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Motivation

* [ndian legal documents are long, complex, and high-stakes, making early judgment prediction and
summarization challenging.

= Existing Indian legal Al systems rely primarily on supervised fine-tuning and lack mechanisms for
iterative refinement using feedback.

= Reinforcement Learning (RL), despite success in other domains, remains underexplored for Indian
legal reasoning tasks.

= This work investigates whether PPO-based RL can improve alignment, interpretability, and
reasoning fidelity in legal Al.

Task Description

= \We evaluate ReGal on two core Indian legal NLP tasks:
= Task 1: Court Judgment Prediction and Explanation (CJPE)

= Prediction: Given a Supreme Court judgment, predict whether the appeal is accepted (1) or rejected (O).
= Explanation: Generate a natural language rationale grounded in the case text.

= Task 2: Legal Judgment Summarization
= Generate abstractive summaries capturing background, legal issues, arguments, and verdict.

= Both tasks emphasize factual consistency, interpretability, and domain alignment.
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Figure 1. Overview of the ReGal PPO model training process.

Dataset Overview

* PredEx (CJPE Dataset):

= 15,222 Supreme Court judgments.
= Binary verdict labels with expert-written explanations.
= Average document length: ~4.5K tokens.

* [n-Abs (Summarization Dataset):

= /130 Supreme Court judgments with expert headnotes.
= Abstractive summaries, English language.
= Compression ratio ~ 0.24.

= Both datasets enable evaluation of RL across prediction, explanation, and summarization.

Methodology: ReGal Framework with PPO Optimization

= ReGal combines supervised instruction tuning with PPO-based reinforcement learning from Al
feedback (RLAIF).

= Base Model: LLaMA-2-/B, chosen for comparability with prior Indian legal NLP work.

= Stage 1 (SFT): Model is fine-tuned on task data for judgment prediction + explanation (PredEx) and
summarization (In-Abs).

= Stage 2 (PPO): The SFT model is optimized using PPO with task-specific reward models.

= Rewards:

= CJPE: binary reward based on verdict correctness (InLegalBERT).
= Summarization: scalar reward based on ROUGE-style overlap and coherence.

= PPO constrains policy updates via clipped probability ratios (e = 0.1) to limit deviation from the SFT
policy.

Reward Models

= CJPE Reward Model:

» |nLegalBERT classifier.
= Binary reward: 1 for correct verdict, O otherwise.

= Summarization Reward Model:
= ROUGE-based overlap and shallow semantic similarity.

= Rewards are Al-generated (RLAIF), simulating human feedback.
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Results and Analysis

= ReGal underperforms compared to SFT and proprietary models.

= On PredEx:
» ROUGE-1 =0.19 (ReGal) vs 0.50 (LLaMA-2 SFT).

= On In-Abs summarization:
= PPO ROUGE-1 =0.41 vs 0.47 (Vanilla inference).

* |[ndicates difficulty of applying PPO directly to complex legal text.

Lexical Metrics Semantic Metrics

Models R1 | R2 | RL |BLEUMETEOR BERTScore BLANC
PredEx (Prediction + Explanation)
Gemini Pro 0.31/0.2410.26 0.08 | 0.19 0.63 0.17
LLaMA-2 0.32/0.19 0.21 0.06 | 0.18 0.62 0.15
LLaMA-2 SFT 10.50/0.43/0.44 0.25 | 0.36 0.69 0.28
ReGal (Ours) 10.19/0.04/0.12 0.01 | 0.10 0.50 0.02
ILDC Expert (Prediction + Explanation)
GPT-3.5 Turbo|0.54/0.43 0.45 0.28 | 0.47 0.73 0.34
LLaMA-2 0.45/0.25/0.30 0.15| 0.34 0.65 0.22
LLaMA-2 SFT 10.49/0.38/0.40 0.29 | 0.51 0.69 0.36
ReGal (Ours) 10.25/0.05/0.161 0.01 | 0.16 0.50 0.03

Table 1. Performance comparison of various models for the Prediction with Explanation task on PredEx and ILDC datasets.

Methods| R1 A R2 RL BLEU METEOR|BERTScore BLANC
PredEx Inference
Vanilla  10.39/0.17/0.22 0.0/ 0.23 0.83 0.15
SFT 0.42/0.25/0.27 0.12 0.27 0.84 0.19
DPO 0.38 0.1//0.23 0.08 0.25 0.83 0.1/
PPO 0.30/0.14 /0.1/| 0.05 0.19 0.83 0.13
In-Abs Summarization Inference
Vanilla  10.47/0.29 0.28 0.15 0.34 0.04 0.18
SFT 044 0.2410.24 0.12 0.34 0.02 0.13
DPO 044 0.2410.24 0.12 0.34 0.02 0.13
PPO 041 0.21/0.22 0.10 0.31 0.03 0.12

Table 2. Comparison of inference strategies (Vanilla, SFT, DPO, PPO) on both the PredEx and In-Abs-Summarization
datasets.

Ablation Study

Smaller models (e.g., Phi-3 Mini) fail to handle long legal documents.
* Pretrained LLaMA-2 without legal SFT performs poorly.

= Reward models not aligned with task degrade PPO learning.

= Highlights dependence of PPO on strong base and reward models.

Hallucination Analysis

= PPO training increases hallucinated legal claims.

= Model fabricates precedents and legal principles not present in input.

= Hallucinations arise from weak reward signals and sparse supervision.

= Reinforces need for stronger factuality constraints and human feedback.

Contributions and Impact

= First PPO-based RL study for Indian legal judgment prediction and summarization.
= Provides empirical and qualitative analysis of RL failures in legal NLP.
= Establishes lessons for future RLHF/RLAIF-based legal systems.

Code and data released for reproducibility.

Limitations and Future Work

= PPO underperforms compared to supervised and proprietary models.
= Reward models insufficient for nuanced legal reasoning.
= Future work: human-in-the-loop RLHF, better reward modeling, domain-adaptive pretraining.
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