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A Criticism of DensEMANN

This appendix includes some additional experiments aimed at inspecting DensEMANN with a more
critical eye. Through them, we aim to evaluate the true usefulness of some of its inner mechanisms—
as well as of the algorithm itself.

An initial criticism of DensEMANN can be done by comparing it to other growing-based NAS
algorithms in the litterature. From this comparison, we can point out the following drawbacks:

* Its workflow is not based on a formal heuristic such as evolutionary computation [19,14] or
steepest descent [29]], although the macro-algorithm is reminiscent of hill climbing.

* It does not explicitly manage the network’s size and resource consumption, for instance,
through user-set constraints [29] or multi-objective optimization [19]].

* Unlike more open approaches like [13], its choice of growing/pruning operations is very
narrow, and limited by the DenseNet architectural paradigm.

* It does not use network morphisms, either exact [25} [26] or approximate [19]], and so the
network is not guaranteed to preserve its behaviour after growing and pruning operations.

On the other hand, we can also point out the following assets for DensEMANN:

* Its seed architecture is truly minimal—a single dense block with a single layer—in contrast
with e.g. [[10] where simplified human-designed architectures are used as seeds. A minimal
seed conditions the search to start with small architectures, and allows for quicker training
and growing in early epochs.

* The network’s growth, and thus its final size and resource consumption, is implicitly limited
by an “in-supervised” minimal growing approach and an accuracy-based stopping criterion.

* Its cascade connection scheme (inspired by DenseNet [[17], EMANN [16]] and CC-Alg [22])
foments the complementarity of incrementally added layers.

* A special complementarity weight initialization method enforces the co-adaptation of new
and old convolution filters in the network’s last layer.

For the experiments reported in this appendix, we used the same two computation environments as in
the main paper (an MSi GT76 laptop and an internal cluster) as well as an extra third environment,
an MSi GT75 Titan 8RG laptop with the following specifications: Windows 10 Home (64-bit) OS,
Intel Core i7-8850H CPU (2.60 GHz), NVIDIA GeForce GTX 1080 GPU, 32.0 GB RAM (31.9 GB
usable). Python is v3.6.7, PyTorch is v1.10.1+cul13.

In the tables in this appendix, the GPU times reported in black were fully obtained on the MSi GT76,
those reported in italized purple were fully obtained on the internal cluster, and those reported in
italized blue-gray are highly unreliable average times made out of runs in different environments
(this only happens in Section[A.2] more details in that section).

The total computation time for all the experiments in this appendix was 29.16 GPU days (16.60
days on the MSi GT76, 11.52 days on the internal cluster, and 1.04 days on the MSi GT75). If we
only take into account the experiments not already in the main paper, the computation time for the
appendix was 22.67 GPU days (12.99 days on the MSi GT76, 8.64 days on the internal cluster, and
1.04 days on the MSi GT75).

Below are the computation times for each section of the appendix:

* [A.1.1} 13.97 GPU days (8.67 on the MSi GT76, 5.30 on the cluster). For experiments not
already in the main paper, 9.09 GPU days (5.86 on the MSi GT76, 3.23 on the cluster).

* [A.1.2} 5.51 GPU days (2.62 on the MSi GT76, 2.89 on the cluster). For experiments not
already in the main paper, 3.90 GPU days (1.81 on the MSi GT76, 2.09 on the cluster).

* [A2} 9.68 GPU days (5.32 on the MSi GT76, 3.32 on the cluster, and 1.04 on the MSi
GT75).
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Table 3: Ablation study on DensEMANN’s block replication and use of cutout: average performance
for growing and training DenseNet-BC on benchmark datasets

Dataset DensEMANN GPU execution GPU inference  Num. layers Trainable

setting time (hours) time (seconds) per block parameters (k)

w/o all 795+ 1.19 2.86 £ 0.15 6.2+ 0.8 55.61 £9.19

CIFAR-10 w/ cutout 9.83 £0.43 2.81 +0.08 58+04 52.61 +5.55
w/ repl. 10.34 +1.27 3.15+0.25 56+ 1.1 177.79 + 41.74

w/ repl. + cutout 13.48 +2.72 321+0.36 58+ 1.6 186.36 + 56.68

w/o all 2.09 +£0.71 2.65 £+ 0.49 1.4+0.5 11.03 £2.98

Fashion-  w/ cutout 3.85 4+ 1.54 2.99+0.29 22+ 1.6 15.30 £ 9.07
MNIST w/ repl. 4.23 +0.54 3.34 +0.57 14+0.5 34.71 £ 15.00
w/ repl. + cutout 6.55 + 1.80 3.98 +0.35 22413 51.84 £ 25.51

w/o all 1.62 +0.11 10.94 + 0.35 9.8+ 0.8 78.85 +9.94

SVHN w/ cutout 1.75 +0.70 10.19 + 0.88 9.0+ 4.1 72.24 4+ 34.20
w/ repl. 1.97 £ 0.60 11.58 + 1.10 7.6 +£3.0 21457+ 111.29

w/ repl. + cutout 3.39 +£0.26 13.36 £ 0.33 11.0+1.2 339.81 + 63.39

Table 3: Ablation study on DensEMANN’s block replication and use of cutout: average performance
for growing and training DenseNet-BC on benchmark datasets, continued

D DensEMANN Validation set Test set
ataset .
setting Acc. (%) Loss Acc. (%) Loss
w/o all 86.70 £ 1.35 0.40 = 0.04 86.09 +1.28 0.43 +0.03
CIFAR-10 w/ cutout 82.07 £0.81 0.53 £0.03 8533 +£0.71 0.46 £0.02
w/ repl. 9220 £0.61 0.23 £0.02 92.13 £0.56 0.25+0.01
w/ repl. + cutout 90.06 == 1.38  0.30 = 0.04 93.41 £090 0.23 £0.03
w/o all 89.93 £0.65 0.30£0.02 89.15+0.53 0.32+0.02
Fashion-  w/ cutout 87.77 £1.38 0.36 = 0.04 88.69 £ 1.68 0.33 £0.05
MNIST w/ repl. 93.66 = 0.19 0.18 = 0.01 93.12£+£0.41 0.20 £ 0.01
w/ repl. + cutout 92.63 £0.73 0.20 £ 0.02 93.68 £ 0.68 0.20 £ 0.01
w/o all 92.38 096 0.29 +0.03 88.10 £ 1.34 0.47 +0.04
SVHN w/ cutout 79.21 19.80 0.64 =0.57 82.60 + 18.89 0.60 £ 0.53
wi/ repl. 96.33 £0.40 0.17 & 0.01 93.94 £0.53 0.27 £ 0.01

w/ repl. + cutout 93.38 £047 0.24£0.02 9443 +£029 0.27£0.02

A.1 Ablation study

We ran an ablation study to compare DensEMANN’s performance with and without the dense
block replication mechanism described in Section 3.1.3] and with and without the use of cutout
regularization [44] on the training and validation data. This experiment is mainly relevant for
evaluating the performance of DensEMANN'’s incremental approach on its own, i.e. without any
interference from the block replication mechanism, when it comes to optimally training the generated
one-block DenseNet.

For each setting in the ablation study (with and without block replication, with and without cutout),
we ran the same experiments as in Sections[d.TJand .2} an evaluation of DensEMANN’s average
performance over 5 runs, and a comparison of the best generated network’s performance with its
original weights and when retrained 5 times from scratch. Aside from the ablation settings, we use
the same experimental setup as in Section f}—which allows us to reuse the data in Table[T] for the
setting with both replication and cutout.

A.1.1 DensEMANN?’s full potential ablated (average performance, best networks)

This section corresponds to the experiment described in Section @.T] of the main paper. Tables [3]and

M) show the results of running DensEMANN 5 times for each ablation setting and each benchmark

task. Table [3|shows the average results of the five runs, and Table [] shows the results of the “best”
generated networks out of these five runs (i.e. the network that obtained the lowest validation loss).
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Table 4: Ablation study on DensEMANN’s block replication and use of cutout: best generated
DenseNet-BC after five runs on benchmark datasets

DensEMANN GPU execution GPU inference  Num. layers  Trainable

Dataset setting time (hours) time (seconds) per block parameters
w/o all 9.34 (39.75) 3.0 7 64778
w/ cutout 10.38 (49.16) 2.8 6 58218
CIFAR-10 o renl. 11.73 (51.68) 34 7 233418
w/ repl. + cutout 16.55 (67.39) 3.5 7 245423
w/o all 3.20(10.45) 2.7 2 13624
Fashion- w/ cutout 6.43 (19.24) 3.5 5 30392
MNIST w/ repl. 4.85(21.13) 3.8 2 50272
w/ repl. + cutout 7.53(32.75) 4.3 3 68638
w/o all 1.73 (8.09) 11.2 11 92298
SVHN w/ cutout 2.37(8.75) 11.1 12 96676
w/ repl. 2.76 (9.83) 13.1 11 358638
w/ repl. + cutout 3.23(16.96) 13.3 11 336066

Table 4: Ablation study on DensEMANN’s block replication and use of cutout: best generated
DenseNet-BC after five runs on benchmark datasets, continued

Dataset DensEMANN Validation set Test set
setting Acc. (%) Loss Acc. (%) Loss

w/o all 88.12  0.37 87.31 0.40
w/ cutout 83.08 0.49 85.77 0.44
CIFAR-10 . vepl. 9290 020 9273 023
w/ repl. + cutout 91.34 0.26 93.91 0.21
w/o all 90.84  0.28 89.56 0.30
Fashion- w/ cutout 89.58 0.30 90.93 0.27
MNIST w/ repl. 93.98 0.17 93.58 0.19
w/ repl. + cutout 93.62 0.18 94.43 0.19
w/o all 93.48 0.26 89.38 0.42
w/ cutout 88.88  0.36 92.03 0.32
SVHN w/ repl. 96.92 0.14 94.42 0.26
w/ repl. + cutout 94.10 0.22 94.70 0.26

As in Table[T} for “best” networks we include two execution times: the one for the run that generated
the network, and the sum of the execution times of all 5 runs (the time it took us to find and select
this “best” network).

At first sight, these results seem to justify the use of the block replication (repl.) mechanism, as
well as to some degree the use of cutout regularization. Both techniques appear to correlate with
an increase in test set performance with respect to the “w/o all” results, although they also seem to
correlate with an increase in size / parameter count and in GPU execution time.

To find the statistically significant differences (stat. sign. diff.) between the performances of each
DensEMANN setting, we use two-way analyses of variance (ANOVAS), with Tukey’s range test as
post-hoc analysis. The results of these tests are as follows:

* Both repl. and cutout correlate to significantly longer execution times. The P-values for
CIFAR-10 were 7.72 x 10~* for repl., 3.32 x 102 for cutout, and 0.40 for interaction.
Similar P-values were obtained for Fashion-MNIST: 5.75 x 104 for repl., 2.35 % 1073 for
cutout, and 0.62 for interaction. For SVHN the situation is slightly different: 2.79 x 10~*
for repl., 2.29 x 1072 for cutout, 8.25 x 103 for interaction. In that case Tukey’s test only
shows stat. sign. diff. between the “w/ repl + cutout” experiment and all others.

* Inference times are significantly longer when using repl., but usually cutout does not affect
them significantly. This is the case for CIFAR-10: P = 4.60 x 10~3 for repl., 0.95 for
cutout, 0.62 for interaction. For SVHN the situation is similar: P = 3.27 x 10~ for repl.,
0.14 for cutout and 15.99 x 10~ for interaction; Tukey’s test only shows stat. sign. diff.
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between the two “w/ repl.” experiments and all others including each other. However, for
Fashion-MNIST there is a slightly stat. sign. diff. with cutout: P = 5.78 x 10~* for repl.,
0.02 for cutout and 0.45 for interaction.

» Parameter counts are significantly higher when using repl., but cutout does not seem to
affect them significantly. This is the case for both CIFAR-10 (P = 5.22 x 10~7 for repl.,
0.86 for cutout, 0.72 for interaction) and Fashion-MNIST (P = 5.17 x 10~* for repl., 0.14
for cutout, 0.37 for interaction). SVHN is an exception: P = 4.39 X 1076 for repl., 0.06 for
cutout (almost stat. sign. diff.) and 0.04 for interaction. In that case Tukey’s test only shows
stat. sign. diff. between the two “w/ repl.” experiments and all others, including each other.

» The validation set preformance (both the accuracy and the loss) significantly improves
when using repl., but worsens when using cutout. This is the case for both CIFAR-10 and
Fashion-MNIST: for the validation set loss CIFAR-10’s P-values are 1.38 x 10710 for
repl., 2.67 x 107 for cutout, and 0.03 for interaction (Tukey’s test shows stat. sign. diff.
between all experiments), while Fashion-MNIST’s are 1.64 x 1079 for repl., 2.33 % 10-3
for cutout, and 0.13 for interaction. SVHN is the exception, as for this benchmark there
were no stat. sign. diff. between the settings: P = 0.06 for repl., 0.12 for cutout and 0.31
for interaction. (There is an almost stat. sign. diff. for repl., and the accuracy is higher with
repl. than without it.)

* The test set preformance significantly improves when using repl., but seems unaffected by
cutout. This is the case for all three datasets: for the test set loss, CIFAR-10’s P-values
are 8.14 x 10~!2 for repl., 0.89 for cutout, and 0.033 for interaction (Tukey’s test only
shows stat. sign. diff. between the experiments with repl. and those without repl.); Fashion-
MNIST’s are 2.00 x 10~ for repl., 0.56 for cutout, and 0.80 for interaction; SVHN’s are
0.04 for repl., 0.62 for cutout, and 0.62 for interaction.

We can thus conclude that the block replication method results in a significant improvement in
the network’s final performance, but at the expense of an also significant increase in the network’s
size and in DensEMANN’s GPU execution time. The use of cutout only clearly correlates with a
significant increase in the GPU execution time, but the observed increases in final performance and
network size are not statistically significant.

For the use of repl., the significant improvement in the network’s final performance is most likely
caused by the also significant increase in the network’s size: the more learnable weights a NN has,
the more complex are the target functions that it can represent. The origin of the increase in size is
obvious: the average sizes when using repl. are always (just over) 3 times the average sizes when not
using it, because the repl. method copies the DensSEMANN-generated dense block N = 3 times (and
adds some transition layers). As for the increase in execution time, it most certainly corresponds to
the extra 300 epochs that take place after replicating the dense block. Indeed, the best networks in
Table [T] were also retrained during 300 epochs, and the mean execution times from that experiment
correspond very closely to the differences in execution time with and without repl. in Table 3] (for
instance, for CIFAR-10 the average retraining time in Table[I]is 3.86 hours, and the corresponding
increase in execution time is 13.48 — 9.83 = 3.65 hours).

As for cutout, we hypothesise that the longer execution times are due to the extra time needed for
generating the batches of data-augmented images. The fact that cutout does not entail a significant
change in the inference time supports this hypothesis. For the non-significance of the changes in the
networks’ size and (especially) their test performance, we initially suspected a type II error caused by
small sample size and outliers in the data (there is in fact a very obvious outlier in the “SVHN w/
cutout” experiment, where DensEMANN generated a network with 12.92k parameters and a test set
accuracy of 48.89%). However, regardless of any outliers, the results with and without cutout are too
similar to rule out the null hypothesis.

It is also worth commenting that, in our workflow, when we use cutout we apply it on both the training
and validation data. The ANOVA results show that cutout has a significantly negative impact on the
validation set performance, which in our opinion is caused by the agresivity of this data augmentation
method (it removes a large random patch in each image). As explained before, there is no evidence of
a negative influence of cutout on the test set performance—but there is also no evidence of a positive

*We consider the ANOVA’s results for accuracy and loss to be interchangeable, as for each benchmark and
for each data split (validation or test), the P-values for accuracies and losses are always very similar.
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Table 5: Ablation study on DensEMANN’s block replication and use of cutout: retraining the best

generated DenseNet-BC after five runs on benchmark datasets

Dataset DensEMANN Source of GPU execution  GPU inference
i setting the weights time (hours) time (seconds)
w/o all DensEMANN 9.34 2.97
Retrain from scratch  2.53 4 0.01 2.96 + 0.01
w/ cutout DensEMANN 10.38 2.84
CIFAR-10 Retrain from scratch  2.78 4+ 0.00 2.83 +0.02
wi repl. DensEMANN 11.73 3.45
Retrain from scratch  3.38 4= 0.01 3.47 £ 0.02
w repl. + cutout DensEMANN 16.55 3.47
’ Retrain from scratch  3.86 + 0.01 3.46 + 0.04
w/o all DensEMANN 3.20 2.75
Retrain from scratch /.59 &+ 0.01 291 4+0.12
' w/ cutout DensEMANN 6.43 3.49
Fashion- Retrain from scratch  2.23 + 0.13 2.84 £ 0.61
MNIST wi repl DensEMANN 4.85 3.79
’ Retrain from scratch  2.93 + 2.19 3.40 + 0.14
w repl. + cutout DensEMANN 7.53 4.26
Retrain from scratch 2.8/ + 0.02 3.75+0.20
w/o all DensEMANN 1.73 11.24
Retrain from scratch  0.63 = 0.00 11.49 £+ 0.08
w/ cutout DensEMANN 2.37 11.13
SVHN Retrain from scratch  1.76 + 2.16 11.60 £ 0.25
wi repl, DensEMANN 2.76 13.08
Retrain from scratch  0.88 + 0.00 12.38 £ 0.23
w/ repl. + cutout DensEMANN 3.23 13.28
Retrain from scratch  7.04 £ 0.17 11.76 £ 2.69

influence on it. Further experiments are needed for testing cutout’s effect if it is used on the training
data but not on the validation data.

A.1.2 Retraining our best networks from scratch: DensEMANN vs. “perfect” NAS

This section corresponds to the experiment in Section [4.2]of the main paper. In Table[5] we copy the
GPU times and validation and test set performances obtained when generating the best networks in
Table ] and we compare these results to those obtained after retraining each of these networks from
scratch. We use the same training settings as in the DensEMANN runs that generated each network:
those networks that were generated with cutout are also retrained with cutout, and those that were
generated without it are also retrained without it.

To compare the validation and test set performance before and after retraining each network, we use
one-sample t-tests. Their results are as follows:

* No repl. or cutout (“w/o all” setting):

— Validation set accuracy: the P-values were 0.10 for CIFAR-10, 1.00 for Fashion-
MNIST, 1.45 x 10~ for SVHN. There are stat. sign. diff. only for SVHN, where
retraining caused the performance to improve.

— Validation set loss: the P-values were 0.02 for CIFAR-10, 0.10 for Fashion-MNIST,
1.46 x 10~3 for SVHN. There are stat. sign. diff. for CIFAR-10 and SVHN, where
retraining caused the performance to improve (in the case of CIFAR-10 only slightly).

— Test set accuracy: the P-values were 0.05 (rounded up) for CIFAR-10, 0.01 for Fashion-
MNIST, 1.31 x 10~ for SVHN. There are stat. sign. diff. for all cases, where retraining
caused the performance to improve (in the case of CIFAR-10 only slightly).

— Test set loss: the P-values were 0.01 for CIFAR-10, 3.74 x 102 for Fashion-MNIST,
1.40 x 1073 for SVHN. There are stat. sign. diff. for all cases, where retraining caused
the performance to improve.

* Cutout, but no repl. (“w/ cutout.” setting):
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Table 5: Ablation study on DensEMANN’s block replication and use of cutout: retraining the best
generated DenseNet-BC after five runs on benchmark datasets, continued

Dataset DensEMANN Sourcg of Validation set Test set
setting the weights Acc. (%) Loss Acc. (%) Loss
w/o all DensEMANN 88.12 0.37 87.31 0.40
Retrain from scratch  87.94 £0.19 0.36 £0.01 87.69 £0.31 0.38 £0.01
w/ cutout DensEMANN 83.08 0.49 85.77 0.44
CIFAR-10 Retrain from scratch  84.51 £0.45 046 £0.01 87.71 £0.20 0.40 £ 0.01
wi repl. DensEMANN 92.90 0.20 92.73 0.23
Retrain from scratch 9291 +0.18 0.22 +£0.00 92.87+0.17 0.23 +0.01
w/ repl. + cutout DensEMANN 91.34 0.26 93.91 0.21
Retrain from scratch  91.90 +0.42 0.25+0.01 9425+0.16 0.20 +0.01
w/o all DensEMANN 90.84 0.28 89.56 0.30
Retrain from scratch  90.84 £0.44 0.26 =0.01 90.22 +£0.32 0.28 £0.01
) w/ cutout DensEMANN 89.58 0.30 90.93 0.27
Fashion- Retrain from scratch  91.41 £0.66 0.24 £0.02 9232+ 0.16 0.24 £0.01
MNIST w repl DensEMANN 93.98 0.17 93.58 0.19
’ Retrain from scratch  93.94 £0.34 0.17 £0.01 93.60 £0.20 0.18 £ 0.00
wi repl. + cutout DensEMANN 93.62 0.18 94.43 0.19
Retrain from scratch  93.70 £0.53 0.18 £0.01 9447 +£0.22 0.19 £0.01
w/o all DensEMANN 93.48 0.26 89.38 0.42
Retrain from scratch  95.53 +0.32 0.21£0.02 92.03+0.23 0.36 +0.02
w/ cutout DensEMANN 88.88 0.36 92.03 0.32
SVHN Retrain from scratch  91.83 +0.23 0.28 £0.01 9323 +0.14 0.31 +£0.02
wi repl. DensEMANN 96.92 0.14 94.42 0.26
Retrain from scratch  96.56 +0.24 0.16 £0.01 9397 +0.40 0.29 +0.02
wi tepl. + cutout DensEMANN 94.10 0.22 94.70 0.26
’ Retrain from scratch  93.81 +£0.39 0.23 £0.01 9450+0.16 0.26 +0.01

— Validation set accuracy: the P-values were 2.10 X 10~3 for CIFAR-10, 3.51 x 10~3
for Fashion-MNIST, 9.24 x 1076 for SVHN. There are stat. sign. diff. for all cases,
where retraining caused the performance to improve.

— Validation set loss: the P-values were 5.22 x 10~2 for CIFAR-10, 2.23 x 102 for
Fashion-MNIST, 2.40 x 10~° for SVHN. There are stat. sign. diff. for all cases, where

retraining caused the performance to improve.

— Test set accuracy: the P-values were 2.89 x 10~? for CIFAR-10, 4.48 x 10~° for
Fashion-MNIST, 3.89 x 107> for SVHN. There are stat. sign. diff. for all cases, where
retraining caused the performance to improve (in the case of SVHN only slightly).

— Test set loss: the P-values were 3.71 x 10~* for CIFAR-10, 7.51 x 10~ for Fashion-
MNIST, 0.24 for SVHN. There are stat. sign. diff. for CIFAR-10 and Fashion-MNIST,
where retraining caused the performance to improve.

* Repl., but no cutout (“w/ repl.” setting):

— Validation set accuracy: the P-values were 0.93 for CIFAR-10, 0.78 for Fashion-
MNIST, 0.03 for SVHN. There are stat. sign. diff. only for SVHN, where retraining
caused the performance to worsen (albeit only slightly).

— Validation set loss: the P-values were 4.54 x 10~3 for CIFAR-10, 0.40 for Fashion-
MNIST, 0.08 for SVHN. There are stat. sign. diff. only for CIFAR-10, where retraining
caused the performance to worsen.

— Test set accuracy: the P-values were 0.14 for CIFAR-10, 0.87 for Fashion-MNIST,
0.07 for SVHN. There are no stat. sign. diff. (almost stat. sign. diff. for SVHN, where
retraining caused the performance to slightly worsen).

— Test set loss: the P-values were 0.98 for CIFAR-10, 0.21 for Fashion-MNIST, 0.03 for
SVHN. There stat. sign. diff. only for SVHN, where retraining caused the performance

to worsen.

* Both repl. and cutout (“w/ repl. + cutout” setting):

— Validation set accuracy: the P-values were 0.04 for CIFAR-10, 0.75 for Fashion-
MNIST, 0.17 for SVHN. There stat. sign. diff. only for CIFAR-10, where retraining
caused the performance to improve (albeit only slightly).
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— Validation set loss: the P-values were 0.09 for CIFAR-10, 0.60 for Fashion-MNIST,
0.52 for SVHN. There are no stat. sign. diff.

— Test set accuracy: the P-values were 0.01 for CIFAR-10, 0.68 for Fashion-MNIST,
0.04 for SVHN. There are stat. sign. diff. for CIFAR-10 and SVHN: for CIFAR-10
retraining caused the performance to improve (albeit only slightly) while for SVHN it
caused the performance to worsen (also slightly).

— Test set loss: the P-values were 0.06 for CIFAR-10, 0.33 for Fashion-MNIST, 0.90 for
SVHN. There are no stat. sign. diff. (almost stat. sign. diff. for CIFAR-10, where
retraining caused the performance to slightly improve).

In conclusion, when repl. is not used (i.e. when using only DensEMANN’s basic incremental
workflow) the original NN’s performance improves significantly after retraining, especially if cutout
is used. In contrast, when repl. is used the original NN’s performance is optimal: retraining does not
improve it signifcantly (at least not the loss value), and in some cases it can even make it worse.

We hypothesise that the main cause of the optimal weights obtained with repl. is the “best model
saving” approach that it incorporates, and that is also used for retraining the networks (see Sections
[.1.3]and[4.2). Indeed, repl. uses this approach just after replicating the generated dense block N — 1
times, which means that it is responsible for the full training of over ¥ -1/~ = 2/3 of the network. For
this reason, we advise further incorporating this “best model saving” approach within DensEMANN’s
training and growing workflow (see the future research lines suggested in Section [5).

Concerning GPU times, as explained in Section4.2] the execution times for DensEMANN are always
significantly longer than those for retraining the networks. This means that DensEMANN is far from
“perfection” concerning GPU times (in Sections [2]and [4.2] we argue that the time needed to (re)train
the final candidate architecture is a good stand-in for a “perfect” execution time). The ablation study
also reveals that repl.’s extra 300 training epochs are not the only cause for DensEMANN’s long
execution times: even when not replicating the last block, DensEMANN takes longer to run than the
standard retrain. As evidenced in Section[4.3] using a different weight initialization method for new
components may speed up DensEMANN considerably—which is why we also suggest this as future
research in Section

A.2 Naive NAS baseline

One could claim that DensEMANN is very long and complicated, and yet its search space is
very limited. If a naive NAS procedure explored a simplified version of DensEMANN’s search
space by fully training and testing each candidate architecture from scratch, could it reach similar
performance in less time? To assess this question, we coded a naive NAS algorithm that systematically
trains and tests increasingly larger DenseNet architectures out of an extremely simplified version of
DensEMANN’s search space.

All candidate architectures have in common: the same number N of dense blocks, the same number
k of convolution filters in each dense layer (for DenseNet-BC, the first convolution has got 4 * k
filters, and the second one k filters), and that all of their dense blocks have got the same number of
layers [. The algorithm begins with [ = 1 (/N and k are user-set), and progressively tests networks
with increasingly large values for [. To this aim, it trains each candidate network for 300 epochs and
then evaluates its performance on the validation set. We use the same training methodology as in our
retraining experiments, but without cutout regularization.

The stopping criterion is similar to that of DensEMANN’s macro algorithm: if the current network’s
validation set accuracy does not improve at least /7" = 0.01 beyond the previous network’s accuracy,
we select the previous network as the final candidate. There is also an optional stopping criterion
that sets a bound on the final candidate’s size: if increasing [ would make the network’s number of
parameters surpass a certain maximum parameter count (M PC'), then the current network becomes
the final candidate. Setting M PC' to a none value removes this stopping criterion.

We ran the naive NAS algorithm 5 times for the CIFAR-10 benchmark, with either N = 3 or 1, and
without imposing the size-based stopping criterion. During each run, we recorded the details for
each candidate architecture (training and inference time, number of layers, number of parameters
and performance measures), as well as the execution time until it was evaluated. This allowed us to
simulate the use of the size-based stopping criterion for any M PC' value, by considering, for each
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Table 6: Naive NAS baseline for DenseNet-BC: average performance on CIFAR-10

GPU execution  GPU final candidate =~ GPU inference  Num. layers Trainable
Search space

time (hours) training time (hours)  time (seconds) per block parameters (k)
N =3, MPC = None 21.03 +2.77 3.36 £ 0.24 3.35+0.10 7.0£0.7 219.22 +£31.29
N =3, MPC = 200k 13.90 + 0.06 3.01 £0.02 3.16 £ 0.03 6.0 £0.0 176.12 £ 0.00
N =1, MPC = None 25.42 +4.98 3.26 +0.37 3.96 + 0.43 9.0+ 1.6 82.76 £+ 18.55
N =1, MPC = 60k 1570 £ 1.35 2.77 £ 0.31 3.70 + 0.48 7.0+ 0.0 59.91 + 0.00

Table 6: Naive NAS baseline for DenseNet-BC: average performance on CIFAR-10, continued

Validation set Test set

Search space Acc. (%) Loss Acc. (%) Loss

3, MPC = None 9351+£029 0.204+0.01 92.86£0.36 0.23+0.01
3, MPC =200k 9278 +£035 0.224+0.01 9225+£0.10 0.25+0.01
1,
1,

MPC =None 8948 +1.10 032+£0.04 88.61+1.15 035=£0.03

N
N
N
N MPC = 60k 87.68 £0.41 037+0.01 87.34+0.09 0.39+0.00

run, the largest candidate that fulfilled the criterion as the final candidate. In all of our runs, we used
k=12and IT = 0.01.

Table [6] shows the average results for this experiment. The M PC values for (simulated) size-base
stopping were chosen to make the algorithm’s final candidate networks have similar sizes to the
DensEMANN:-generated networks. The GPU times for N = 1 are reported in italized blue-gray
because they are highly unreliable: we ran one experiment in the MSi GT76, one in the MSi GT75,
and three in the internal cluster. Those for N = 3 were all obtained on the MSi GT76.

We compare the results in table[6]to those in Table 3] for experiments without cutout.

Concerning the execution times, it is clear that DensEMANN outperforms the naive NAS algorithm.
This is true both when the full runs are considered, and when size-based stopping is simulated with
the selected M PC' values.

As for the performance of naive NAS, we ran various statistical tests to compare it to DensEMANN’s.
These were all two-sample T-tests except for parameter counts with simulated size-based stopping,
for which we used one-sample T-tests because we always obtained null variances for naive NAS (the
final candidate architecture was always the same):

* Size / parameter count: there are no stat. sign. diff. between the full naive NAS runs and
DensEMANN’s for N = 3 (P = 0.11), but there are stat. sign. diff. between them for
N =1 (P = 0.02). We also confirm that the selected M PC' values make the naive NAS
algorithm’s architectures statistically similarly sized to DensEMANN’s architectures: for
N = 3 the P-value is 0.93, and for N = 1 the P-value is 0.35.

* NN performance (both validation and test set): for both N = 3 and N = 1 there are always
stat. sign. diff. between the full naive NAS runs and DensEMANN’s, but never between the
simulated size-based stopping runs and DensSEMANN’s:

— Validation set accuracy: for N = 3 the P-values are 2.55 x 1073 for full naive NAS,
and 0.10 for simulated size-based stopping; for N = 3 they are 7.21 x 10~2 for full
naive NAS, and 0.18 for simulated size-based stopping.

— Validation set loss: for N = 3 the P-values are 0.01 for full naive NAS, and 0.25 for
simulated size-based stopping; for N = 3 they are 6.43 x 10~ for full naive NAS,
and 0.10 for simulated size-based stopping.

— Test set accuracy: for N = 3 the P-values are 0.04 for full naive NAS, and 0.65 for
simulated size-based stopping; for N = 3 they are 0.01 for full naive NAS, and 0.09
for simulated size-based stopping.

— Test set loss: for N = 3 the P-values are 0.03 for full naive NAS, and 0.45 for
simulated size-based stopping; for N = 3 they are 6.69 x 1072 for full naive NAS,
and 0.07 for simulated size-based stopping.
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In conclusion, the answer to our question is no, a naive NAS algorithm would not reach a similar
performance to DensEMANN’s in less time. Our naive NAS benchmark can reach statistically
identical accuracy levels to DensEMANN’s for similarly sized networks (and even higher accuracy
levels when building 3-block networks), but it always does so in significantly more time.

This said, it is worrying that our naive NAS baseline does reach DensEMANN’s same performance
level within a reasonable time frame (less than a GPU day). This indicates that this method is likely
capable of outperforming DensEMANN if it uses a quick and reliable performance estimator—not to
mention a zero-cost estimator [30} 31} 2. Furthermore, the final candidate networks’ training times,
which as explained in other sections can be used to simulate the algorithm’s execution times if it used
a “perfect” performance estimator, are much lower than DensEMANN’s execution times. For these
reasons, we suggest designing a new baseline consisting of a zero-cost algorithm that explores the
same search space as DensEMANN (see the future research lines in Section [5).

A.3 Full comparison against the state of the art

We decided to extend Section [f.3]'s CIFAR-10 state of the art to also include the experiments and
results reported in this appendix. To this aim, we created Table[7]and Figure[3]as extended versions
of (respectively) Table[?]and Figure [2| from that section.

From the distribution of DenseNet- and DensEMANN-related architectures in Table [/} it seems

that these architectures are limited by their own suboptimal size vs. error rate Pareto front. This

performance boundary may be caused by intrinsic performance limitations of DenseNet architectures—
at least as defined in [[17]—or of DensEMANN’s search space. To test this hypothesis, we suggest

widening DensEMANN’s search space explore to less standard “DenseNet-like” architecture designs.
For instance, the macro-algorithm could have a wider range of choices for connecting layers inside

a dense block, or for deciding when to stop growing the current block and start a new one (see our

suggested future research lines in Section 3)).
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Table 7: Performance comparison of DensEMANN and the naive NAS baseline (various configu-
rations) against human-designed NN models and state-of-the-art NAS algorithms, for architectures
with less than 10 million parameters

Category Name Trainable Error rate on GPU execution
parameters (M) CIFAR-10 (%) time (days)

ResNet 20 [48] 0.27 8.75 N/A
ResNet 110 (as reported by He et al. [48]) 1.7 6.61 +0.16 N/A
ResNet 110 (as reported by Huang et al. [49]) 1.7 6.41 N/A
ResNet 110 with Stochastic Depth [49] 1.7 5.25 N/A
Human-designed WRN 40-1 (no data augmentation) [50] 0.6 6.85 N/A
DenseNet 40 (k = 12) [17] 1 5.24 N/A
DenseNet-BC 100 (k = 12) [17] 0.8 4.51 N/A
Highway 1 (Fitnet 1) [S1] 0.2 10.82 N/A
Highway 4 [51] 1.25 9.66 N/A
Petridish initial model (N = 6, F' = 32) + cutout [13] 0.4 4.6 N/A
NAS-RL / REINFORCE (v1 no stride or pooling) [52] 42 5.5 22400
NAS-RL / REINFORCE (v2 predicting strides) [S2] 2.5 6.01 22400
Reinforcement NAS-RL / REINFORCE (v3 max pooling) [52] 7.1 4.47 22400
learning (RL) NASNet-A (6 @ 768) [36] 33 3.41 2000
NASNet-A (6 @ 768) + cutout [36] 33 2.65 2000
Block-QNN-S, N = 2 [53] 6.1 4.38 96
Large-Scale Evolution [54] 54 5.4 2600
Evolutionary and CGP-CNN (ConvNet) [55] 1.5 5.8 12
enetic aloorithms CGP-CNN (ResNet) [55] 1.68 5.98 14.9
g EA ﬁG Ay AmocbaNet-A (N = 6, F = 32) [56] 2.6 3.4 +0.08 3150
(EAandGA) s hoebaNet-A (N = 6. F = 36) [56) 32 3344006 3150
EcoNAS + cutout [57] 29 2.62 £0.02 8
ENAS + micro search space [S8] 4.6 3.54 0.45
ENAS + micro search space + cutout [58] 4.6 2.89 0.45
Gradient-based DARTS (1st order) + cutout [59] 33 3+0.14 1.5
optimization (GO) DARTS (2nd order) + cutout [59] 33 2.76 £ 0.09 4
XNAS-Small + cutout [60] 3.7 1.81 0.3
XNAS-Medium + cutout [60] 5.6 1.73 0.3
XNAS-Large + cutout [60] 7.2 1.6 0.3
NASH (nsteps = 5, npeigh = 8, 10 runs) [14] 5.7 5.7+0.35 0.5
LEMONADE SS-I + mixup + cutout [19] 0.047-3.4 8.9-3.6 80
LEMONADE SS-II + mixup + cutout [19 0.5-13.1 4.57-2.58 80
Growing / Petridish macro (N = 6, F' = 32) + cutout [13] 2.2 2.85+0.12 5
Forward NAS Petridish cell (N = 6, F' = 32) + cutout [13] 2.5 2.87 +0.13 5
Petridish cell, more filters (N = 6, F' = 37) + cutout [13] 3.2 2.75+£0.21 5
Firefly, WRN 28-1 seed + BN [10] 4 7.1 £0.1 N/A
GradMax, WRN 28-1 seed + BN [10] 4 7.0+0.1 N/A
DARTS Random + cutout [59] 32 329 £0.15 4
Random Search NASH Random (nsteps = 5, n,eigh = 1) [14] 44 6.5 +£0.76 0.19
LEMONADE SS-I Random + mixup + cutout [19] 0.048-2 10-4.4 80
DensEMANN (w/o repl.) 0.056 £+ 0.009 1391 £1.28 0.33 £0.05
Ours DensEMANN (w/o repl.) + cutout 0.053 £ 0.006 14.67 £ 0.71 0.41 £ 0.02
(DensEMANN) DensEMANN (w/ repl.) 0.178 £ 0.042 7.87 £0.56 0.43 £ 0.05
DensEMANN (w/ repl.) + cutout 0.186 £ 0.057 6.59 £+ 0.90 0.56 £ 0.11
DensEMANN (w/o repl.) 0.065 12.69 1.66
Ours DensEMANN (w/o repl.) + cutout 0.058 14.23 2.05
(DensEMANN best) DensEMANN (w/ repl.) 0.233 7.27 2.15
DensEMANN (w/ repl.) + cutout 0.245 6.09 2.81
Ours DensEMANN (w/o repl.) 0.065 12.31 £ 0.31 1.76 £ 0.00
(DensEMAi\IN best DensEMANN (w/o repl.) + cutout 0.058 12.29 + 0.20 2.16 = 0.00
retrained) DensEMANN (w/ repl.) 0.233 7.13 £0.17 2.29 +0.00
DensEMANN (w/ repl.) + cutout 0.245 575+ 0.16 2.97 +0.00
Naive NAS baseline, N = 1, M PC =None 1.06 £ 0.21 11.39 £+ 1.15 82.76 + 18.55
Ours Naive NAS baseline, N = 1, M PC' = 60k 0.65 + 0.06 12.66 £ 0.09 59.91 £ 0.00
(Naive NAS) Naive NAS baseline, N = 3, M PC =None 0.88 £ 0.12 7.14 £036  219.22 +31.29
Naive NAS baseline, N = 3, M PC' = 200k 0.58 +0.00 7.75 +0.10 176.12 £ 0.00
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