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Appendix
A Selection of an appropriate λ

In Section 2.2, we estimate π̂00(λ), π̂10(λ), and π̂01(λ) using the method proposed by Storey et al.
[17] with a fixed parameter λ. The estimators are calculated in (10)-(11). Theoretical considerations
suggest that as λ approaches 1, the estimators of the composite null hypothesis become more accu-
rate asymptotically. However, in finite samples scenarios, with a larger value of λ, the chance of
these null p-values falling within (λ, 1] gets smaller, resulting in less accurate estimates. Conversely,
when λ becomes smaller, the bias of the null estimators increases while the variance decreases [17].
Consequently, there exists an inherent bias-variance trade-off in the selection of λ.

To strike a reasonable balance between bias and variance, we aim to determine λ by minimizing
the mean-squared error (MSE) of the estimators. The MSE is defined as E[{π̂00(λ) − π00}2 +
{π̂10(λ) − π10}2 + {π̂01(λ) − π01}2]. For achieving this goal, we consider a range of cutpoints
for λ (e.g., λ = 0.1, 0.2, . . . , 0.9) and calculate the MSE for each value of λ. As highlighted by
Barfield et al. [1], a substantial proportion of null hypotheses may exhibit both α = 0 and β = 0 in
a genome-wide study involving high-dimensional mediation hypotheses. To investigate the choice
of λ in such scenarios, we consider the following settings, as shown in Table A1.

Table A1: The composite null proportions under different scenarios.
Hypothesis Configuration π00 π10 π01 π11

Scenario 1 0.2 0.3 0.3 0.2
Scenario 2 0.4 0.2 0.2 0.2
Scenario 3 0.5 0.2 0.2 0.1
Scenario 4 0.6 0.15 0.15 0.1
Scenario 5 0.75 0.1 0.1 0.05
Scenario 6 0.85 0.05 0.05 0.05

Table A2 shows means and MSE of the estimated null proportions under the six scenarios with
n=1000, J=10000, αj= 0.2, and βj=0.3. In each scenario, we identified the top three smallest
MSEs among the estimated null proportions. Notably, we observed that the optimal value of λ
varied across the different scenarios. However, it is noteworthy that λ = 0.5 consistently appeared
among the top three MSE values in all the simulated scenarios. As mentioned earlier, smaller values
of λ tend to result in larger biases of the null estimate, while excessively large values of λ may yield
inaccurate estimates in finite sample scenarios. Therefore, the consistent appearance of λ = 0.5
among the top-performing MSE values suggests that it provides a reasonable trade-off between bias
and variance, leading to accurate estimates across a wide range of scenarios. Considering its stability
and computational efficiency, we believe that λ = 0.5 is a suitable choice for estimating the null
proportions in high-dimensional mediation analysis.

B Comparison with existing methods

In this section, we demonstrate the loss of information during the ranking step can result in decreased
statistical power, despite controlling the FDR at the desired level.
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Table A2: The performance of the estimated proportions of the composite null hypothesis (mean
and MSE) under the six scenarios. The tuning parameter λ varies from 0.1 to 0.9.

Scenario 1 π̂00 π̂10 π̂01 MSE Scenario 2 π̂00 π̂10 π̂01 MSE
λ=0.1 0.222 0.278 0.314 1.17e-3 λ=0.1 0.415 0.185 0.215 6.41e-4
λ=0.2 0.211 0.289 0.308 3.10e-4 λ=0.2 0.408 0.192 0.208 1.88e-4
λ=0.3 0.207 0.293 0.306 1.20e-4 λ=0.3 0.406 0.194 0.205 9.14e-5
λ=0.4 0.205 0.295 0.305 6.69e-5 λ=0.4 0.404 0.196 0.204 4.61e-5
λ=0.5 0.203 0.296 0.303 3.03e-5 λ=0.5 0.402 0.196 0.203 2.56e-5
λ=0.6 0.203 0.296 0.303 3.25e-5 λ=0.6 0.403 0.197 0.202 2.46e-5
λ=0.7 0.202 0.297 0.302 1.96e-5 λ=0.7 0.406 0.194 0.198 7.62e-5
λ=0.8 0.201 0.299 0.302 5.94e-6 λ=0.8 0.405 0.195 0.199 5.96e-5
λ=0.9 0.206 0.295 0.296 8.54e-5 λ=0.9 0.405 0.192 0.198 8.69e-5

Scenario 3 π̂00 π̂10 π̂01 MSE Scenario 4 π̂00 π̂10 π̂01 MSE
λ=0.1 0.515 0.185 0.207 4.84e-4 λ=0.1 0.611 0.139 0.157 2.94e-4
λ=0.2 0.507 0.192 0.204 1.38e-4 λ=0.2 0.606 0.144 0.154 8.07e-5
λ=0.3 0.505 0.194 0.203 6.82e-5 λ=0.3 0.604 0.146 0.152 3.79e-5
λ=0.4 0.504 0.196 0.201 3.81e-5 λ=0.4 0.602 0.148 0.152 1.18e-5
λ=0.5 0.503 0.197 0.201 1.91e-5 λ=0.5 0.602 0.148 0.151 7.87e-6
λ=0.6 0.502 0.196 0.202 2.24e-5 λ=0.6 0.603 0.147 0.150 1.79e-5
λ=0.7 0.503 0.195 0.199 3.15e-5 λ=0.7 0.604 0.148 0.148 2.12e-5
λ=0.8 0.501 0.197 0.202 1.36e-5 λ=0.8 0.604 0.147 0.147 2.92e-5
λ=0.9 0.501 0.198 0.201 6.69e-6 λ=0.9 0.602 0.150 0.150 3.19e-6

Scenario 5 π̂00 π̂10 π̂01 MSE Scenario 6 π̂00 π̂10 π̂01 MSE
λ=0.1 0.757 0.093 0.104 1.22e-4 λ=0.1 0.854 0.046 0.053 4.12e-5
λ=0.2 0.754 0.096 0.103 3.69e-5 λ=0.2 0.853 0.048 0.052 1.25e-5
λ=0.3 0.753 0.097 0.102 2.22e-5 λ=0.3 0.853 0.048 0.050 1.19e-5
λ=0.4 0.751 0.099 0.102 6.94e-6 λ=0.4 0.852 0.049 0.050 3.79e-6
λ=0.5 0.752 0.099 0.101 3.38e-6 λ=0.5 0.850 0.049 0.051 9.69e-7
λ=0.6 0.754 0.097 0.099 2.35e-5 λ=0.6 0.851 0.050 0.051 1.40e-6
λ=0.7 0.755 0.096 0.098 4.53e-5 λ=0.7 0.849 0.052 0.052 1.16e-5
λ=0.8 0.751 0.098 0.101 5.44e-6 λ=0.8 0.848 0.054 0.056 6.07e-5
λ=0.9 0.765 0.091 0.090 4.09e-4 λ=0.9 0.857 0.056 0.055 1.11e-4
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To conduct this investigation, we consider three different approaches for comparison: our proposed
AMDP, along with two existing methods, the JS-mixture [5], and the DACT [14]. During the selec-
tion step, it is assumed that the information about the proportions of the composite null hypothesis
and the distributions of p-values under alternatives are known. This provided knowledge allows for
effectively controlling the FDR of all three procedures at the predefined level of α in the selection
step. With the FDR under control, we then proceed to investigate how different ranking strategies
impact the power performance of the three methods. To achieve this, we compare the rejection re-
gions of each method under various scenarios. Formally, the ranking statistic for each method is as
follows:

δJS−mixture = pmax,

δDACT = ω1p
(1) + ω2p

(2) + ω3pmax,

δAMDP = fdr(p),

where pmax = p(1) ∨ p(2), ∨ denotes the maximum of the two p-values. ω1, ω2 and ω3 are normal-
ized relative proportions of the composite null. We consider two scenarios to compare the ranking
statistic of the three methods:

Scenario 1 Balanced null proportions of H01 and H10:

f(p(1), p(2)) = 0.49 + 0.21× 0.6p(1)
−0.4

+ 0.21× 0.3p(2)
−0.7

+ 0.09× 0.18p(1)
−0.4

p(2)
−0.7

,

where the density functions of p-values under alternatives are f(p(1) | H10) ∼ Beta(0.6, 1) and
f(p(2) | H01) ∼ Beta(0.3, 1). The proportions of composite hypothesis are π00 = 0.49, π01 =
π10 = 0.21, and π11 = 0.09.

Scenario 2 Unbalanced null proportions of H01 and H10:

f(p(1), p(2)) = 0.4 + 0.1× 0.4p(1)
−0.6

+ 0.4× 0.6p(2)
−0.4

+ 0.1× 0.24p(1)
−0.6

p(2)
−0.4

,

where the density functions of p-values under alternatives are f(p(1) | H10) ∼ Beta(0.4, 1) and
f(p(2) | H01) ∼ Beta(0.6, 1). The proportions of composite hypothesis are π00 = 0.4, π01 = 0.4,
π10 = 0.1, and π11 = 0.1.

(a) (b)

Figure A1: (a) The rejection regions of the three methods under Scenario 1; (b) The rejection regions
of the three methods under Scenario 2.

Theorem 1 has proved that the ranking statistic of AMDP is optimal among those methods that
effectively control the FDR at the nominal level. Therefore, we refer to the rejection region of
AMDP as the oracle rejection region in the sense that it achieves the highest power under FDR
control. In Scenarios 1-2, we compare the rejection regions of JS-mixture and DACT with the
oracle rejection region when the FDR level can be precisely controlled to the specified level. This
comparison provides deep insights into the impact of information loss during the ranking step on
power.
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Figure A1 visually presents the local FDR for the four-group model (5) in both Scenarios 1-2, as
well as the rejection region for the three procedures. The color intensity in the figure represents the
level of local FDR, with darker colors indicating lower local FDR, thus the corresponding hypothesis
is more likely to be rejected. While the rejection regions of all three methods are all located in areas
with lower local FDR, we emphasize that the AMDP is superior since it simultaneously considers
information about proportions of the composite null hypothesis and the distributions of p-values un-
der alternatives, leading to more accurate and reliable selection of mediators. In contrast, the other
two methods only take into account partial information during the ranking step, which results in
decreased power. The insensitivity of the JS-mixture method to changes in proportions and distribu-
tions is noteworthy. As described in panels (a)-(b), the shape of its rejection region remains square
regardless of the scenarios. On the other hand, the DACT method only considers partial information
about proportions of the null, since its rejection domain remains symmetrical under Scenario 1 (Bal-
anced proportion of H01 and H10), and shifts towards the larger distribution side under Scenario 2
(Unbalanced proportion of H01 and H10). In contrast, the AMDP method fully captures all relevant
information above, as the oracle rejection region is sensitive to the change in both proportions and
distributions. This allows the AMDP method to adapt and adjust its rejection region accordingly,
making it more effective in identifying significant signals.

C Additional results of Section 4

In this section, we demonstrate additional results related to the data analysis of the prostate cancer
dataset in Section 4, including Table A3 and Figures A2-A3.

Figure A2: The number of triplets discovered by four methods. The nominal FDR level α varies
from 0.01 to 0.1. The blue, green, orange, and pink bars represent the numbers of triplets identified
by JS-mixture, DACT (Efron), DACT (JC), and AMDP, respectively.

Figure A3 provides an overview observation of the prostate cancer dataset as well as the rejection
regions of JS-mixture, DACT (Efron), DACT (JC), and AMDP. Panel (a) shows the dispersion of
p-values. However, the high density of the p-values makes it difficult to observe carefully. Thus, we
depict the details of the TCGA dataset in different aspects in panels (b), (c), and (d), respectively,
for providing a clearer insight. In panels (e)-(h), and (i)-(l), we compare the rejection regions of
four methods: JS-mixture, DACT (Efron), DACT (JC), and AMDP at FDR levels of 0.05 and 0.1,
respectively.

From panels (b)-(d), it can be seen that the distribution of p-values is influenced by information
related to the composite null hypothesis. In panel (b), there is a slightly denser concentration of
p-values near the p(1) = 0 axis. This occurrence can be attributed to the presence of π̂10 = 0.03,
as mentioned earlier. On the other hand, panel (c) exhibits a notable concentration of p-values near
the p(2) = 0 axis. This pattern is influenced by the presence of a significant number of cases falling
under H01, which affects the distribution of p-values. As a result, we observe an accumulation of
p-values near the p(2) = 0 axis in the plot. Panel (d) demonstrates a seemingly uniform distribution
of p-values. This uniformity can be attributed to the theoretical expectation that only p-values under
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Figure A3: (a) An overview of p-values obtained from TCGA prostate cancer dataset; (b) The
dispersion of p-values in the region [0, 0.2] × [0.8, 1]; (c) The dispersion of p-values in the region
[0.8, 1]× [0, 0.2];(d) The dispersion of p-values in the region [0.8, 1]× [0.8, 1]; (e)-(h) The rejection
domains of JS-mixture, DACT (Efron), DACT (JC), and AMDP at the targeted FDR level 0.05,
respectively; (i)-(l) The rejection domains of JS-mixture, DACT (Efron), DACT (JC), and AMDP
at the targeted FDR level 0.1, respectively; The black dots represent the p-values of all triplets. The
blue, green, orange, and pink dots represent p-values of triplets identified by JS-mixture, DACT
(Efron), DACT (JC), and AMDP, respectively.

H00 exist in the region [0.8, 1] × [0.8, 1]. At the FDR level of 0.05, the rejection region of JS-
mixture in panel (e) corresponds to a square shape. However, this symmetric shape does not reflect
any information related to the distribution of p-values or the proportions of the composite null. In
contrast, DACT (Efron) considers the proportion of null hypotheses and demonstrates a preference
for rejecting fewer hypotheses with p-values close to p(2) = 0 to minimize false discoveries, as
shown in panel (f). However, the number of triplets identified by DACT (Efron) is the least among
all methods, resulting an overly conservative behavior. The conservatism observed in DACT (Efron)
is alleviated by DACT (JC), as panel (g) reveals that DACT (JC) identifies more significant triplets
compared to DACT (Efron). DACT (JC) offers a more efficient approach by adjusting the threshold
of the rejection region to achieve a higher sensitivity. In panel (h), we observe that the rejection
region of AMDP is adaptive. AMDP estimates the number of false discoveries based on symmetric
regions of the rejection region, allowing for more effective and accurate control of false discoveries,
and well-calibrated adjustments to the rejection region. AMDP strikes a better performance on
detecting significant triplets among all procedures. Next, we turn to investigate the rejection regions
of these four methods at the FDR level of 0.1. In panel (i), it is observed that the rejection region of
JS-mixture remains insensitive to changes in FDR levels, maintaining its square shape. As shown
in panels (j)-(k), both DACT (Efron) and DACT (JC) exhibit increased identification of triplets
compared to the FDR level of 0.05. Nevertheless, they still appear to be somewhat underpowered in
efficiently detecting significant triplets. In contrast, AMDP outperforms all the other methods at the
same FDR level, as demonstrated in panel (l). By leveraging information on the proportions of null
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and calibrating its rejection region dynamically, AMDP achieves better power to identify significant
triplets.

Table A3: Top ten triplets identified by AMDP at the FDR level 0.1.

SNP ID CpG Name Gene Chromosome p1 p2

rs12653946 cg00626856 IRX4 5 6.60e-56 2.66e-20
rs12653946 cg03587843 IRX4 5 1.95e-51 1.03e-19
rs12653946 cg06161964 IRX4 5 1.99e-53 2.02e-22
rs12653946 cg09672187 IRX4 5 4.01e-65 2.13e-33
rs12653946 cg11279838 IRX4 5 3.97e-64 3.61e-27
rs12653946 cg14051264 IRX4 5 7.62e-67 8.86e-26
rs12653946 cg26195178 IRX4 5 2.52e-61 2.43e-26
rs5945619 cg16065628 NUDT11 X 6.75e-32 2.79e-42
rs1933488 cg23651356 RGS17 6 7.25e-20 2.81e-16
rs12653946 cg14823763 IRX4 5 8.13e-47 1.27e-15

The top ten triplets identified by AMDP are summaried in Table A3. These ten triplets consist of ten
CpG sites and three genes. The CpG sites involved in these triplets are located in close proximity to
the transcription starting sites, and their DNA methylation level are closely related to the expression
of the corresponding genes [5]. Among the identified triplets, the three genes, IRX4, NUDT11,
and RGS17, have been shown to be associated with altered CpG methylation. IRX4 is a causative
gene of the prostate cancer susceptibility locus [18]. The corresponding SNP rs12653946, a variant
previously confirmed to be associated with prostate cancer, is significantly associated with IRX4
expression [2]. The increased expression of NUDT11 has been confirmed to be associated with the
risk variant rs5945619 [9, 13]. RGS17 is a commonly induced gene in prostate tumors, and has been
found crucial for the maintenance of the proliferative potential of tumor cells [4].

D Discussions on the parameter choice and assumptions

D.1 Parameter choice

In Figures 1-2 in Section 3, we assess how the four methods (JS-mixture, DACT (Efron), DACT
(JC), and AMDP) are influenced by effect size, the large mediator size and sample size. To ensure
the realism of our experiments, we carefully selected our simulation parameters. Motivated from
several real-world datasets including the TCGA lung cancer cohort dataset [19], the Multi-Ethnic
Study of Atherosclerosis [7], and the TCGA prostate cancer dataset [5], we adopt similar parameter
settings as those used in [5] to construct the simulation examples in Section 3.

Regarding the choice of nominal FDR level, we initially used an FDR level of 0.1, which is a widely
accepted standard in the field [5, 15]. Another common FDR level is 0.05 [10, 16]. To provide
a comprehensive analysis, we conducted experiments at the FDR threshold of 0.05 across a wide
range of sample sizes (200, 500, 1000, and 5000). We present the experimental results under sparse
alternatives scenario and dense alternatives scenario in Tables A4-A5. It’s noteworthy that the results
are similar with those obtained using the FDR level of 0.1 in Section 3.

D.2 Discussion on Assumptions 1-2

Our method extracts a pair (p(1), p(2)) for each exposure-mediator-outcome relationship and em-
ploys these pairs to estimate the FDP on a two-dimensional plane [0, 1] × [0, 1]. The theoretical
basis supporting FDP estimation is the assumption that p-values are uniformly distributed under the
null hypothesis, which is a widely recognized principle [3, 11]. Due to the presence of a composite
null hypothesis in the mediation effect, we elaborate on Assumptions 1-2 to illustrate the properties
of the p-value distribution under composite null hypothesis.

For Assumption 1, under H00, both p1j and p2j obey the uniform distribution, resulting in (p1j , p2j)
also following the uniform distribution on the two-dimensional plane [0, 1]×[0, 1]. Consequently, the
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Table A4: The FDR and power performance of the four methods with effect size αj=0.2, βj=0.3
under sparse alternatives scenario. The nominal FDR level is 0.05, and the number of mediators is
15000.

Method FDR Power

n=200

AMDP 0.0530 0.0474
JS-mixture 0.0284 0.0187

DACT (Efron) 0.0091 0.0055
DACT (JC) 0.0859 0.0960

n=500

AMDP 0.0454 0.4665
JS-mixture 0.0438 0.3714

DACT (Efron) 0.0140 0.2254
DACT (JC) 0.0793 0.4960

n=1000

AMDP 0.0488 0.8698
JS-mixture 0.0500 0.7931

DACT (Efron) 0.0114 0.6101
DACT (JC) 0.0299 0.7460

n=5000

AMDP 0.0498 0.9999
JS-mixture 0.0529 1

DACT (Efron) 8.00e-05 0.9986
DACT (JC) 0.0935 1

Table A5: The FDR and power performance of the four methods with effect size αj=0.2, βj = 0.3
under dense alternatives scenario. The nominal FDR level is 0.05, and the number of mediators is
15000.

Method FDR Power

n=200

AMDP 0.0471 0.0331
JS-mixture 0.0348 0.0206

DACT (Efron) 0.0449 0.0379
DACT (JC) 0.1156 0.1673

n=500

AMDP 0.0460 0.4768
JS-mixture 0.0504 0.4168

DACT (Efron) 0.0333 0.3488
DACT (JC) 0.1640 0.6839

n=1000

AMDP 0.0487 0.8734
JS-mixture 0.0541 0.8208

DACT (Efron) 0.0315 0.7636
DACT (JC) 0.0818 0.8674

n=5000

AMDP 0.0501 1
JS-mixture 0.0544 1

DACT (Efron) 0.0116 1
DACT (JC) 0.1085 1

sampling distribution of (p1j , p2j) is symmetrical around p(1) = 0.5 and p(2) = 0.5. Under H01, p1j
still obeys the uniform distribution, but p2j does not, leading to (p1j , p2j) being only symmetrical
about p(1) = 0.5 on [0, 1] × [0, 1]. Similarly, under H10, p2j obeys the uniform distribution, but
p1j does not, resulting in (p1j , p2j) being only symmetrical about p(2) = 0.5 on [0, 1]× [0, 1]. It is
essential to emphasize that Assumption 1 specifically applies to the null mediators.

For Assumption 2, a non-null p-value theoretically lies within [0, 0.5). Therefore, as the sample size
n tends to infinity, the probability of p-values under alternative hypotheses falling within [0.5, 1]
approaches zero. For example, as n goes to infinity, p-values under H11 and H10 are not expected
to fall within the region D̃01 = [0.5, 1] × [0, 0.5) because non-null p1j not lies within [0.5, 1]

theoretically, therefore the region D̃01 only contains p-values under H00 and H01. Similarly, the
region D̃10 theoretically only includes p-values under H00 and H10.
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E Proofs

E.1 Proof of Theorem 1

For any rejection region S ∈ [0, 1]2, the global FDR in mediation analysis is defined as follows
gFDR(S) = P(H00 ∪H01 ∪H10 = 1 | pj ∈ S)

=
π00P(pj ∈S |H00 = 1)+π01P(pj ∈S |H01 = 1)+π10P(pj ∈S |H10 = 1)

π00P(pj ∈S |H00 = 1)+π01P(pj ∈S |H01 = 1)+π10P(pj ∈S |H10 = 1)+π11P(pj ∈S |H11 = 1)

=
π00

∫
S
f00(p)dp+π01

∫
S
f01(p)dp+π10

∫
S
f10(p)dp

π00

∫
S
f00(p)dp+π01

∫
S
f01(p)dp+π10

∫
S
f10(p)dp+π11

∫
S
f11(p)dp

.

(A.1)
We introduce some notations

D00(S) =

∫
S

f00(p)dp, D01(S) =

∫
S

f01(p)dp, D10(S) =

∫
S

f10(p)dp, D11(S) =

∫
S

f11(p)dp.

Thus, gFDR(S) is transformed into

gFDR(S) =
π00D00(S) + π01D01(S) + π10D10(S)

π00D00(S) + π01D01(S) + π10D10(S) + π11D11(S)

=
1

1 + {D11(S)/(γ00D00(S) + γ01D01(S) + γ10D10(S))}
,

(A.2)

where γ00 =
π00

π11
, γ01 =

π01

π11
, γ10 =

π10

π11
. For any threshold ζ ∈ (0, 1], define the rejection region

S(ζ) as

S(ζ) =

{
p :

π00f00(p) + π01f01(p) + π10f10(p)

π00f00(p) + π01f01(p) + π10f10(p) + π11f11(p)
≤ ζ

}

=

{
p :

1

1 + {f11(p)/(γ00f00(p) + γ01f01(p) + γ10f10(p))}
≤ ζ

}
.

(A.3)

Here we prove that gFDR(S(ζ)) is a non-decreasing function of ζ. Suppose ζ2 > ζ1, considering two
cases:

Case 1 ν(S(ζ2)− S(ζ1)) = 0. We derive that gFDR(S(ζ1)) = gFDR(S(ζ2)).

Case 2 ν(S(ζ2)− S(ζ1)) > 0. We can prove that gFDR(S(ζ)) is a non-decreasing function of ζ if

D11(S(ζ2)− S(ζ1))

γ00D00(S(ζ2)− S(ζ1)) + γ01D01(S(ζ2)− S(ζ1)) + γ10D10(S(ζ2)− S(ζ1))

<
D11(S(ζ1))

γ00D00(S(ζ1)) + γ01D01(S(ζ1)) + γ10D10(S(ζ1))

(A.4)

holds, the reason is as follows. Let

m1 = sup

{
f11(p)

γ00f00(p) + γ01f01(p) + γ10f10(p)
: p ∈ S (ζ2)− S (ζ1)

}
,

m2 = inf

{
f11(p)

γ00f00(p) + γ01f01(p) + γ10f10(p)
: p ∈ S (ζ1)

}
.

By the definition of region S(ζ), we have m2 > m1 obviously. Therefore, we have
D11(S(ζ1))

γ00D00(S(ζ1)) + γ01D01(S(ζ1)) + γ10D10(S(ζ1))

≥ m2
γ00D00(S(ζ1)) + γ01D01(S(ζ1)) + γ10D10(S(ζ1))

γ00D00(S(ζ1)) + γ01D01(S(ζ1)) + γ10D10(S(ζ1))

> m1
γ00D00(S(ζ2)− S(ζ1)) + γ01D01(S(ζ2)− S(ζ1)) + γ10D10(S(ζ2)− S(ζ1))

γ00D00(S(ζ2)− S(ζ1)) + γ01D01(S(ζ2)− S(ζ1)) + γ10D10(S(ζ2)− S(ζ1))

≥ D11(S(ζ2)− S(ζ1))

γ00D00(S(ζ2)− S(ζ1)) + γ01D01(S(ζ2)− S(ζ1)) + γ10D10(S(ζ2)− S(ζ1))
.

(A.5)
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Furthermore, we decompose the region S(ζ2) as follows

D11(S(ζ2))

γ00D00(S(ζ2))+γ01D01(S(ζ2))+γ10D10(S(ζ2))

=
{
D11(S(ζ2)−S(ζ1))+D11(S(ζ1))

}/
γ00D00(S(ζ2)−S(ζ1))+γ01D01(S(ζ2)−S(ζ1))

+γ10D10(S(ζ2)−S(ζ1)) + γ00D00(S(ζ1))

+γ01D01(S(ζ1))+γ10D10(S(ζ1))

 .

(A.6)

Combined with (A.4), we obtain

D11(S(ζ1))

γ00D00(S(ζ1))+γ01D01(S(ζ1))+γ10D10(S(ζ1))
>

D11(S(ζ2))

γ00D00(S(ζ2))+γ01D01(S(ζ2))+γ10D10(S(ζ2))
.

(A.7)
Moreover, by the definition of gFDR(S), it holds that

gFDR(S(ζ1)) < gFDR(S(ζ2)).

Under the Assumption (ii) in Theorem 1, for a given α ∈ (0, 1), there exists a threshold ζ⋆ > 0, s.t.
gFDR(S(ζ⋆)) = α. For the ease of presentation, we denote S(ζ⋆) as S⋆. In the following, we will
prove that S⋆ is the optimal rejection region.

Considering any set T that satisfies D11(T ) > D11(S
⋆). Let RT = T − S⋆ and RS = S⋆ − T .

We can derive that
D11(T ) = D11(T ∩ S⋆) +D11(RT ),

D11(S) = D11(T ∩ S⋆) +D11(RS).
(A.8)

Then, we have D11(RT ) > D11(RS). By the definition of S⋆, we have

inf

{
γ00f00(p)+γ01f01(p)+γ10f10(p)

f11(p)
: p ∈ RT

}
> sup

{
γ00f00(p)+γ01f01(p)+γ10f10(p)

f11(p)
: p ∈ RS

}
.

(A.9)
Therefore,

γ00D00(RT )+γ01D01(RT )+γ10D10(RT )

D11(RT )
>

γ00D00(RS))+γ01D01(RS)+γ10D10(RS)

D11(RS)
. (A.10)

In a similar way, we can derive that

γ00D00(RT )+γ01D01(RT )+γ10D10(RT )

D11(RT )
>

γ00D00(T ∩ S⋆))+γ01D01((T ∩ S⋆)+γ10D10((T ∩ S⋆)

D11((T ∩ S⋆)
.

(A.11)
Finally, we have

γ00D00(T )+γ01D01(T )+γ10D10(T )

D11(T )

=
γ00D00(T ∩ S⋆)+γ01D01(T ∩ S⋆)+γ10D10(T ∩ S⋆)+γ00D00(RT )+γ01D01(RT )+γ10D10(RT )

D11(T ∩ S⋆)+D11(RT )

>
γ00D00(T ∩ S⋆)+γ01D01(T ∩ S⋆)+γ10D10(T ∩ S⋆)+γ00D00(RS)+γ01D01(RS)+γ10D10(RS)

D11(T ∩ S⋆)+D11(RS)

=
γ00D00(S

⋆)+γ01D01(S
⋆)+γ10D10(S

⋆)

D11(S⋆)
.

(A.12)
The second inequality holds because D11(RT ) > D11(RS), implying gFDR(T ) >

gFDR(S(ζ⋆)) = α. Therefore, we can conclude that the rejection region S (ζ⋆) is optimal.

E.2 Proof of Theorem 2

E.2.1 The consistent estimator of local FDR

To justify Assumption (i) for the corresponding local FDR estimator in Theorem 2, we first prove
the consistency of local FDR estimator under L∞ norm in Proposition 1.
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Proposition 1. Assume that the smoothing parameter b satisfies

lim
J→∞

b = 0 and lim
J→∞

Jb2 = +∞.

Then, we have
sup

pj∈[0,1]2

∣∣∣f̂dr(pj)− fdr(pj)
∣∣∣ P−→ 0 as n, J → ∞.

Let g be a probability density on [0, 1], and ĝ be the beta kernel estimator:

ĝ(p(i)) = J−1
J∑

j=1

K⋆
p(i),b(pij), i = 1, 2.

To prove the consistency of the beta kernel estimator ĝ, i.e

sup
p(i)∈[0,1]

∣∣∣ĝ(p(i))− g(p(i))
∣∣∣ P−→ 0 as J → ∞, (A.13)

we first need to establish the uniform convergence of its bias on the interval [0, 1].
Lemma 1. Let g be the probability density on [0, 1], and ĝ be the beta kernel estimator. We have

sup
p(i)∈[0,1]

∣∣∣E{
ĝ(p(i))

}
− g(p(i))

∣∣∣ → 0 as b → 0, i = 1, 2.

Proof of Lemma 1. Without loss of generality, we replace p(i), i = 1, 2 with p for simplifying the
proof steps, and discuss three cases in the following.

Case 1 p ∈ (2b, 1 − 2b) Denote µ1 and σ2
1 are mean and variance of P, a variable following

Beta(p/b, (1− p)/b). According to Johnson et al. [12], there exists a constant C such that

µ1 = p, (A.14)

σ2
1 = bp(1− p) +R2(p), (A.15)

where R2(p) ≤ Cb2. Because f is a probability density on [0, 1], for ε > 0, there exists a δ > 0
such that

|g(t)− g(p)| < ε for |p− t| < δ (A.16)
for all p ∈ (2b, 1− 2b); According to (A.14), we have

|µ1 − p| < δ/2 for all p ∈ (2b, 1− 2b). (A.17)

Therefore, we can derive that

|E {ĝ(p)} − g(p)| =

∣∣∣∣∣
∫ 1−2b

2b

{g(t)− g(p)}K
(
t,
p

b
,
1− p

b

)
dt

∣∣∣∣∣
≤
∫
|t−µ1|<δ/2

|g(t)− g(p)|K
(
t,
p

b
,
1− p

b

)
dt

+

∫
|t−µ1|>δ/2

|g(t)− g(p)|K
(
t,
p

b
,
1− p

b

)
dt

≤
∫
|t−µ1|<δ/2

|g(t)− g(p)|K
(
t,
p

b
,
1− p

b

)
dt

+ 2 sup
t∈(2b,1−2b)

|g(t)|
∫
|t−µ1|>δ/2

K

(
t,
p

b
,
1− p

b

)
dt

≡M1 +M2.

According (A.16) and (A.17), we obtain

M1 ≤ ε. (A.18)

10



Combining the Chebyshev’s inequality and (A.15), and there also exists bε such that

M2 ≤

{
8 sup
t∈(2b,1−2b)

|g(t)|σ2
1

}
/δ2 ≤

{
2 sup
t∈(2b,1−2b)

|g(t)|
(
b+ 4Cb2

)}
/δ2 ≤ ε for all b ≤ bε.

(A.19)

Thus, from (A.18) and (A.19), we conclude that

sup
p∈(2b,1−2b)

|E {ĝ(p)} − g(p)| < 2ε for all b ≤ bε.

Case 2 p ∈ [0, 2b] Based on the notations of Case 1, we have

µ2 = p+ ξ(p, b), (A.20)

σ2
2 = R2(p), (A.21)

where µ2 and σ2
2 are mean and variance of of P, a variable following Beta (ρ(p, b), (1 − p)/b),

ξ(p, b) = (1 − p){ρ(p, b) − p/b}/{1 + bρ(p, b) − p}, and R2(p) ≤ Cb2. For ε > 0, there exists a
δ > 0 such that

|g(t)− g(p)| < ε for |p− t| < δ (A.22)
for all p ∈ [0, 2b]; According to (A.20), since ξ(p, b) is a bounded function for p ∈ [0, 2b], there also
exists bδ such that

|µ2 − p| < δ/2 for b ≤ bδ for all p ∈ [0, 2b]. (A.23)
Therefore, we can derive that

|E {ĝ(p)} − g(p)| =

∣∣∣∣∣
∫ 2b

0

{g(t)− g(p)}K
(
t, ρ(p, b),

1− p

b

)
dt

∣∣∣∣∣
≤
∫
|t−µ2|<δ/2

|g(t)− g(p)|K
(
t, ρ(p, b),

1− p

b

)
dt

+

∫
|t−µ2|>δ/2

|g(t)− g(p)|K
(
t, ρ(p, b),

1− p

b

)
dt

≤
∫
|t−µ2|<δ/2

|g(t)− g(p)|K
(
t, ρ(p, b),

1− p

b

)
dt

+ 2 sup
t∈[0,2b]

|g(t)|
∫
|t−µ2|>δ/2

K

(
t, ρ(p, b),

1− p

b

)
dt

≡M1 +M2.

According to (A.22) and (A.23), there exists b(1)ε such that

M1 ≤ ε for all b ≤ b(1)ε . (A.24)

Combining the Chebyshev’s inequality and (A.21), and there also exists b(2)ε such that

M2 ≤

{
8 sup
t∈[0,2b]

|g(t)|σ2
2

}
/δ2 ≤

{
8 sup
t∈[0,2b]

|g(t)|Cb2

}
/δ2 ≤ ε for all b ≤ b(2)ε . (A.25)

Thus, from (A.24) and (A.25), we conclude that

sup
p∈[0,2b]

|E {ĝ(p)} − g(p)| < 2ε for all b ≤ min
(
b(1)ε , b(2)ε

)
.

Case 3 p ∈ [1− 2b, 1] Case 3 can be proven a similar procedure. We note that

µ3 = p− b · ξ(1− p, b), (A.26)

σ2
3 = R2(p), (A.27)

where µ3 and σ2
3 are mean and variance of P, a variable following Beta(p/b, ρ(1 − p, b)), and

R2(p) ≤ Cb2.

This completes the proof of Lemma 1.
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Proof of Proposition 1. To prove the consistency of the beta kernel estimator, we use the inequality:

sup
p∈[0,1]

|ĝ(p)− g(p)| ≤ sup
p∈[0,1]

|ĝ(p)− E {ĝ(p)}|+ sup
p∈[0,1]

|E {ĝ(p)} − g(p)| . (A.28)

From Lemma 1, the second term converges to zero. In the following, we prove that

sup
p∈[0,1]

|ĝ(p)− E {ĝ(p)}| P−→ 0 as J → ∞. (A.29)

We also consider three cases:

Case 1 p ∈ (2b, 1− 2b) The beta kernel estimator ĝ(p) is expressed as

ĝ(p) =

∫ 1−2b

2b

K

(
t,
p

b
,
1− p

b

)
dFn(t), (A.30)

where Fn is the empirical distribution. The expectation of the beta kernel estimator is

E {ĝ(p)} =

∫ 1−2b

2b

K

(
t,
p

b
,
1− p

b

)
dF (t). (A.31)

Thus, for p ∈ (2b, 1− 2b), we can derive that

|ĝ(p)− E {ĝ(p)}| =

∣∣∣∣∣
∫ 1−2b

2b

K

(
t,
p

b
,
1− p

b

)
d {Fn(t)− F (t)}

∣∣∣∣∣
≤ sup

t∈(b,1−2b)

|Fn(t)− F (t)|
∫ 1−2b

2b

∣∣∣∣dK (
t,
p

b
,
1− p

b

)∣∣∣∣ .
(A.32)

Note that the integral in (A.32) is bounded above by

1− b

b

∫ 1−2b

2b

∣∣∣∣K (
t,
p

b
− 1,

1− p

b

)
−K

(
t,
p

b
,
1− p

b
− 1

)∣∣∣∣ dt ≤ 2
1− b

b
. (A.33)

Therefore,

|ĝ(p)− E {ĝ(p)}| ≤ 2
1− b

b
sup

t∈(2b,1−2b)

|Fn(t)− F (t)| . (A.34)

From Dvoretzky et al. [8], we can obtain

P

[
sup

p∈(2b,1−2b)

|ĝ(p)− E {ĝ(p)}| ≥ ε

]
≤ P

{
sup

t∈(2b,1−2b)

|Fn(t)− F (t)| ≥ ε

2
· b

1− b

}

≤ 2 exp

{
−J

ε2

2

b2

(1− b)2

}
.

(A.35)

By utilizing the Borel-Cantelli Lemma, it is shown that under the beta kernel estimator is consistent.

Case 2 p ∈ [0, 2b] Case 2 can be proven a similar procedure of Case 1. Note that, for all p ∈ [0, 2b],

|ĝ(p)− E {ĝ(p)}| =

∣∣∣∣∣
∫ 2b

0

K

(
t, ρ(p, b),

1− p

b

)
d {Fn(t)− F (t)}

∣∣∣∣∣
≤ sup

t∈[0,2b]

|Fn(t)− F (t)|
∫ 2b

0

∣∣∣∣dK (
t, ρ(p, b),

1− p

b

)∣∣∣∣ .
(A.36)

Since ρ(p, b) is monotonic increasing in [0, 2b], ρ(0, b) = 1, ρ(2b, b) = 2. For p ∈ (0, 2b], the
integral in (A.36) is bounded above by 2 1+b

b . For p = 0, it is bounded above by

(ρ(p, b) +
1− p

b
− 1)

∫ 2b

0

∣∣∣∣K (
t, ρ(p, b),

1− p

b
− 1

)∣∣∣∣ dt = 1 + b

b
. (A.37)
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Thus, we can obtain

P

[
sup

p∈[0,2b]

|ĝ(p)− E {ĝ(p)}| ≥ ε

]
≤ P

{
sup

t∈[0,2b]

|Fn(t)− F (t)| ≥ ε

2
· b

1 + b

}

≤ 2 exp

{
−J

ε2

2

b2

(1 + b)2

}
,

(A.38)

which concludes the proof of the consistency of beta kernel estimator in Case 2.

Case 3 p ∈ [1 − 2b, 1] Case 3 can be proven a similar procedure of Case 1. Note that for all
p ∈ [1− 2b, 1],

|ĝ(p)− E {ĝ(p)}| =
∣∣∣∣∫ 1

1−2b

K
(
t,
p

b
, ρ(1− p, b)

)
d {Fn(t)− F (t)}

∣∣∣∣
≤ sup

t∈[1−2b,1]

|Fn(t)− F (t)|
∫ 1

1−2b

∣∣∣dK (
t,
p

b
, ρ(1− p, b)

)∣∣∣ . (A.39)

For p ∈ [1 − 2b, 1), the integral in (A.39) is bounded above by 2 1+b
b . And for p = 1, it is bounded

above by

(ρ(1− p, b) +
p

b
− 1)

∫ 1

1−2b

∣∣∣K (
t,
p

b
− 1, ρ(1− p, b)

)∣∣∣ dt = 1 + b

b
. (A.40)

Thus for all p ∈ [1− 2b, 1],

|ĝ(p)− E {ĝ(p)}| ≤ 2
1 + b

b
sup

t∈[1−2b,1]

|Fn(t)− F (t)| . (A.41)

Similarly, we obtain

P

[
sup

p∈[1−2b,1]

|ĝ(p)− E {ĝ(p)}| ≥ ε

]
≤ P

{
sup

t∈[1−2b,1]

|Fn(t)− F (t)| ≥ ε

2
· b

1 + b

}

≤ 2 exp

{
−J

ε2

2

b2

(1 + b)2

}
,

(A.42)

which concludes the proof of the consistency of beta kernel estimator in Case 3.

From Dai et al. [5], for a fixed J and λ, the biases of π̂00, π̂10, and π̂01 go to zero as n → ∞:

lim
n→∞

π̂00 = π00, lim
n→∞

π̂01 = π01, lim
n→∞

π̂10 = π10. (A.43)

And we can derive
f̂(p) = f̂(p(1), p(2)) = ĝ(p(1)) · ĝ(p(2)). (A.44)

By combining equations (A.13), (A.43), and (A.44), according to continuous mapping theorem [6],
we have

sup
p∈[0,1]

∣∣∣f̂dr(p)− fdr(p)
∣∣∣ P−→ 0 as n, J → ∞. (A.45)

According to equation (A.45), we can verify the rationality of Assumption (i) in Theorem 2:

1

J

J∑
j=1

∣∣∣f̂dr(pj)− fdr(pj)
∣∣∣ P−→ 0 as n, J → ∞. (A.46)
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E.2.2 Proof of Theorem 2

To begin with, we introduce some notations. For ζ ∈ (0, 1], denote

Ĝ00
J (ζ) =

1

J00

∑
j∈∆00

I
(
pj ∈ Ŝ(ζ)

)
, Ĝ01

J (ζ) =
1

J01

∑
j∈∆01

I
(
pj ∈ Ŝ(ζ)

)
,

Ĝ10
J (ζ) =

1

J10

∑
j∈∆10

I
(
pj ∈ Ŝ(ζ)

)
, Ĝ11

J (ζ) =
1

J11

∑
j∈∆11

I
(
pj ∈ Ŝζ)

)
,

G00
J (ζ) =

1

J00

∑
j∈∆00

P
(
pj ∈ Ŝ(ζ)

)
, G01

J (ζ) =
1

J01

∑
j∈∆01

P
(
pj ∈ Ŝ(ζ)

)
,

G10
J (ζ) =

1

J10

∑
j∈∆10

P
(
pj ∈ Ŝ(ζ)

)
,

V̂ 00
J (ζ) =

1

J00

∑
j∈∆00

I
(
pj ∈ S̃00(ζ)

)
, V̂ 01

J (ζ) =
1

J01 + J00

∑
j∈∆01∪∆00

I
(
pj ∈ S̃01(ζ)

)
,

V̂ 10
J (ζ) =

1

J10 + J00

∑
j∈∆10∪∆00

I
(
pj ∈ S̃10(ζ)

)
,

where J00 = |∆00|, J01 = |∆01|, J10 = |∆10|, J11 = |∆11|. Denote r00J = J00/J11, r
01
J =

J01/J11, r
10
J = J10/J11, vJ =

J11
J00 + J01 + J10

. And

K
0

J(ζ) = vJ{r00J G00
J (ζ) + r01J G01

J (ζ) + r10J G10
J (ζ)},

K0
J(ζ) = vJ{r00J Ĝ00

J (ζ) + r01J Ĝ01
J (ζ) + r10J Ĝ10

J (ζ)},

K̂0
J(ζ) = vJ{(r01J + r00J )V̂ 01

J (ζ) + (r10J + r00J )V̂ 10
J (ζ)− r00J V̂ 00

J (ζ)},

FDPJ(ζ) =
r00J Ĝ00

J (ζ) + r01J Ĝ01
J (ζ) + r10J Ĝ10

J (ζ)

r00J Ĝ00
J (ζ) + r01J Ĝ01

J (ζ) + r10J Ĝ10
J (ζ) + Ĝ11

J (ζ)
,

FDP†
J(ζ) =

K̂0
J(ζ)/vJ

r00J Ĝ00
J (ζ) + r01J Ĝ01

J (ζ) + r10J Ĝ10
J (ζ) + Ĝ11

J (ζ)
,

FDPJ(ζ) =
K

0

J(ζ)/vJ

r00J G00
J (ζ) + r01J G01

J (ζ) + r10J G10
J (ζ) + Ĝ11

J (ζ)
.

Before proceeding with the proof of Theorem 2, we prove Lemma 2 first.
Lemma 2. Under Assumption (i)-(ii) in Theorem 2, if J00 → ∞, J01 → ∞, J10 → ∞ as J → ∞,
and n → ∞, we have in probability,

sup
ζ∈(0,1]

∣∣∣Ĝ00
J (ζ)−G00

J (ζ)
∣∣∣ −→ 0, sup

ζ∈(0,1]

∣∣∣Ĝ01
J (ζ)−G01

J (ζ)
∣∣∣ −→ 0,

sup
ζ∈(0,1]

∣∣∣Ĝ10
J (ζ)−G10

J (ζ)
∣∣∣ −→ 0, sup

ζ∈(0,1]

∣∣∣K̂0
J(ζ)−K

0

J(ζ)
∣∣∣ −→ 0.

Proof of Lemma 2. We consider three cases under composite null hypothesis.

Case 1 Under H00: We can derive that

Ĝ00
J (ζ) =

1

J00

∑
j∈∆00

{
I
(
pj ∈ Ŝ(ζ)

)
− I

(
pj ∈ S(ζ)

)
+ I

(
pj ∈ S(ζ)

)}
,

G00
J (ζ) =

1

J00

∑
j∈∆00

{
P
(
pj ∈ Ŝ(ζ)

)
− P

(
pj ∈ S(ζ)

)
+ P

(
pj ∈ S(ζ)

)}
.

(A.47)
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Thus, we have

sup
ζ∈(0,1]

∣∣∣Ĝ00
J (ζ)−G00

J (ζ)
∣∣∣ ≤ sup

ζ∈(0,1]

1

J00

∑
j∈∆00

∣∣∣I(pj ∈ Ŝ(ζ)
)
− I (pj ∈ S(ζ))

∣∣∣
+ sup

ζ∈(0,1]

1

J00

∑
j∈∆00

∣∣∣P(
pj ∈ Ŝ(ζ)

)
− P (pj ∈ S(ζ))

∣∣∣
+ sup

ζ∈(0,1]

1

J00

∑
j∈∆00

∣∣∣I (pj ∈ S(ζ))− P (pj ∈ S(ζ))
∣∣∣.

(A.48)

To deal with the first term, we have
1

J00

∑
j∈∆00

∣∣∣I(pj ∈ Ŝ(ζ)
)
− I (pj ∈ S(ζ))

∣∣∣
=

1

J00

∑
j∈∆00

∣∣∣I{f̂dr (pj) ≤ ζ
}
− I {fdr (pj) ≤ ζ}

∣∣∣
=

1

J00

∑
j∈∆00

[
I
{
f̂dr (pj) ≤ ζ, fdr (pj) > ζ

}
+ I

{
fdr (pj) ≤ ζ, f̂dr (pj) > ζ

}]
=

1

J00

∑
j∈∆00

[
I
{
f̂dr (pj) ≤ ζ, ζ + ϵ ≥ fdr (pj) > ζ

}
+ I

{
ζ − ϵ < fdr (pj) ≤ ζ, f̂dr (pj) > ζ

}]
+

1

J00

∑
j∈∆00

[
I
{
f̂dr (pj) ≤ ζ, fdr (pj) > ζ + ϵ

}
+ I

{
fdr (pj) ≤ ζ − ϵ, f̂dr (pj) > ζ

}]
≤ 1

J00

∑
j∈∆00

I {ζ − ϵ < fdr (pj) ≤ ζ + ϵ}+ 1

J00ϵ

∑
j∈∆00

∣∣∣f̂dr (pj)− fdr (pj)
∣∣∣ .

(A.49)

Combine with the Glivenko-Cantelli theorem and Assumption (i), we can derive

Q := sup
ζ∈(0,1]

1

J00

∑
j∈∆00

∣∣∣I{f̂dr (pj) ≤ ζ
}
− I {fdr (pj) ≤ ζ}

∣∣∣
≤ sup

ζ∈(0,1]

1

J00

∑
j∈∆00

I {ζ − ϵ < fdr (pj) ≤ ζ + ϵ}+ 1

J00ϵ

∑
j∈∆00

∣∣∣f̂dr (pj)− fdr (pj)
∣∣∣

≤ sup
ζ∈(0,1]

1

J00

∑
j∈∆00

∣∣∣P(ζ − ϵ < fdr (pj) ≤ ζ + ϵ)
∣∣∣

+ 2 sup
ζ∈(0,1]

∣∣∣∣∣∣ 1

J00

∑
j∈∆00

I {fdr (pj) ≤ ζ} − 1

J00

∑
j∈∆00

P {fdr (pj) ≤ ζ}

∣∣∣∣∣∣
+

1

J00ϵ

∑
j∈∆00

∣∣∣f̂dr (pj)− fdr (pj)
∣∣∣

≤ sup
ζ∈(0,1]

1

J00

∑
j∈∆00

∣∣∣P(ζ − ϵ < fdr (pj) ≤ ζ + ϵ)
∣∣∣+ op(1).

Since ϵ can be arbitrarily small, supζ∈(0,1]
1

J00

∑
j∈∆00

|P(ζ − ϵ < fdr (pj) ≤ ζ + ϵ)| can be small
due to Assumption (ii). Consequently, we have Q = op(1) and thus the first term holds.

Before addressing the second term, we obtain that

P
(
f̂dr (pj) ≤ ζ

)
≤P

(
f̂dr (pj) ≤ ζ, fdr (pj) ≤ ζ + ϵ

)
+ P

(
f̂dr (pj) ≤ ζ, fdr (pj) > ζ + ϵ

)
≤P (fdr (pj) ≤ ζ + ϵ) + P

(∣∣∣f̂dr (pj)− fdr (pj)
∣∣∣ > ϵ

)
.

(A.50)
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Combine with Assumption (i), we can derive that P
(∣∣∣f̂dr (pj)− fdr (pj)

∣∣∣ > ϵ
)
→ 0.

Then, we have

sup
ζ∈(0,1]

∑
j∈∆00

∣∣∣P(
pj ∈ Ŝ(ζ)

)
− P (pj ∈ S(ζ))

∣∣∣
= sup

ζ∈(0,1]

1

J00

∑
j∈∆00

∣∣∣P(
f̂dr (pj) ≤ ζ

)
− P (fdr (pj) ≤ ζ)

∣∣∣
≤ sup

ζ∈(0,1]

1

J00

∑
j∈∆00

∣∣∣P (fdr (pj) ≤ ζ + ϵ)− P (fdr (pj) ≤ ζ)
∣∣∣

= sup
ζ∈(0,1]

1

J00

∑
j∈∆00

∣∣∣P (ζ < fdr (pj) ≤ ζ + ϵ)
∣∣∣.

(A.51)

As ϵ can be arbitrarily small, supζ∈(0,1]

1

J00

∑
j∈∆00

|P (ζ < fdr (pj) ≤ ζ + ϵ)| → 0.

The third term can be proved using the Glivenko-Cantelli theorem. Thus, we have shown the proof
of the first claim in Lemma 2.

Cases 2-3 Under H01 and H10: Following the similar procedure in Case 1, we can conclude the
proof of the second and third claims in Lemma 2.

Case 4 According to the symmetric property of p-values pj for j ∈ ∆00 ∪∆01 ∪∆10, we follow
the similar steps in Case 1, thus, we have

sup
ζ∈(0,1]

∣∣∣K̂0
J(ζ)−K

0

J(ζ)
∣∣∣ −→ 0. (A.52)

This concludes the proof of the fourth claim.

Proof of Theorem 2. For any ϵ ∈ (0, α), suppose there exists ζα−ϵ > 0, then

P (FDP (ζα−ϵ) ≤ α− ϵ) → 1.

By Lemma 2, for any constant c > 0, we have

sup
0<ζ≤c

∣∣∣FDP†
J(ζ)− FDPJ(ζ)

∣∣∣ p→ 0. (A.53)

By the definition of ζ⋆, i.e., ζ⋆ = sup
{
ζ ∈ (0, 1] : FDP†

J(ζ) ≤ α
}

, we have

P (ζ⋆ ≥ ζα−ϵ) ≥ P
(
FDP†

J (ζα−ϵ) ≤ α
)

≥ P
(∣∣∣FDP†

J (ζα−ϵ)−FDPJ (ζα−ϵ)
∣∣∣ ≤ ϵ,FDP (ζα−ϵ) ≤ α−ϵ

)
= P (FDP (ζα−ϵ) ≤ α−ϵ)−P

(∣∣∣FDP†
J (ζα−ϵ)− FDPJ (ζα−ϵ)

∣∣∣ > ϵ,FDP (ζα−ϵ) ≤ α−ϵ
)

≥ P (FDP (ζα−ϵ) ≤ α−ϵ)−P
(∣∣∣FDP†

J (ζα−ϵ)− FDPJ (ζα−ϵ)
∣∣∣ > ϵ

)
≥ 1− ϵ,

(A.54)
for J large enough. Thus, we have

P (ζ⋆ ≥ ζα−ϵ) ≥ 1− ϵ. (A.55)

Conditioning on the event ζ⋆ ≥ ζα−ϵ, we have
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lim sup
n,J→∞

E [FDPJ (ζ⋆)] ≤ lim sup
n,J→∞

E [FDPJ (ζ⋆) | ζ⋆ ≥ ζα−ϵ]P (ζ⋆ ≥ ζα−ϵ) + ϵ

≤ lim sup
n,J→∞

E
[∣∣FDPJ (ζ⋆)− FDPJ (ζ⋆)

∣∣ | ζ⋆ ≥ ζα−ϵ

]
P (ζ⋆ ≥ ζα−ϵ)

+ lim sup
n,J→∞

E
[∣∣∣FDP†

J (ζ⋆)− FDPJ (ζ⋆)
∣∣∣ | ζ⋆ ≥ ζα−ϵ

]
P (ζ⋆ ≥ ζα−ϵ)

+ lim sup
n,J→∞

E
[
FDP†

J (ζ⋆) | ζ⋆ ≥ ζα−ϵ

]
P (ζ⋆ ≥ ζα−ϵ) + ϵ

≤ lim sup
n,J→∞

E

[
sup

ζ∈[ζα−ϵ,1]

∣∣FDPJ(ζ)− FDPJ(ζ)
∣∣]

+ lim sup
n,J→∞

E

[
sup

ζ∈[ζα−ϵ,1]

∣∣∣FDP†
J(ζ)− FDPJ(ζ)

∣∣∣]
+ lim sup

n,J→∞
E
[
FDP†

J (ζ⋆)
]
+ ϵ.

(A.56)
The first two terms are 0 based on Lemma 2 and the dominated convergence theorem. For the third
term, we have FDP†

J (ζ⋆) ≤ α by the definition of ζ⋆. This concludes the proof of Theorem 2.
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