReg uses CFG with a high guidance scale of 7.5 to produce the denoised estimate ẑ0. By
defining the CLIP image encoder (Radford et al., 2021) as T and the cosine similarity function as sim(·), the algorithm can
be represented as

x̂0 = D(ẑ0) (46)

x̂0(y) = arg min
x

‖y −A(x)‖22
2σ2

+ λ‖x− x̂0‖22 (47)

ẑ0(y) = E(x̂0(y)) (48)

Ĉ∅ = C∅ − η∇C∅sim(T (x̂0(y)), C∅) (49)

zt−1 = DDIM(zt)− ρt∇zt‖y −AD(ẑ0, C∅)‖22 (50)

The crucial difference of TReg is that it makes updates with respect to the null text embedding with high CFG scale, which
greatly emphasizes the text conditioning, while P2L makes updates on the conditional text embeddings without any CFG.
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steps 0 1 3 5

lr - 1e− 5 1e− 4 1e− 3 1e− 5 1e− 4 1e− 3 1e− 5 1e− 4 1e− 3

FID 61.16 60.66 59.60 57.61 60.11 59.34 60.19 60.02 58.59 62.67
PSNR 26.49 26.69 26.71 26.73 26.78 26.70 26.61 26.73 26.17 26.38

Table 7. Robustness to hyper-parameters in prompt-tuning. FFHQ SR×8 on 256 test images. Bold: best, underline: second best.

DPS (Chung et al., 2023b) DPS is a DIS that utilizes the following update scheme9

xt−1 = DDIM(xt)−∇xt
(‖y −Ax̂0‖2) . (51)

The optimal value of η was found through grid search for each inverse problem: η = 0.0 for SR×8, and η = 1.0 for others.

ΠGDM (Song et al., 2023b) Similar to DPS, ΠGDM considers the following gradient update scheme

xt−1 = DDIM(xt)−
(

(y −Ax̂0)>(r2tAA
> + σ2I)−1A

∂x̂0

∂xt

)>
, (52)

where rt is a hyper-parameter and σ is the noise level of the measurement. We take rt as advised in (Song et al., 2023b), and
use 100 step DDIM sampling with η = 1.0 for all experiments.

DDS (Chung et al., 2024) The following updates are used

x̂′0 = arg min
x

1

2
‖y −Ax‖22 +

γ

2
‖x− x̂0‖22 (53)

xt−1 =
√
ᾱt−1x̂

′
0 +

√
1− ᾱt−1 − η2β̃2

t−1ε̂t + ηβ̃t−1ε, (54)

where Eq. (53) is solved through CG with 5 iterations, γ = 1.0. η = 0.0 is chosen for Gaussian deblurring, and η = 1.0 for
the rest of the inverse problems.

DiffPIR (Zhu et al., 2023) Similar to DDS, the following updates are used

x̂′0 = arg min
x

1

2
‖y −Ax‖22 +

λσ2ᾱt
2(1− ᾱt)

‖x− x̂0‖22 (55)

xt−1 =
√
ᾱt−1x̂

′
0 +

√
1− ᾱt−1(

√
1− ζ ε̂t +

√
ζε), (56)

where σ is the noise level of the measurement, and λ, ζ are hyper-parameters. Unlike DDS, the solution to Eq. (55) is
obtained as a closed-form solution. These hyper-parameters are found through grid search. SR×8: ζ = 0.35, λ = 35.0 /
Deblur: ζ = 0.3, λ = 7.0 / Inpaint: ζ = 1.0/λ = 7.0.

E. Efficient implementation in JAX
In model-based inverse problem solving, having access to efficient computation of the adjoint A> is a must. Here, we
consider a general case of solving linear inverse problems where the computation of SVD is too costly, and hence one has to
define the adjoint operator manually (e.g. computed tomography). Furthermore, for cases such as deblurring from circular
convolution, one needs to carefully design the operator, as there are many potential pitfalls (e.g. boundary, size mismatch).
These are more often than not the limiting factors of the applicability of the model-based approaches for solving inverse
problems. We show in Fig. 4 that this can be much alleviated by using jax, as we can implicitly define a transpose operator
with reverse-mode automatic differentiation (Baydin et al., 2018). We note this design was also established in (Balke et al.,
2022).

9The original work only considered DDPM sampling. We consider DDIM as a generalization of DDPM as it can be retrieved with
η = 1.0.
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Figure 2. Evolution of DIS while solving SR×8 with (a) LDPS, (b) LDPS + projection. Using projection steps help mitigate the artifacts.
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Figure 3. Close-up of the progress of D(ẑ0) through time t when solving ×8 SR on FFHQ.

F. Targetting arbitrary resolution
For SD, using an encoder to convert from the image to the latent space reduces the dimension by ×8. When training SD, the
diffusion model that operates on the latent space was trained with 64×64 latents, obtained from 512×512 images. When
the image that we wish to restore (or generate) is larger than 512×512, the latents will also be larger than 64×64. In this
case, due to the train-test time discrepancy, the results that we get will be suboptimal if one processes the larger latent as a
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ones = j n p . ones ( x . shape )
, AT = j a x . v j p ( A funcs . A, ones )

AT = lambda y : AT ( y ) [ 0 ]
A funcs . AT = AT
def cg A ( x , cg lamb ) :

re turn A funcs . AT( A funcs .A( x ) ) + cg lamb * x
h a t x 0 = D( h a t z 0 )
cg y = A funcs . AT( y ) + cg lamb * h a t x 0
hatx0 , = j a x . s c i p y . s p a r s e . l i n a l g . cg ( cg A , cg y , x0= h a t x 0 )

Figure 4. Defining A> can be automatically achieved through jax.vjp given that A is differentiable.

Vanilla [1] (Bar-Tal et al., 2023) [4] (Jiménez, 2023) [4] Proposed [1]

Figure 5. Results on ×8 SR on DIV2K validation set of 768×768 resolution. [Diffusion NFE per denoising step]. Vanilla and proposed
process the latent as a whole.

whole (Fig. 6 (a)). A natural way to counteract this discrepancy is to process the latents in patches10. When processing in
patches of size 64×64 with stride 32 on both directions, it requires us 4 score function NFEs per denoising step (Fig. 6
(c),(d)). (Bar-Tal et al., 2023) uniformly weights the overlapping patches, and (Jiménez, 2023) weights the patches with
Gaussian weights with variance 0.01. The downside of these methods is that the number NFEs required for inference scales
quadratically with the size of the image.

Notice that all methods that aim for high-resolution synthesis using latent diffusion models only focus on better dealing with
the latents and use the decoding part as-is. This is due to the fact that the diffusion models that act in the latent space is more
sensitive to the change in the input resolution, and hence the error could easily accumulate if we operate on larger latents
directly. On the other hand, VAE is much more robust to the change in the input resolution. When given a latent that stays
within the range space of the encoder, the decoder is able to produce a high-quality image directly even when the input
size is larger than 64× 64. In this regard, we can project this latent to the range space of E by setting ẑ′0 = E(Γ(D(ẑ0)))
for every few steps, as illustrated in Fig. 6 (b). Even though the proposed method is considerably faster than patch-based
methods (Bar-Tal et al., 2023; Jiménez, 2023), we see that one can achieve a comparable, or superior performance, as
presented in Fig. 5. Furthermore, in Fig. 7, we show that we can use both patching method and the projection method
simultaneously, achieving the best results.

G. Further experimental results

10For all the experiments considered in this paper, we consider 768×768 images (96×96 latents).
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(c) (Bar-Tal et al., 2023)

(b) Proposed

(d) (Jiménez, 2023)

Figure 6. Method comparison for processing higher resolution images in the latent space.

SR (×8) Deblur (motion) Deblur (gauss) Inpaint

Method FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑
P2L (ours) 31.23 0.290 28.55 28.34 0.302 27.23 30.62 0.299 26.97 26.27 0.168 25.29

LDPS 36.81 0.292 28.78 58.66 0.382 26.19 45.89 0.334 27.82 46.10 0.311 23.07
GML-DPS (Rout et al., 2023b) 41.65 0.318 28.50 47.96 0.352 27.16 42.60 0.320 28.49 36.31 0.208 23.10
PSLD (Rout et al., 2023b) 36.93 0.335 26.62 47.71 0.348 27.05 41.04 0.320 28.47 35.01 0.207 23.10
LDIR (He et al., 2023) 36.04 0.345 25.79 24.40 0.376 24.40 35.61 0.341 25.75 37.23 0.250 25.47

DDS (Chung et al., 2024) 262.0 1.278 13.01 88.70 1.014 14.68 74.02 0.932 17.03 113.6 0.421 17.92
DPS (Chung et al., 2023b) 47.65 0.340 21.81 65.91 0.601 21.11 100.2 0.983 15.71 137.7 0.692 15.35
DiffPIR (Zhu et al., 2023) 141.1 1.266 13.80 72.02 0.664 21.03 69.15 0.751 22.27 33.92 0.238 24.91
ΠGDM (Song et al., 2023b) 42.07 0.311 22.05 60.08 0.531 21.08 70.32 0.788 21.99 140.6 0.738 16.83

Table 8. Quantitative evaluation (PSNR, LPIPS, FID) of inverse problem solving on FFHQ 512×512-1k validation dataset. Bold: best,
underline: second best. Methods that are not LDM-based are shaded in gray.
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Vanilla + Projection

Patch (uniform) + Projection

+ ProjectionPatch (gaussian)

Ground truth

Measurement

Figure 7. Further results on ×8 SR on DIV2K validation set of 768×768 resolution. Comparison between with and without using our
projection approach on various baseline methods.
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Figure 8. Full image results of ×8 SR on DIV2K validation set of 768×768 resolution. Left: measurement, Right: P2L
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“A blurry picture of a bird on the ground” “A blurry picture of a hand holding something” “A very blurry picture of a cat looking at 
something”

“A blurry picture of a dog sitting in the grass”
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“A close up of a fish in an aquarium”“A small dog looking up at the camera” “A blurry photo of a black and white dog” “A group of animals walking up a hill” “A woman sitting in a green chair with her legs 
crossed”

Figure 9. Captions generated by PALI (Chen et al., 2022) from ground-truth ImageNet 512×512 clean images, and the degraded images.
The rightmost column contain images that are from the same ground truth. Captions in in orange box completely fail to describe the
underlying image. Purple captions wrongly identify the image. Captions generated from degraded measurements often contain negative
words such as blurry.
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Figure 10. ImageNet restoration results. Row 1-2: SR×8, row 3-4: gaussian deblurring, row 5-6: motion deblurring, row 7-8: freeform
inpainting; All with σ = 0.01 noise.
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Figure 11. Close-up comparison on diverse inverse problem tasks. Ground truth, measurement, DPS (Chung et al., 2023b), LDPS,
PSLD (Rout et al., 2023b), LDIR (He et al., 2023), and the proposed method.
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Figure 12. Indirect visualization of the optimized embedding through solving an inverse problem with P2L. After solving SR×8 with
measurements in the first column, we perform unconditional sampling by fixing the random seed, and replacing the condition with the
optimized embedding by varying the CFG.
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Figure 13. Fixed point analysis: µ± σ plotted by successive application of encoding-decoding.

Figure 14. Fixed point analysis of the gluing objective in (Rout et al., 2023b) under different imaging operator A.
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