
A Criticism of DensEMANN607

This appendix includes some additional experiments aimed at inspecting DensEMANN with a more608

critical eye. Through them, we aim to evaluate the true usefulness of some of its inner mechanisms—609

as well as of the algorithm itself.610

An initial criticism of DensEMANN can be done by comparing it to other growing-based NAS611

algorithms in the litterature. From this comparison, we can point out the following drawbacks:612

• Its workflow is not based on a formal heuristic such as evolutionary computation [19, 14] or613

steepest descent [29], although the macro-algorithm is reminiscent of hill climbing.614

• It does not explicitly manage the network’s size and resource consumption, for instance,615

through user-set constraints [29] or multi-objective optimization [19].616

• Unlike more open approaches like [13], its choice of growing/pruning operations is very617

narrow, and limited by the DenseNet architectural paradigm.618

• It does not use network morphisms, either exact [25, 26] or approximate [19], and so the619

network is not guaranteed to preserve its behaviour after growing and pruning operations.620

On the other hand, we can also point out the following assets for DensEMANN:621

• Its seed architecture is truly minimal—a single dense block with a single layer—in contrast622

with e.g. [10] where simplified human-designed architectures are used as seeds. A minimal623

seed conditions the search to start with small architectures, and allows for quicker training624

and growing in early epochs.625

• The network’s growth, and thus its final size and resource consumption, is implicitly limited626

by an “in-supervised” minimal growing approach and an accuracy-based stopping criterion.627

• Its cascade connection scheme (inspired by DenseNet [17], EMANN [16] and CC-Alg [22])628

foments the complementarity of incrementally added layers.629

• A special complementarity weight initialization method enforces the co-adaptation of new630

and old convolution filters in the network’s last layer.631

For the experiments reported in this appendix, we used the same two computation environments as in632

the main paper (an MSi GT76 laptop and an internal cluster) as well as an extra third environment,633

an MSi GT75 Titan 8RG laptop with the following specifications: Windows 10 Home (64-bit) OS,634

Intel Core i7-8850H CPU (2.60 GHz), NVIDIA GeForce GTX 1080 GPU, 32.0 GB RAM (31.9 GB635

usable). Python is v3.6.7, PyTorch is v1.10.1+cu113.636

In the tables in this appendix, the GPU times reported in black were fully obtained on the MSi GT76,637

those reported in italized purple were fully obtained on the internal cluster, and those reported in638

italized blue-gray are highly unreliable average times made out of runs in different environments639

(this only happens in Section A.2, more details in that section).640

The total computation time for all the experiments in this appendix was 29.16 GPU days (16.60641

days on the MSi GT76, 11.52 days on the internal cluster, and 1.04 days on the MSi GT75). If we642

only take into account the experiments not already in the main paper, the computation time for the643

appendix was 22.67 GPU days (12.99 days on the MSi GT76, 8.64 days on the internal cluster, and644

1.04 days on the MSi GT75).645

Below are the computation times for each section of the appendix:646

• A.1.1: 13.97 GPU days (8.67 on the MSi GT76, 5.30 on the cluster). For experiments not647

already in the main paper, 9.09 GPU days (5.86 on the MSi GT76, 3.23 on the cluster).648

• A.1.2: 5.51 GPU days (2.62 on the MSi GT76, 2.89 on the cluster). For experiments not649

already in the main paper, 3.90 GPU days (1.81 on the MSi GT76, 2.09 on the cluster).650

• A.2: 9.68 GPU days (5.32 on the MSi GT76, 3.32 on the cluster, and 1.04 on the MSi651

GT75).652
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Table 3: Ablation study on DensEMANN’s block replication and use of cutout: average performance
for growing and training DenseNet-BC on benchmark datasets

Dataset DensEMANN
setting

GPU execution
time (hours)

GPU inference
time (seconds)

Num. layers
per block

Trainable
parameters (k)

w/o all 7.95 ± 1.19 2.86 ± 0.15 6.2 ± 0.8 55.61 ± 9.19
w/ cutout 9.83 ± 0.43 2.81 ± 0.08 5.8 ± 0.4 52.61 ± 5.55
w/ repl. 10.34 ± 1.27 3.15 ± 0.25 5.6 ± 1.1 177.79 ± 41.74CIFAR-10

w/ repl. + cutout 13.48 ± 2.72 3.21 ± 0.36 5.8 ± 1.6 186.36 ± 56.68

w/o all 2.09 ± 0.71 2.65 ± 0.49 1.4 ± 0.5 11.03 ± 2.98
w/ cutout 3.85 ± 1.54 2.99 ± 0.29 2.2 ± 1.6 15.30 ± 9.07
w/ repl. 4.23 ± 0.54 3.34 ± 0.57 1.4 ± 0.5 34.71 ± 15.00

Fashion-
MNIST

w/ repl. + cutout 6.55 ± 1.80 3.98 ± 0.35 2.2 ± 1.3 51.84 ± 25.51

w/o all 1.62 ± 0.11 10.94 ± 0.35 9.8 ± 0.8 78.85 ± 9.94
w/ cutout 1.75 ± 0.70 10.19 ± 0.88 9.0 ± 4.1 72.24 ± 34.20
w/ repl. 1.97 ± 0.60 11.58 ± 1.10 7.6 ± 3.0 214.57 ± 111.29SVHN

w/ repl. + cutout 3.39 ± 0.26 13.36 ± 0.33 11.0 ± 1.2 339.81 ± 63.39

Table 3: Ablation study on DensEMANN’s block replication and use of cutout: average performance
for growing and training DenseNet-BC on benchmark datasets, continued

Dataset DensEMANN
setting

Validation set Test set

Acc. (%) Loss Acc. (%) Loss

CIFAR-10

w/o all 86.70 ± 1.35 0.40 ± 0.04 86.09 ± 1.28 0.43 ± 0.03
w/ cutout 82.07 ± 0.81 0.53 ± 0.03 85.33 ± 0.71 0.46 ± 0.02
w/ repl. 92.20 ± 0.61 0.23 ± 0.02 92.13 ± 0.56 0.25 ± 0.01
w/ repl. + cutout 90.06 ± 1.38 0.30 ± 0.04 93.41 ± 0.90 0.23 ± 0.03

Fashion-
MNIST

w/o all 89.93 ± 0.65 0.30 ± 0.02 89.15 ± 0.53 0.32 ± 0.02
w/ cutout 87.77 ± 1.38 0.36 ± 0.04 88.69 ± 1.68 0.33 ± 0.05
w/ repl. 93.66 ± 0.19 0.18 ± 0.01 93.12 ± 0.41 0.20 ± 0.01
w/ repl. + cutout 92.63 ± 0.73 0.20 ± 0.02 93.68 ± 0.68 0.20 ± 0.01

SVHN

w/o all 92.38 ± 0.96 0.29 ± 0.03 88.10 ± 1.34 0.47 ± 0.04
w/ cutout 79.21 ± 19.80 0.64 ± 0.57 82.60 ± 18.89 0.60 ± 0.53
w/ repl. 96.33 ± 0.40 0.17 ± 0.01 93.94 ± 0.53 0.27 ± 0.01
w/ repl. + cutout 93.38 ± 0.47 0.24 ± 0.02 94.43 ± 0.29 0.27 ± 0.02

A.1 Ablation study653

We ran an ablation study to compare DensEMANN’s performance with and without the dense654

block replication mechanism described in Section 3.1.3, and with and without the use of cutout655

regularization [44] on the training and validation data. This experiment is mainly relevant for656

evaluating the performance of DensEMANN’s incremental approach on its own, i.e. without any657

interference from the block replication mechanism, when it comes to optimally training the generated658

one-block DenseNet.659

For each setting in the ablation study (with and without block replication, with and without cutout),660

we ran the same experiments as in Sections 4.1 and 4.2: an evaluation of DensEMANN’s average661

performance over 5 runs, and a comparison of the best generated network’s performance with its662

original weights and when retrained 5 times from scratch. Aside from the ablation settings, we use663

the same experimental setup as in Section 4—which allows us to reuse the data in Table 1 for the664

setting with both replication and cutout.665

A.1.1 DensEMANN’s full potential ablated (average performance, best networks)666

This section corresponds to the experiment described in Section 4.1 of the main paper. Tables 3 and667

4 show the results of running DensEMANN 5 times for each ablation setting and each benchmark668

task. Table 3 shows the average results of the five runs, and Table 4 shows the results of the “best”669

generated networks out of these five runs (i.e. the network that obtained the lowest validation loss).670
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Table 4: Ablation study on DensEMANN’s block replication and use of cutout: best generated
DenseNet-BC after five runs on benchmark datasets

Dataset DensEMANN
setting

GPU execution
time (hours)

GPU inference
time (seconds)

Num. layers
per block

Trainable
parameters

w/o all 9.34 (39.75) 3.0 7 64778
w/ cutout 10.38 (49.16) 2.8 6 58218
w/ repl. 11.73 (51.68) 3.4 7 233418CIFAR-10

w/ repl. + cutout 16.55 (67.39) 3.5 7 245423

w/o all 3.20 (10.45) 2.7 2 13624
w/ cutout 6.43 (19.24) 3.5 5 30392
w/ repl. 4.85 (21.13) 3.8 2 50272

Fashion-
MNIST

w/ repl. + cutout 7.53 (32.75) 4.3 3 68638

w/o all 1.73 (8.09) 11.2 11 92298
w/ cutout 2.37 (8.75) 11.1 12 96676
w/ repl. 2.76 (9.83) 13.1 11 358638SVHN

w/ repl. + cutout 3.23 (16.96) 13.3 11 336066

Table 4: Ablation study on DensEMANN’s block replication and use of cutout: best generated
DenseNet-BC after five runs on benchmark datasets, continued

Dataset DensEMANN
setting

Validation set Test set
Acc. (%) Loss Acc. (%) Loss

CIFAR-10

w/o all 88.12 0.37 87.31 0.40
w/ cutout 83.08 0.49 85.77 0.44
w/ repl. 92.90 0.20 92.73 0.23
w/ repl. + cutout 91.34 0.26 93.91 0.21

Fashion-
MNIST

w/o all 90.84 0.28 89.56 0.30
w/ cutout 89.58 0.30 90.93 0.27
w/ repl. 93.98 0.17 93.58 0.19
w/ repl. + cutout 93.62 0.18 94.43 0.19

SVHN

w/o all 93.48 0.26 89.38 0.42
w/ cutout 88.88 0.36 92.03 0.32
w/ repl. 96.92 0.14 94.42 0.26
w/ repl. + cutout 94.10 0.22 94.70 0.26

As in Table 1, for “best” networks we include two execution times: the one for the run that generated671

the network, and the sum of the execution times of all 5 runs (the time it took us to find and select672

this “best” network).673

At first sight, these results seem to justify the use of the block replication (repl.) mechanism, as674

well as to some degree the use of cutout regularization. Both techniques appear to correlate with675

an increase in test set performance with respect to the “w/o all” results, although they also seem to676

correlate with an increase in size / parameter count and in GPU execution time.677

To find the statistically significant differences (stat. sign. diff.) between the performances of each678

DensEMANN setting, we use two-way analyses of variance (ANOVAS), with Tukey’s range test as679

post-hoc analysis. The results of these tests are as follows:680

• Both repl. and cutout correlate to significantly longer execution times. The P -values for681

CIFAR-10 were 7.72 × 10−4 for repl., 3.32 × 10−3 for cutout, and 0.40 for interaction.682

Similar P -values were obtained for Fashion-MNIST: 5.75× 10−4 for repl., 2.35× 10−3 for683

cutout, and 0.62 for interaction. For SVHN the situation is slightly different: 2.79× 10−4684

for repl., 2.29× 10−3 for cutout, 8.25× 10−3 for interaction. In that case Tukey’s test only685

shows stat. sign. diff. between the “w/ repl + cutout” experiment and all others.686

• Inference times are significantly longer when using repl., but usually cutout does not affect687

them significantly. This is the case for CIFAR-10: P = 4.60 × 10−3 for repl., 0.95 for688

cutout, 0.62 for interaction. For SVHN the situation is similar: P = 3.27× 10−5 for repl.,689

0.14 for cutout and 15.99× 10−3 for interaction; Tukey’s test only shows stat. sign. diff.690
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between the two “w/ repl.” experiments and all others including each other. However, for691

Fashion-MNIST there is a slightly stat. sign. diff. with cutout: P = 5.78× 10−4 for repl.,692

0.02 for cutout and 0.45 for interaction.693

• Parameter counts are significantly higher when using repl., but cutout does not seem to694

affect them significantly. This is the case for both CIFAR-10 (P = 5.22× 10−7 for repl.,695

0.86 for cutout, 0.72 for interaction) and Fashion-MNIST (P = 5.17× 10−4 for repl., 0.14696

for cutout, 0.37 for interaction). SVHN is an exception: P = 4.39× 10−6 for repl., 0.06 for697

cutout (almost stat. sign. diff.) and 0.04 for interaction. In that case Tukey’s test only shows698

stat. sign. diff. between the two “w/ repl.” experiments and all others, including each other.699

• The validation set preformance (both the accuracy and the loss) significantly improves700

when using repl., but worsens when using cutout. This is the case for both CIFAR-10 and701

Fashion-MNIST: for the validation set loss,4 CIFAR-10’s P -values are 1.38 × 10−10 for702

repl., 2.67× 10−6 for cutout, and 0.03 for interaction (Tukey’s test shows stat. sign. diff.703

between all experiments), while Fashion-MNIST’s are 1.64× 10−9 for repl., 2.33× 10−3704

for cutout, and 0.13 for interaction. SVHN is the exception, as for this benchmark there705

were no stat. sign. diff. between the settings: P = 0.06 for repl., 0.12 for cutout and 0.31706

for interaction. (There is an almost stat. sign. diff. for repl., and the accuracy is higher with707

repl. than without it.)708

• The test set preformance significantly improves when using repl., but seems unaffected by709

cutout. This is the case for all three datasets: for the test set loss, CIFAR-10’s P -values710

are 8.14 × 10−12 for repl., 0.89 for cutout, and 0.033 for interaction (Tukey’s test only711

shows stat. sign. diff. between the experiments with repl. and those without repl.); Fashion-712

MNIST’s are 2.00× 10−8 for repl., 0.56 for cutout, and 0.80 for interaction; SVHN’s are713

0.04 for repl., 0.62 for cutout, and 0.62 for interaction.714

We can thus conclude that the block replication method results in a significant improvement in715

the network’s final performance, but at the expense of an also significant increase in the network’s716

size and in DensEMANN’s GPU execution time. The use of cutout only clearly correlates with a717

significant increase in the GPU execution time, but the observed increases in final performance and718

network size are not statistically significant.719

For the use of repl., the significant improvement in the network’s final performance is most likely720

caused by the also significant increase in the network’s size: the more learnable weights a NN has,721

the more complex are the target functions that it can represent. The origin of the increase in size is722

obvious: the average sizes when using repl. are always (just over) 3 times the average sizes when not723

using it, because the repl. method copies the DensEMANN-generated dense block N = 3 times (and724

adds some transition layers). As for the increase in execution time, it most certainly corresponds to725

the extra 300 epochs that take place after replicating the dense block. Indeed, the best networks in726

Table 1 were also retrained during 300 epochs, and the mean execution times from that experiment727

correspond very closely to the differences in execution time with and without repl. in Table 3 (for728

instance, for CIFAR-10 the average retraining time in Table 1 is 3.86 hours, and the corresponding729

increase in execution time is 13.48− 9.83 = 3.65 hours).730

As for cutout, we hypothesise that the longer execution times are due to the extra time needed for731

generating the batches of data-augmented images. The fact that cutout does not entail a significant732

change in the inference time supports this hypothesis. For the non-significance of the changes in the733

networks’ size and (especially) their test performance, we initially suspected a type II error caused by734

small sample size and outliers in the data (there is in fact a very obvious outlier in the “SVHN w/735

cutout” experiment, where DensEMANN generated a network with 12.92k parameters and a test set736

accuracy of 48.89%). However, regardless of any outliers, the results with and without cutout are too737

similar to rule out the null hypothesis.738

It is also worth commenting that, in our workflow, when we use cutout we apply it on both the training739

and validation data. The ANOVA results show that cutout has a significantly negative impact on the740

validation set performance, which in our opinion is caused by the agresivity of this data augmentation741

method (it removes a large random patch in each image). As explained before, there is no evidence of742

a negative influence of cutout on the test set performance—but there is also no evidence of a positive743

4We consider the ANOVA’s results for accuracy and loss to be interchangeable, as for each benchmark and
for each data split (validation or test), the P -values for accuracies and losses are always very similar.

18



Table 5: Ablation study on DensEMANN’s block replication and use of cutout: retraining the best
generated DenseNet-BC after five runs on benchmark datasets

Dataset DensEMANN
setting

Source of
the weights

GPU execution
time (hours)

GPU inference
time (seconds)

DensEMANN 9.34 2.97w/o all Retrain from scratch 2.53 ± 0.01 2.96 ± 0.01
DensEMANN 10.38 2.84w/ cutout Retrain from scratch 2.78 ± 0.00 2.83 ± 0.02
DensEMANN 11.73 3.45w/ repl. Retrain from scratch 3.38 ± 0.01 3.47 ± 0.02
DensEMANN 16.55 3.47

CIFAR-10

w/ repl. + cutout Retrain from scratch 3.86 ± 0.01 3.46 ± 0.04

DensEMANN 3.20 2.75w/o all Retrain from scratch 1.59 ± 0.01 2.91 ± 0.12
DensEMANN 6.43 3.49w/ cutout Retrain from scratch 2.23 ± 0.13 2.84 ± 0.61
DensEMANN 4.85 3.79w/ repl. Retrain from scratch 2.93 ± 2.19 3.40 ± 0.14
DensEMANN 7.53 4.26

Fashion-
MNIST

w/ repl. + cutout Retrain from scratch 2.81 ± 0.02 3.75 ± 0.20

DensEMANN 1.73 11.24w/o all Retrain from scratch 0.63 ± 0.00 11.49 ± 0.08
DensEMANN 2.37 11.13w/ cutout Retrain from scratch 1.76 ± 2.16 11.60 ± 0.25
DensEMANN 2.76 13.08w/ repl. Retrain from scratch 0.88 ± 0.00 12.38 ± 0.23
DensEMANN 3.23 13.28

SVHN

w/ repl. + cutout Retrain from scratch 1.04 ± 0.17 11.76 ± 2.69

influence on it. Further experiments are needed for testing cutout’s effect if it is used on the training744

data but not on the validation data.745

A.1.2 Retraining our best networks from scratch: DensEMANN vs. “perfect” NAS746

This section corresponds to the experiment in Section 4.2 of the main paper. In Table 5, we copy the747

GPU times and validation and test set performances obtained when generating the best networks in748

Table 4, and we compare these results to those obtained after retraining each of these networks from749

scratch. We use the same training settings as in the DensEMANN runs that generated each network:750

those networks that were generated with cutout are also retrained with cutout, and those that were751

generated without it are also retrained without it.752

To compare the validation and test set performance before and after retraining each network, we use753

one-sample t-tests. Their results are as follows:754

• No repl. or cutout (“w/o all” setting):755

– Validation set accuracy: the P -values were 0.10 for CIFAR-10, 1.00 for Fashion-756

MNIST, 1.45 × 10−4 for SVHN. There are stat. sign. diff. only for SVHN, where757

retraining caused the performance to improve.758

– Validation set loss: the P -values were 0.02 for CIFAR-10, 0.10 for Fashion-MNIST,759

1.46 × 10−3 for SVHN. There are stat. sign. diff. for CIFAR-10 and SVHN, where760

retraining caused the performance to improve (in the case of CIFAR-10 only slightly).761

– Test set accuracy: the P -values were 0.05 (rounded up) for CIFAR-10, 0.01 for Fashion-762

MNIST, 1.31×10−5 for SVHN. There are stat. sign. diff. for all cases, where retraining763

caused the performance to improve (in the case of CIFAR-10 only slightly).764

– Test set loss: the P -values were 0.01 for CIFAR-10, 3.74× 10−3 for Fashion-MNIST,765

1.40× 10−3 for SVHN. There are stat. sign. diff. for all cases, where retraining caused766

the performance to improve.767

• Cutout, but no repl. (“w/ cutout.” setting):768
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Table 5: Ablation study on DensEMANN’s block replication and use of cutout: retraining the best
generated DenseNet-BC after five runs on benchmark datasets, continued

Dataset DensEMANN
setting

Source of
the weights

Validation set Test set
Acc. (%) Loss Acc. (%) Loss

CIFAR-10

w/o all DensEMANN 88.12 0.37 87.31 0.40
Retrain from scratch 87.94 ± 0.19 0.36 ± 0.01 87.69 ± 0.31 0.38 ± 0.01

w/ cutout DensEMANN 83.08 0.49 85.77 0.44
Retrain from scratch 84.51 ± 0.45 0.46 ± 0.01 87.71 ± 0.20 0.40 ± 0.01

w/ repl. DensEMANN 92.90 0.20 92.73 0.23
Retrain from scratch 92.91 ± 0.18 0.22 ± 0.00 92.87 ± 0.17 0.23 ± 0.01

w/ repl. + cutout DensEMANN 91.34 0.26 93.91 0.21
Retrain from scratch 91.90 ± 0.42 0.25 ± 0.01 94.25 ± 0.16 0.20 ± 0.01

Fashion-
MNIST

w/o all DensEMANN 90.84 0.28 89.56 0.30
Retrain from scratch 90.84 ± 0.44 0.26 ± 0.01 90.22 ± 0.32 0.28 ± 0.01

w/ cutout DensEMANN 89.58 0.30 90.93 0.27
Retrain from scratch 91.41 ± 0.66 0.24 ± 0.02 92.32 ± 0.16 0.24 ± 0.01

w/ repl. DensEMANN 93.98 0.17 93.58 0.19
Retrain from scratch 93.94 ± 0.34 0.17 ± 0.01 93.60 ± 0.20 0.18 ± 0.00

w/ repl. + cutout DensEMANN 93.62 0.18 94.43 0.19
Retrain from scratch 93.70 ± 0.53 0.18 ± 0.01 94.47 ± 0.22 0.19 ± 0.01

SVHN

w/o all DensEMANN 93.48 0.26 89.38 0.42
Retrain from scratch 95.53 ± 0.32 0.21 ± 0.02 92.03 ± 0.23 0.36 ± 0.02

w/ cutout DensEMANN 88.88 0.36 92.03 0.32
Retrain from scratch 91.83 ± 0.23 0.28 ± 0.01 93.23 ± 0.14 0.31 ± 0.02

w/ repl. DensEMANN 96.92 0.14 94.42 0.26
Retrain from scratch 96.56 ± 0.24 0.16 ± 0.01 93.97 ± 0.40 0.29 ± 0.02

w/ repl. + cutout DensEMANN 94.10 0.22 94.70 0.26
Retrain from scratch 93.81 ± 0.39 0.23 ± 0.01 94.50 ± 0.16 0.26 ± 0.01

– Validation set accuracy: the P -values were 2.10× 10−3 for CIFAR-10, 3.51× 10−3769

for Fashion-MNIST, 9.24× 10−6 for SVHN. There are stat. sign. diff. for all cases,770

where retraining caused the performance to improve.771

– Validation set loss: the P -values were 5.22 × 10−3 for CIFAR-10, 2.23 × 10−3 for772

Fashion-MNIST, 2.40× 10−5 for SVHN. There are stat. sign. diff. for all cases, where773

retraining caused the performance to improve.774

– Test set accuracy: the P -values were 2.89 × 10−5 for CIFAR-10, 4.48 × 10−5 for775

Fashion-MNIST, 3.89× 10−5 for SVHN. There are stat. sign. diff. for all cases, where776

retraining caused the performance to improve (in the case of SVHN only slightly).777

– Test set loss: the P -values were 3.71× 10−4 for CIFAR-10, 7.51× 10−4 for Fashion-778

MNIST, 0.24 for SVHN. There are stat. sign. diff. for CIFAR-10 and Fashion-MNIST,779

where retraining caused the performance to improve.780

• Repl., but no cutout (“w/ repl.” setting):781

– Validation set accuracy: the P -values were 0.93 for CIFAR-10, 0.78 for Fashion-782

MNIST, 0.03 for SVHN. There are stat. sign. diff. only for SVHN, where retraining783

caused the performance to worsen (albeit only slightly).784

– Validation set loss: the P -values were 4.54× 10−3 for CIFAR-10, 0.40 for Fashion-785

MNIST, 0.08 for SVHN. There are stat. sign. diff. only for CIFAR-10, where retraining786

caused the performance to worsen.787

– Test set accuracy: the P -values were 0.14 for CIFAR-10, 0.87 for Fashion-MNIST,788

0.07 for SVHN. There are no stat. sign. diff. (almost stat. sign. diff. for SVHN, where789

retraining caused the performance to slightly worsen).790

– Test set loss: the P -values were 0.98 for CIFAR-10, 0.21 for Fashion-MNIST, 0.03 for791

SVHN. There stat. sign. diff. only for SVHN, where retraining caused the performance792

to worsen.793

• Both repl. and cutout (“w/ repl. + cutout” setting):794

– Validation set accuracy: the P -values were 0.04 for CIFAR-10, 0.75 for Fashion-795

MNIST, 0.17 for SVHN. There stat. sign. diff. only for CIFAR-10, where retraining796

caused the performance to improve (albeit only slightly).797
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– Validation set loss: the P -values were 0.09 for CIFAR-10, 0.60 for Fashion-MNIST,798

0.52 for SVHN. There are no stat. sign. diff.799

– Test set accuracy: the P -values were 0.01 for CIFAR-10, 0.68 for Fashion-MNIST,800

0.04 for SVHN. There are stat. sign. diff. for CIFAR-10 and SVHN: for CIFAR-10801

retraining caused the performance to improve (albeit only slightly) while for SVHN it802

caused the performance to worsen (also slightly).803

– Test set loss: the P -values were 0.06 for CIFAR-10, 0.33 for Fashion-MNIST, 0.90 for804

SVHN. There are no stat. sign. diff. (almost stat. sign. diff. for CIFAR-10, where805

retraining caused the performance to slightly improve).806

In conclusion, when repl. is not used (i.e. when using only DensEMANN’s basic incremental807

workflow) the original NN’s performance improves significantly after retraining, especially if cutout808

is used. In contrast, when repl. is used the original NN’s performance is optimal: retraining does not809

improve it signifcantly (at least not the loss value), and in some cases it can even make it worse.810

We hypothesise that the main cause of the optimal weights obtained with repl. is the “best model811

saving” approach that it incorporates, and that is also used for retraining the networks (see Sections812

3.1.3 and 4.2). Indeed, repl. uses this approach just after replicating the generated dense block N − 1813

times, which means that it is responsible for the full training of over N−1/N = 2/3 of the network. For814

this reason, we advise further incorporating this “best model saving” approach within DensEMANN’s815

training and growing workflow (see the future research lines suggested in Section 5).816

Concerning GPU times, as explained in Section 4.2 the execution times for DensEMANN are always817

significantly longer than those for retraining the networks. This means that DensEMANN is far from818

“perfection” concerning GPU times (in Sections 2 and 4.2 we argue that the time needed to (re)train819

the final candidate architecture is a good stand-in for a “perfect” execution time). The ablation study820

also reveals that repl.’s extra 300 training epochs are not the only cause for DensEMANN’s long821

execution times: even when not replicating the last block, DensEMANN takes longer to run than the822

standard retrain. As evidenced in Section 4.3, using a different weight initialization method for new823

components may speed up DensEMANN considerably—which is why we also suggest this as future824

research in Section 5.825

A.2 Naive NAS baseline826

One could claim that DensEMANN is very long and complicated, and yet its search space is827

very limited. If a naive NAS procedure explored a simplified version of DensEMANN’s search828

space by fully training and testing each candidate architecture from scratch, could it reach similar829

performance in less time? To assess this question, we coded a naive NAS algorithm that systematically830

trains and tests increasingly larger DenseNet architectures out of an extremely simplified version of831

DensEMANN’s search space.832

All candidate architectures have in common: the same number N of dense blocks, the same number833

k of convolution filters in each dense layer (for DenseNet-BC, the first convolution has got 4 ∗ k834

filters, and the second one k filters), and that all of their dense blocks have got the same number of835

layers l. The algorithm begins with l = 1 (N and k are user-set), and progressively tests networks836

with increasingly large values for l. To this aim, it trains each candidate network for 300 epochs and837

then evaluates its performance on the validation set. We use the same training methodology as in our838

retraining experiments, but without cutout regularization.839

The stopping criterion is similar to that of DensEMANN’s macro algorithm: if the current network’s840

validation set accuracy does not improve at least IT = 0.01 beyond the previous network’s accuracy,841

we select the previous network as the final candidate. There is also an optional stopping criterion842

that sets a bound on the final candidate’s size: if increasing l would make the network’s number of843

parameters surpass a certain maximum parameter count (MPC), then the current network becomes844

the final candidate. Setting MPC to a none value removes this stopping criterion.845

We ran the naive NAS algorithm 5 times for the CIFAR-10 benchmark, with either N = 3 or 1, and846

without imposing the size-based stopping criterion. During each run, we recorded the details for847

each candidate architecture (training and inference time, number of layers, number of parameters848

and performance measures), as well as the execution time until it was evaluated. This allowed us to849

simulate the use of the size-based stopping criterion for any MPC value, by considering, for each850
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Table 6: Naive NAS baseline for DenseNet-BC: average performance on CIFAR-10

Search space GPU execution
time (hours)

GPU final candidate
training time (hours)

GPU inference
time (seconds)

Num. layers
per block

Trainable
parameters (k)

N = 3, MPC = None 21.03 ± 2.77 3.36 ± 0.24 3.35 ± 0.10 7.0 ± 0.7 219.22 ± 31.29
N = 3, MPC = 200k 13.90 ± 0.06 3.01 ± 0.02 3.16 ± 0.03 6.0 ± 0.0 176.12 ± 0.00

N = 1, MPC = None 25.42 ± 4.98 3.26 ± 0.37 3.96 ± 0.43 9.0 ± 1.6 82.76 ± 18.55
N = 1, MPC = 60k 15.70 ± 1.35 2.77 ± 0.31 3.70 ± 0.48 7.0 ± 0.0 59.91 ± 0.00

Table 6: Naive NAS baseline for DenseNet-BC: average performance on CIFAR-10, continued

Search space Validation set Test set
Acc. (%) Loss Acc. (%) Loss

N = 3, MPC = None 93.51 ± 0.29 0.20 ± 0.01 92.86 ± 0.36 0.23 ± 0.01
N = 3, MPC = 200k 92.78 ± 0.35 0.22 ± 0.01 92.25 ± 0.10 0.25 ± 0.01

N = 1, MPC = None 89.48 ± 1.10 0.32 ± 0.04 88.61 ± 1.15 0.35 ± 0.03
N = 1, MPC = 60k 87.68 ± 0.41 0.37 ± 0.01 87.34 ± 0.09 0.39 ± 0.00

run, the largest candidate that fulfilled the criterion as the final candidate. In all of our runs, we used851

k = 12 and IT = 0.01.852

Table 6 shows the average results for this experiment. The MPC values for (simulated) size-base853

stopping were chosen to make the algorithm’s final candidate networks have similar sizes to the854

DensEMANN-generated networks. The GPU times for N = 1 are reported in italized blue-gray855

because they are highly unreliable: we ran one experiment in the MSi GT76, one in the MSi GT75,856

and three in the internal cluster. Those for N = 3 were all obtained on the MSi GT76.857

We compare the results in table 6 to those in Table 3 for experiments without cutout.858

Concerning the execution times, it is clear that DensEMANN outperforms the naive NAS algorithm.859

This is true both when the full runs are considered, and when size-based stopping is simulated with860

the selected MPC values.861

As for the performance of naive NAS, we ran various statistical tests to compare it to DensEMANN’s.862

These were all two-sample T-tests except for parameter counts with simulated size-based stopping,863

for which we used one-sample T-tests because we always obtained null variances for naive NAS (the864

final candidate architecture was always the same):865

• Size / parameter count: there are no stat. sign. diff. between the full naive NAS runs and866

DensEMANN’s for N = 3 (P = 0.11), but there are stat. sign. diff. between them for867

N = 1 (P = 0.02). We also confirm that the selected MPC values make the naive NAS868

algorithm’s architectures statistically similarly sized to DensEMANN’s architectures: for869

N = 3 the P -value is 0.93, and for N = 1 the P -value is 0.35.870

• NN performance (both validation and test set): for both N = 3 and N = 1 there are always871

stat. sign. diff. between the full naive NAS runs and DensEMANN’s, but never between the872

simulated size-based stopping runs and DensEMANN’s:873

– Validation set accuracy: for N = 3 the P -values are 2.55× 10−3 for full naive NAS,874

and 0.10 for simulated size-based stopping; for N = 3 they are 7.21× 10−3 for full875

naive NAS, and 0.18 for simulated size-based stopping.876

– Validation set loss: for N = 3 the P -values are 0.01 for full naive NAS, and 0.25 for877

simulated size-based stopping; for N = 3 they are 6.43 × 10−3 for full naive NAS,878

and 0.10 for simulated size-based stopping.879

– Test set accuracy: for N = 3 the P -values are 0.04 for full naive NAS, and 0.65 for880

simulated size-based stopping; for N = 3 they are 0.01 for full naive NAS, and 0.09881

for simulated size-based stopping.882

– Test set loss: for N = 3 the P -values are 0.03 for full naive NAS, and 0.45 for883

simulated size-based stopping; for N = 3 they are 6.69 × 10−3 for full naive NAS,884

and 0.07 for simulated size-based stopping.885
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In conclusion, the answer to our question is no, a naive NAS algorithm would not reach a similar886

performance to DensEMANN’s in less time. Our naive NAS benchmark can reach statistically887

identical accuracy levels to DensEMANN’s for similarly sized networks (and even higher accuracy888

levels when building 3-block networks), but it always does so in significantly more time.889

This said, it is worrying that our naive NAS baseline does reach DensEMANN’s same performance890

level within a reasonable time frame (less than a GPU day). This indicates that this method is likely891

capable of outperforming DensEMANN if it uses a quick and reliable performance estimator—not to892

mention a zero-cost estimator [30, 31, 2]. Furthermore, the final candidate networks’ training times,893

which as explained in other sections can be used to simulate the algorithm’s execution times if it used894

a “perfect” performance estimator, are much lower than DensEMANN’s execution times. For these895

reasons, we suggest designing a new baseline consisting of a zero-cost algorithm that explores the896

same search space as DensEMANN (see the future research lines in Section 5).897

A.3 Full comparison against the state of the art898

We decided to extend Section 4.3’s CIFAR-10 state of the art to also include the experiments and899

results reported in this appendix. To this aim, we created Table 7 and Figure 3 as extended versions900

of (respectively) Table 2 and Figure 2 from that section.901

From the distribution of DenseNet- and DensEMANN-related architectures in Table 7, it seems902

that these architectures are limited by their own suboptimal size vs. error rate Pareto front. This903

performance boundary may be caused by intrinsic performance limitations of DenseNet architectures—904

at least as defined in [17]—or of DensEMANN’s search space. To test this hypothesis, we suggest905

widening DensEMANN’s search space explore to less standard “DenseNet-like” architecture designs.906

For instance, the macro-algorithm could have a wider range of choices for connecting layers inside907

a dense block, or for deciding when to stop growing the current block and start a new one (see our908

suggested future research lines in Section 5).909
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Table 7: Performance comparison of DensEMANN and the naive NAS baseline (various configu-
rations) against human-designed NN models and state-of-the-art NAS algorithms, for architectures
with less than 10 million parameters

Category Name Trainable
parameters (M)

Error rate on
CIFAR-10 (%)

GPU execution
time (days)

Human-designed

ResNet 20 [48] 0.27 8.75 N/A
ResNet 110 (as reported by He et al. [48]) 1.7 6.61 ± 0.16 N/A
ResNet 110 (as reported by Huang et al. [49]) 1.7 6.41 N/A
ResNet 110 with Stochastic Depth [49] 1.7 5.25 N/A
WRN 40-1 (no data augmentation) [50] 0.6 6.85 N/A
DenseNet 40 (k = 12) [17] 1 5.24 N/A
DenseNet-BC 100 (k = 12) [17] 0.8 4.51 N/A
Highway 1 (Fitnet 1) [51] 0.2 10.82 N/A
Highway 4 [51] 1.25 9.66 N/A
Petridish initial model (N = 6, F = 32) + cutout [13] 0.4 4.6 N/A

Reinforcement
learning (RL)

NAS-RL / REINFORCE (v1 no stride or pooling) [52] 4.2 5.5 22400
NAS-RL / REINFORCE (v2 predicting strides) [52] 2.5 6.01 22400
NAS-RL / REINFORCE (v3 max pooling) [52] 7.1 4.47 22400
NASNet-A (6 @ 768) [36] 3.3 3.41 2000
NASNet-A (6 @ 768) + cutout [36] 3.3 2.65 2000
Block-QNN-S, N = 2 [53] 6.1 4.38 96

Evolutionary and
genetic algorithms

(EA and GA)

Large-Scale Evolution [54] 5.4 5.4 2600
CGP-CNN (ConvNet) [55] 1.5 5.8 12
CGP-CNN (ResNet) [55] 1.68 5.98 14.9
AmoebaNet-A (N = 6, F = 32) [56] 2.6 3.4 ± 0.08 3150
AmoebaNet-A (N = 6, F = 36) [56] 3.2 3.34 ± 0.06 3150
EcoNAS + cutout [57] 2.9 2.62 ± 0.02 8

Gradient-based
optimization (GO)

ENAS + micro search space [58] 4.6 3.54 0.45
ENAS + micro search space + cutout [58] 4.6 2.89 0.45
DARTS (1st order) + cutout [59] 3.3 3 ± 0.14 1.5
DARTS (2nd order) + cutout [59] 3.3 2.76 ± 0.09 4
XNAS-Small + cutout [60] 3.7 1.81 0.3
XNAS-Medium + cutout [60] 5.6 1.73 0.3
XNAS-Large + cutout [60] 7.2 1.6 0.3

Growing /
Forward NAS

NASH (nsteps = 5, nneigh = 8, 10 runs) [14] 5.7 5.7 ± 0.35 0.5
LEMONADE SS-I + mixup + cutout [19] 0.047–3.4 8.9–3.6 80
LEMONADE SS-II + mixup + cutout [19] 0.5–13.1 4.57–2.58 80
Petridish macro (N = 6, F = 32) + cutout [13] 2.2 2.85 ± 0.12 5
Petridish cell (N = 6, F = 32) + cutout [13] 2.5 2.87 ± 0.13 5
Petridish cell, more filters (N = 6, F = 37) + cutout [13] 3.2 2.75 ± 0.21 5
Firefly, WRN 28-1 seed + BN [10] 4 7.1 ± 0.1 N/A
GradMax, WRN 28-1 seed + BN [10] 4 7.0 ± 0.1 N/A

Random Search
DARTS Random + cutout [59] 3.2 3.29 ± 0.15 4
NASH Random (nsteps = 5, nneigh = 1) [14] 4.4 6.5 ± 0.76 0.19
LEMONADE SS-I Random + mixup + cutout [19] 0.048–2 10–4.4 80

Ours
(DensEMANN)

DensEMANN (w/o repl.) 0.056 ± 0.009 13.91 ± 1.28 0.33 ± 0.05
DensEMANN (w/o repl.) + cutout 0.053 ± 0.006 14.67 ± 0.71 0.41 ± 0.02
DensEMANN (w/ repl.) 0.178 ± 0.042 7.87 ± 0.56 0.43 ± 0.05
DensEMANN (w/ repl.) + cutout 0.186 ± 0.057 6.59 ± 0.90 0.56 ± 0.11

Ours
(DensEMANN best)

DensEMANN (w/o repl.) 0.065 12.69 1.66
DensEMANN (w/o repl.) + cutout 0.058 14.23 2.05
DensEMANN (w/ repl.) 0.233 7.27 2.15
DensEMANN (w/ repl.) + cutout 0.245 6.09 2.81

Ours
(DensEMANN best

retrained)

DensEMANN (w/o repl.) 0.065 12.31 ± 0.31 1.76 ± 0.00
DensEMANN (w/o repl.) + cutout 0.058 12.29 ± 0.20 2.16 ± 0.00
DensEMANN (w/ repl.) 0.233 7.13 ± 0.17 2.29 ± 0.00
DensEMANN (w/ repl.) + cutout 0.245 5.75 ± 0.16 2.97 ± 0.00

Ours
(Naive NAS)

Naive NAS baseline, N = 1, MPC =None 1.06 ± 0.21 11.39 ± 1.15 82.76 ± 18.55
Naive NAS baseline, N = 1, MPC = 60k 0.65 ± 0.06 12.66 ± 0.09 59.91 ± 0.00
Naive NAS baseline, N = 3, MPC =None 0.88 ± 0.12 7.14 ± 0.36 219.22 ± 31.29
Naive NAS baseline, N = 3, MPC = 200k 0.58 ± 0.00 7.75 ± 0.10 176.12 ± 0.00
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